
Fault-Aware Load-Balancing Routing
for 2D-Mesh and Torus On-Chip

Network Topologies
Pengju Ren,Member, IEEE, Michel A. Kinsy,Member, IEEE, and Nanning Zheng, Fellow, IEEE

Abstract—Routing algorithm design for on-chip networks (OCNs) has become increasingly challenging due to high levels of integration

and complexity of modern systems-on-chip (SoCs). The inherent unreliability of components, embedded oversized IP blocks, and fine-

grained voltage-frequency islands (VFIs) management among others, raise several challenges in OCNs: (a) network topologies

become irregular or asymmetric making circular route dependencies that lead to deadlock hard to detect; and (b) routing algorithms

that lack strong load-balancing properties often saturate prematurely. In order to address the aforementioned deadlock and load-

balancing problems, we propose the traffic balancing oblivious routing (TBOR) algorithm. It is a two-phase routing algorithm consisting

of: (1) construction of the weighted acyclic channel dependency graph (CDG) for the OCN to efficiently maximize available resource

utilization; and (2) channel ordering across turn models to keep the underlying CDG cycle-free to guarantee deadlock-freedom using

one or more turn-models. Channel bandwidth utilization and traffic balancing are achieved through static virtual channel allocation

according to residual bandwidth of healthy links. In addition, we introduce in this work two schemes of different granularity of fault

detection and analysis while guaranteeing in-order packet delivery by assigning a unique path to each flow. Extensive experiments

demonstrate the proposed routing methodology outperforms previous algorithms.

Index Terms—Fault-tolerant routing, irregular network, load balance, resource utilization, channel dependency graph

Ç

1 INTRODUCTION

AS technology scales down to the nanoscale regime, the
integration of billions of transistors into a single chip

has become commonplace. Computer designers are turning
to multicore and many-core systems, which not only have
the parallel computing benefits, but also provide functional
redundancy, that enables compute resource management
and reconfigurability to address the issues of reliability and
fault tolerance [1], [2]. Architectures with several distinct
CPU cores on a single die are now standard: general-pur-
pose processors can include as many as fifteen cores [3] and
multicore designs with 64 or more cores are commercially
available [4].

Due to the lack of scalability in bus-based protocols, on-
chip networks (OCNs) have been introduced as an effective
data communication infrastructure for systems-on-chip
(SoCs) and multicore or many-core systems [5]. For many
applications, irregular on-chip-network topologies are
required in order to integrate different sizes of IP blocks
from different vendors [6], [7]. These irregular networks
play an important role in ensuring the reliability, availabil-
ity, low-latency and high-throughput requirements. In

multicore systems built at 65 nm and below, it is extremely
difficult to move signals across the die in a single clock
cycle. As a consequence, globally asynchronous locally syn-
chronous (GALS) schemes have been introduced for better
power efficiency and design modularity [8], [9]. And volt-
age-frequency islands (VFIs) are used to perform fine-
grained power management [10], [11]. In these designs, the
system is partitioned into multiple VFIs. Each VFI works on
different supply and threshold voltage levels. The VFI ON/
OFF power mode is used to optimize the chip power con-
sumption based on computing workload variations during
the application execution.

In addition, the unreliability of components has emerged
as one of the fundamental barriers to future scaling. There
are two types of component variations: static (or perma-
nent) and dynamic (or transient). The former are caused by
random dopant fluctuations and sub-wavelength lithogra-
phy during fabrication, while the latter are caused by parti-
cle strikes, voltage and temperature variations, crosstalk
and electromagnetic interference during runtime [12], [13].

Unreliability of components, embedded oversized IP
blocks (OIPs) and fine-grained ON/OFF power manage-
ment of VFIs present several key challenges for the design
and implementation of OCNs, as shown in Fig. 1. Some of
the routers and/or links may not be available due to unpre-
dictable fault distributions, different dimensions of IP
blocks and dynamic power management of VFIs or a com-
bination thereof. To avoid packet loss or deadlock scenarios
that arise due to topology changes caused link or router
failures, OIPs, or VFIs, it’s vital for the OCN to possess
resilient communication and load-balancing properties.
Moreover, in the event of partial available communication

� P. Ren and N. Zheng are with the Xi’an Jiaotong University, Xi’an,
Shaanxi 710049, P.R., China.
E-mail: pengjuren@gmail.com, nnzheng@mail.xjtu.edu.cn.

� M.A. Kinsy is with the Department of Computer and Information, Univer-
sity of Oregon, Eugene, OR 97403. E-mail: mkinsy@cs.uoregon.edu.

Manuscript received 20 June 2014; revised 16 May 2015; accepted 20 May
2015. Date of publication 31 May 2015; date of current version 10 Feb. 2016.
Recommended for acceptance by H. Sarbazi-Azad.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2439276

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016 873

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

resources, the on-chip network should retain the availabil-
ity of as many computing resources as possible and ensure
graceful performance degradation. In particular, it must be
(1) flexible enough to allow a variety of faulty and fault-
free configurations [14], (2) capable to provide the required
adaptivity for integrating different sized IP blocks, and (3)
suitable for different fine-grained power management strat-
egies on VFIs.

Fault-tolerant routing algorithms are the most practica-
ble and commonly proposed solutions, because of the simi-
larity between faulty and irregular on-chip networks [15],
[16]. The general approach in this domain is to route pack-
ets through available components or resources and to avoid
out-of-service links and routers (or OIPs and power-off VFI
blocks) using adaptive or table-based oblivious routing
schemes. Although it is worth noting that our proposed
methodology will also apply to networks with OIPs and
power-off VFI blocks. Most previous works have mainly
focused on fault avoidance but often overlooked load-bal-
ancing and power distribution issues. In these works, fault-
tolerant routers are either fully operational or out-of-ser-
vice even when only a single virtual channel (VC) or switch
of the crossbar is defective. These approaches are highly
inefficient, wasteful and costly [17]. Furthermore, traffic
load imbalance may cause hotspots in the network, and
according to Aisopos et al. [18], high temperatures result in
4–10 percent fault probabilities (�100℃ up to 125℃) which
further exacerbates the reliability problem. A good alterna-
tive is to operate semi-faulty routers or links in partial-
usage modes by making use of remaining available net-
work resources, such as healthy VCs and crossbar switches
and to re-route packets around faulty components. Our
results show that this approach provides better resources
utilization and network performance even under severe
fault scenarios.

The oblivious fault-tolerant algorithm proposed in this
work is for wormhole routing. Deadlock avoidance is
guaranteed by combining appropriate turn models for sin-
gle or multiple virtual set(s) with priority. The virtual chan-
nel allocation is done explicitly through the routing
function. Traffic load-balancing is based on the global
knowledge of the underlying irregular network topology
and the communication characteristics of applications [19],
[20]. Resource utilization adjustments for faulty networks
are done through specific fine-grained fault information
analysis. Route selections and router configurations are per-
formed statically. They occur when (1) a new permanent
fault is detected and it must be reflected in a modified

topology, (2) a new ON/OFF power management strategy
is introduced, or (3) a new application is starting. The pro-
posed routing methodology achieves this without introduc-
ing significant additional penalty or cost in terms of extra
latency and hardware resource (VC number), while preserv-
ing the in-order delivery. Additionally, we are developing
algorithms to identify the minimum number of VCs to sat-
isfy communication requirements of an application given
the topology of the irregular network.

In the remainder of the manuscript, we provide prelim-
inaries and definitions in Section 2. In Section 3, we out-
line our methodology and describe the TBOR routing
algorithm and implementation. Related works are pre-
sented in Section 4. Section 5 evaluates TBOR performance
and compares it with other routing algorithms. Section 6
concludes the paper.

2 SYSTEM FRAMEWORK

2.1 Router Micro-Architecture

Our discussion assumes a state-of-art credit-based virtual-
channel router on an irregular 2D-mesh or torus network.
Each input port has several buffers, where packets are
stored until the route computation and VC allocator units
determine the next hop and associated VC. The switch allo-
cator selects which flits will traverse the crossbar. Previous
works assume the router is fully unavailable as long as one
of its components is identified as faulty. This approach of
labeling the whole router as out-of-service is inefficient
since operational resources are also disregarded in the pro-
cess. In our routing framework, we develop two techniques
to handle different fault granularities. One is a coarse-
grained technique, which, like previous works, treats the
router fully out-of-service if one of its components is bro-
ken. The other is a fine-grained method, which treats the
router as semi-faulty and uses the remaining functionality
of the partly defective router to route application flows.

2.2 Irregular Network Model

A network topology can be characterized by a set of nodes
connected by links or channels. For a K by K 2D mesh,
node N is indexed by the tuple ðNx;NyÞ, where
0 � Nx < K � 1 and 0 � Ny < K � 1. We denote the direc-
tional link from node A to B by ½A;B�. A unidirectional
channel associated with each physical link from node A to

node B is represented by hA;Bii, where i indicates which
VC set it belongs to. Therefore, a path connecting nodes S
andD can be represented with an ordered set of channels.

Fig. 1. (a) A faulty 6�6 2D-mesh with one node and two links are broken; (b) An irregular mesh with two oversize IP blocks: OIP1 and OIP2; (c) A
network with three voltage-frequency islands: VCC1, VCC2 and VCC3, each of them can be powered ON/OFF independently; (d) A hybrid example
of all three cases.

874 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016

Fault control involves two basic steps: fault detection (or
diagnosis) and fault tolerance (or containment). A dedicated
built-in self-test (BIST) mechanism could pinpoint faulty
links or components in routers. It is done by allowing a
node to send probe signals to its neighbors and to mark
neighboring routers or router components defective if
acknowledgment is not received within a certain time inter-
val. Fault diagnosis is an orthogonal topic to fault contain-
ment and will not be addressed in this paper.

Faults inside the router can affect the routing table or the
switch allocator or both. These faults can lead to misrouting
and starvation. Corrupted packets are detected via cyclic
redundancy check (CRC) and are discarded. When an error
persists over several cycles, the component is identified as
permanently faulty and labeled out-of-service. We consider
permanent faults that occur both at the router and link lev-
els. When a physical link fails, all associated VCs are
marked faulty, that is: if link ½N;M� is faulty, channels

hN;Mij where j ¼ 0; 1 . . . I � 1 are all treated as out-of-ser-
vice (I is the number of VC sets). For our coarse-grained
scheme, all physical links connected to a partially faulty
router are made unavailable, therefore rendering the router
fully out-of-service. With our fine-grained approach, a
router with defective components is still used at reduced
capacity to perform limited functions, details are presented
in Section 3.2.1. The router is considered completely broken
if all of its links are faulty.

2.3 Turn Models and Degree of Adaptiveness

Deadlocks occur when messages or packets waiting to be
delivered form a cycle. Glass and Ni [21] proposed a well-
known solution called the turn models that places restric-
tions on routing path turns as a mean to break link depen-
dencies and to guarantee cycle-free adaptivity. Chiu
presented odd-even routing [22], an extension of the turn
models that does not allow turn pairs of East-North and
North-West or East-South and South-West in same column,
thus prohibiting circular paths.

Recently, Shafiee [23] and Fu [24] proposed similar proto-
cols called Extended Turn Model (ETM) and Abacus Turn
Model (AbTM) respectively. In the AbTM routing scheme,
there are two nodes specified as clockwise bead and counter-
clockwise bead. They selected for each column except the left-
most column. In this scheme, East-South and South-West
turns are forbidden for all nodes above and below clockwise
bead; and North-West and East-North turns are prohibited
for nodes above and below counter-clockwise bead.

Turn model based routing schemes are partially adaptive
routing algorithms, which means the number of shortest
paths from source to destination is determined bywhich turn
model is taken and locations of the source and destination.
As Glass and Chiu describe in [21] and [22] the degree of
adaptiveness of a turnmodel routing algorithm is as follows:

SWest�First ¼
ðDxþDyÞ!
Dx!Dy! if Dx � Sx

1 otherwise;

�

Snorth�last ¼
ðDxþDyÞ!
Dx!Dy! if Dy � Sy

1 otherwise;

�

Snegative�first ¼
ðDxþDyÞ!
Dx!Dy! if ðDx � SxÞðDy � SyÞ � 0
1 otherwise;

�

Sodd�even ¼ ðDyþhÞ!
Dy!h! h ¼ Dx

2

� �
or Dx�1

2

� �
;

where Salgorithm represents the number of the shortest paths
(minimal routes) allowed from source ðSx; SyÞ to destination
ðDx;DyÞ, Dx ¼ jDx � Sxj and Dy ¼ jDy � Syj. With partial
routing adaptivity, turn model based routing can poten-
tially achieve fault tolerance by providing alternative
choices when messages encounter faulty regions. However,
with a given turn model, the degree of adaptivity (path
diversity) is completely determined by the locations of the
source and destination pairs. Similarly, with ETM and
AbTM routing, the Salgorithm depends on the position of the
selected clockwise and counter-clockwise bead, and the position
of faulty links may disconnect some node pairs. We will
highlight some limitations associated with using turn model
based adaptive routing for fault tolerance in Section 3.2.2.

2.4 Definitions

For a given application and an underlying irregular net-
work, the objective of the work being proposed is to decide
how packets should be routed without deadlock, while
maximizing the available communication resources and bal-
ancing traffic to attain good performance. Within this frame-
work, we will make use of the following definitions:

Definition 1. Given an OCN architecture, there is an associated
directed graph (ARCG) G ¼ GðR;ChÞ, where R and Ch rep-
resent the set of routers and channels in the network. Each
ri 2 R is a router and is connected to a processing element
(PE). Each directed arc Chi;j 2 Ch represents a set of VCs
from ri to rj, 8chi;j 2 Chi;j, Cðchi;jÞ gives the bandwidth
available on the channel.

For a given target application running on a fixed OCN
architecture, several problems must be addressed: (a) which
processing element should each application module be
mapped to and (b) how should packets be routed to achieve
the best communication performance while using minimal
energy and meeting other constraints like area overhead,
temperature, etc. However, the problem of finding an opti-
mal assignment of modules to processing elements has been
shown to be NP-hard [25], [26]. The focus of the project will
be on fault-aware routing in irregular networks and we will
assume that application modules have already been bound
to the processing elements.

Definition 2. A channel dependence graph (CDG), denoted by
CDGðV;EÞ, is derived from the ARCG, where a vertex
vi;j 2 V corresponds to an edge chi;j in ARCG. There is a
directed arc from vi;x to vx;j if chi;x and chx;j are input and out-
put channels of the same node x (ignoring 180 degree turns)—
in other words, if a packet can be routed from chi;x to chx;j

without traversing any other edges in the ARCG.

In a faulty network that employs a fine-grained fault-
diagnosis scheme, the vertices of CDG are the available
communication channels, therefore, they do not include any
faulty channels and there is no arc between two vertices
(channels) if the switch link of the crossbar connecting them

REN ETAL.: FAULT-AWARE LOAD-BALANCING ROUTING FOR 2D-MESH AND TORUS ON-CHIP NETWORK TOPOLOGIES 875

is disabled. The specific procedure for constructing CDGs
from defective networks is discussed below.

3 CDG BASED EXPLORATION AND TBOR
ROUTING ALGORITHM

The outline of our routing approach and the TBOR
algorithm are shown in Fig. 2:

Phase1: Application based analysis

� P1.1: Application-based analysis results in a bipartite
graph.

� P1.2: Generate the corresponding application traffic
matrix (ATM), which represents all the communica-
tion requirements of a given application and is inde-
pendent of the underlying network topology.

Phase2: Topology based analysis

� P2.1, P2.2: A network topology analysis generates
fine- or coarse-grained faulty weighted acyclic chan-
nel dependency graphs (AICDGs), derived from the
irregular network channel dependency graph (ICDG)
by potentially deleting some edges to remove cyclic
dependencies.

� P2.3: Create the flow consistency matrix (FCM). A
FCM contains all of the connectivity information of
the underlying acyclic network topology indepen-
dent of any application that runs on it.

Phase3: Load-balancing based analysis

� P3.1: Then, according to the application’s communi-
cation properties (ATM and bandwidth demands)
and optional network connectivity properties
(FCMs), we select appropriate turn model(s) for the
VC(s), using one or more VC set(s) and partitioning
them by priority to meet the application communica-
tion requirements.

� P3.2: Finally, we use Dijkstra’s weighted shortest-
path algorithm to determine the routes for each flow,
and the best load-balanced routes are obtained
by comparing channel utilization and minimal maxi-
mum channel loads among all the results. Then, we
use table-based routing and static VC allocation to
assign communication resources to each flow.

The connectivity of the irregular network is reflected in
the underlying ICDG—in other words, node pairs can
communicate with each other as long as there is at least
one path connecting them in the ICDG. Otherwise, trans-
mission between them is impossible. We are exploring dif-
ferent turn models by deleting edges from the CDG to
construct acyclic turn model based AICDGs. There are
several ways of removing cycles and constructing acyclic
CDGs. Our methodology is not confined to turn models. It
is amenable to other cycle-breaking techniques even ad hoc
or random.

3.1 Application Communication Analysis

A bipartite graph can be used to represent the communi-
cation behavior of a particular application [27]. Suppose
the number of nodes in the network is N , with nodes on
the opposite sides of the bipartite graph representing
message sources and destinations respectively. Edges
between sources and destinations indicate communication
requirements, as shown in Fig. 3a. Therefore, the bipartite
graph contains all of the communication information
of the given application and it is independent of the
underlying network topology. From the bipartite graph
we will generate the corresponding application traffic
matrix (Fig. 3b).

3.2 Network Topology Based Analysis

3.2.1 Acyclic ICDG without Virtual Channel

Out-of-service links and routers can cause an network
topology to become irregular and asymmetric, and can
make routing algorithms much more complex compared to
fault-free networks. The randomness and unpredictability
of fault distribution also makes it hard to detect circular
dependencies of routes. The formulation of the deadlock
properties of our routing algorithm is inspired by Dally and
Seitz [28].

Fig. 4 shows CDGs for a 3�3 2D mesh without virtual
channel: (a) faulty mesh, defective router is 3 (south input
buffer and North to East switch link of the crossbar are bro-
ken); (b) and (c) are ICDGs generated by coarse- and fine-
grained schemes respectively; (d) and (e) are relevant West-
First turn model based AICDGs using coarse- and fine-
grained techniques; (f) and (g) are AbTM based AICDGs
using coarse- and fine-grained diagnosis methods where
the selected clockwise bead is 1 and 8, counter-clockwise bead is
node 2 and 4. All channels are directional as indicated by
the arrows (without 0- and 180-degree turns), notice the
more available communication resources using fine-grained
fault diagnosis are highlighted with blue circles and dotted
lines; (h), (i), (j) and (k) are corresponding flow consistency

Fig. 2. Flow of the TBOR routing algorithm: the generated channel depen-
dence graph of the irregular network (ICDG) is different for the fine- and
coarse-grained techniques.

Fig. 3. Application traffic matrix derived from Bipartite graph, represent
all the communication behavior of application.

876 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016

matrices, element “1” means there exists at least one path
that could connect related nodes, and we are assuming
node could talk to itself for brevity. In (h) and (j) there is no
row and column elements associated with router 3, because
for the coarse-grained scheme, router 3 is treated as fully
out-of-service.

In the coarse-grained scheme, we regard the defective
router as fully out-of-service. If node 3 is faulty, then links
ð0; 3Þ; ð3; 0Þ; ð3; 4Þ; ð4; 3Þ; ð3; 6Þ; ð6; 3Þ and associated edges are
deleted from the CDG, as shown Fig. 4b. For the fine-grained
approach, all the healthy buffers and available crossbar
switches of the defective router are kept, and only the bro-
ken components are removed. Consequently, vertex (6,3)
(the broken input buffer from south node 6 at router 3) and
the edge between (0,3) and (3,4) (north to east switch link of
the crossbar at router 3) are removed fromCDG, Fig. 4c illus-
trates the ICDG. We remove circular dependencies by delet-
ing edges from the ICDG to generate the acyclic channel
dependency graph. Since the unpredictable arrangements of
failed components break the symmetry property of a mesh
network [2], we are investigating different types of general-
ized turn models [21], as well as AbTM [24] and ETM [23].

Turn model based adaptive routing removes certain
channel dependencies in order to prevent deadlock. It also
sacrifices routing path diversity for some source-destination
pairs. For irregular network topologies, it can severely affect
routing options and limit path diversity. This can cause
some flows to not be routed even with non-minimal routing.
Limitations of the turn model for routing are reflected in the
AICDGs. Fig. 4d shows the West-First turn model based
AICDG. There is no path that can connect node 4 to nodes 0
and 6. The same results are reflected in the flow consistency
matrix, which represents the connectivity of the AICDG.

Labels of the column and row in the FCM represent sources
and destinations, the value “1” in cell ði; jÞ means that
source node i can communicate with destination j; other-
wise, there is no path from node i to j.

For West-First, Fig. 4d, cell ð4; 0Þth is “0”, but in the
AbTM case, Fig. 4f, messages can be routed from 4 to 0. All
the features of connectable node pairs in the AICDGs are
demonstrated in the corresponding FCM. Fine-grained
analysis offers more routing options than coarse-grained.
For example, node 3 is available as the source and destina-
tion in 4e and 4g but will be treated as out-of-service in 4d
and 4f. Compared to Figs. 4d and 4e, the fine-grained FCM
further benefits from partially-operational routers acting
as intermediate nodes to provide more available routing
options. For instance, marking node 3 partially functional
allows communication from node 4 to node 0 and 6
through node 3.

3.2.2 Restriction of Turn Model without Virtual Channel

for Fault-Tolerance

Intuitively, a network’s ability to handle faults can be mea-
sured by the number of paths between each source-destina-
tion pair allowed by the routing function [14]. In West-First
turn model based adaptive routing, if the destination is on
the east side of the source (Dx � Sx), routing will be fully
adaptive; otherwise, the degree of adaptiveness is only one.
In other words, there will be only one path connecting S
with D. Suppose there is a defective row link sitting
between node ðDx; SyÞ and ðSx; SyÞ, it is not possible to route
from node S to D using the West-First based adaptive rout-
ing, even though they are in fact physically connected. Simi-
lar restrictions occur for other turn models (cf. Table 1).

Fig. 4. CDGs for a 3�3 2D mesh without virtual channel.

REN ETAL.: FAULT-AWARE LOAD-BALANCING ROUTING FOR 2D-MESH AND TORUS ON-CHIP NETWORK TOPOLOGIES 877

3.3 Methodology for Making Irregular Networks
Accommodate Application Requirements

3.3.1 ATM versus FCMs

In some circumstances, an AICDG can meet all the commu-
nication requirements for the application even without vir-
tual channels at the links. Specifically, if all the “1” elements
in the ATM can find a matching “1” in the same position in
the corresponding FCM of the AICDG, a network without
virtual channels will be sufficient for transmission. We
describe the procedure for selecting the qualified FCMs
(AICDGs) without virtual channel in Algorithm 1. In prac-
tice, the communication requirements of specified applica-
tions running on customized platforms is seldom all-to-all
(ATM is an all 1’s matrix). For example, in multi-processor
SoC (MPSoC) most applications [29], [20] have predefined
traffic flows, which gives a fair amount of flexibility in choos-
ing qualified AICDGs. For applications without a priori
knowledge, it is sufficient to assume that the ATM is an all
1’s matrix, meaning that all nodes need to talk to each other.

Algorithm 1. Get Qualified FCM (AICDG) Meet All the
Communication Requirements, without Using VCs

Input: Application traffic requirement and defective mesh
Output: Set contains all the qualified FCMs
Create ATM from particular application
Generate different turn model based AICDGs, and the corresponding

FCMk, k ¼ 0 . . . 19
SETFCM contains all the FCMs
foreach Ti;j ¼¼ 1 in ATM do
foreach FCMk in SETFCM do
if aki;j! ¼ 1 then /* aki;j is element in FCMk */
remove FCMk from SETFCM ;

if SETFCM is not empty then
return SETFCM

else
return Null

However, given a network in a severe fault scenario, the
FCM could be very sparse, so there is a strong possibility
that a single FCM cannot meet all the traffic requirements.
In order to mitigate these situations and to provide better
network performance, we are investigating and proposing
algorithms that use multiple VC sets and apply suitable
cycle-break strategies to each set. Simply conjoining differ-
ent VC sets, however, could result in deadlock among them.
Fig. 4a shows an example path: {h2; 1i0; h1; 4i0; h4; 5i1;
h5; 2i1; h2; 1i0} where a message is first transmitted within
VC0, then it is switched from VC0 to VC1 at node 4, and

finally back to VC0 at node 2, and creating a cycle in the pro-
cess. A detailed deadlock-free approach using multiple VCs
is presented in Section 3.3.2.

3.3.2 Acyclic ICDG with Multiple Virtual Channels

The procedures of generating the AICDG with multiple VCs
and the proof of deadlock avoidance are as follows:

1) Partition virtual channels into sets by priority, so that
the v channels associated with the same physical link
are divided into v distinct sets ordered by priority.

2) Apply a proper turn model for each virtual channel
set to prevent deadlock happening within the set
(180-degree turns are ignored). Each separate set
would generate a corresponding AICDG.

3) Transitions are only allowed from high to low prior-
ity to avoid the possibility of cycles between VC sets.
The separate AICDGs for different sets are coupled
by adding edges that transmit from higher to lower
priority sets.

4) Sets with the same turn model and adjacent priority
can traverse each other using either 0-degree turns
or appropriate turns. In this particular scenario, we
need to add the relevant edges that transmit from
lower to higher priority. Suppose, for example, that
we are using four VC sets. Applied turn models and
priorities of the various VC sets are: West-First
(VC0)>East-Last (VC1)>East-Last (VC2)>North-
Last (VC3). Since VC1 and VC2 use the same turn
model and are with adjacent priority, they can com-
municate using straight paths (0-degree) and all the
turns allowed in East-Last.

Lemma 1.Multiple virtual channels AICDG is deadlock free.

Proof.According to Dally and Seitz [28], a routing algorithm
is deadlock-free if the channels can be numbered and
every packet traverses channels in a strictly descending
(or ascending) order. Without loss of generality and for
simplicity, we consider the case of two VCs, each apply-
ing a different turn model. Virtual channel set VC0 has
the higher priority and obeys the West-First turn model,
and set VC1 uses the West-Last turn model. We number
virtual channels starting at node ðx; yÞ in VC0 using:

North: ðK � 1Þð2K � 2� 2xÞ þK � 2� y
South: ðK � 1Þð2K � 2� 2xÞ þ y� 1
West: ðK � 1Þð2K � 2þ xÞ
East: ðK � 1Þð2K � 3� 2xÞ:

TABLE 1
Unavailable Link Positions Causing Unroutable Flows for the Turn Model Based Adaptive Routing

Turn model1 affected flow (Source and Destination Relationship) Unavailable link position

West-First Sx > Dx ½ðLx; SyÞ; ðLx þ 1; SyÞ�, whereDx � Lx < Sx

North-Last Sy > Dy ½ðDx;LyÞ; ðDx;Ly þ 1Þ�, whereDy � Ly < Sy

Negative First Sx < Dx or Sy > Dy ½ðDx � 1; DyÞ; ðDx;DyÞ� and ½ðDx;DyÞ; ðDx;Dy þ 1Þ�
Dx < Sx orDy > Sy ½ðSx � 1; SyÞ; ðSx; SyÞ� and ½ðSx; SyÞ; ðSx; Sy þ 1Þ�

ODD-EVEN Sx > Dx and Sx%2! ¼ 0 ½ðSx � 1; SyÞ; ðSx; SyÞ�
Dx > Sx andDx%2 ¼¼ 0 ½ðDx � 1; DyÞ; ðDx;DyÞ�

1In AbTM and ETM, routing restrictions depend both on the position of source, destination and the selected clockwise and counter-clockwise bead.

878 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016

For the West-Last model, we assign virtual channels in
VC1 using:

North: ðK � 1Þð3K � 2x� 4Þ þ y
South: ðK � 1Þð3k� 2x� 3Þ � y
West: ðK � 1Þð3k� 4� 2xÞ
East: ðK � 1Þðx� 1Þ: tu

This way, packets routed within the same VC set are
guaranteed to be in strict descending order. We add
L ¼ 4KðK � 1Þ to the channel labels in set VC0, where L is
equal to the number of unidirectional physical links. It is
also equal to the number of VCs in a set for a K by K 2D
mesh. In general for each set VCi, we add ðI � i� 1ÞL to the
channel labels belonging to the set, where I is the number
of VC sets. This approach guarantees that the highest label
in a lower priority set is smaller than the lowest label in any
higher set. Consequently, even packets routed across differ-
ent VC sets still travel in strictly descending label order,
therefore providing deadlock avoidance. For other turn
models, we can rotate this labeling paradigm clockwise or
counter-clockwise, or reverse channel direction to obtain
the corresponding labeling. We connect them using the
same strategy as in West-First and West-Last. Fig. 5 shows
an AICDG with two VC sets. The irregular network is
shown in Fig. 4a. The AICDG is constructed using the
approach described above. In this example, K is 3 and we
add 24 to the labels of channels belonging to VC0. All chan-
nels are directional with arrows (without 180 degree turns);
dashed arrows indicate allowed paths from VC0 to VC1.

3.3.3 Connecting Multiple FCMs to Meet the

Communication Requirements of the ATM

As long as all the node pairs are physically connected in the
underlying ICDG, we apply proper turn models to each VC
set and couple them together following the methodology
described above. In this way, we can overcome the restric-
tion of turn models without VCs. Connecting as many flows
as possible, and adopting more VC sets if desirable, all the
communication flows can be connected to each other while
preserving freedom from deadlock. Finding complementary
VC partitions can be derived from FCMs. Consider routing

messages from node i to j, suppose ði; jÞth ¼¼ 0 in all the
FCMs, this means that a single turn model cannot connect
node i with j. However, if there exist a node u, where
ði; uÞ ¼¼ 1 in the first FCM(VC0) and ðu; jÞ ¼¼ 1 in the sec-
ond FCM(VC1), messages are routed from node i to u using
set VC0, then at node u they are switched to set VC1, and
traversed from u to j. A detailed procedure for finding the
complement FCMs for universal application (ATM is all 1’s
matrix) is described in Algorithm 2. Applications with
refined traffic requirements just need a slightly modification
on Algorithm 2. Furthermore, Algorithm 1 and 2 can also be
used to determine the minimum number of VC sets to meet
application communication requirements.

Algorithm 2. Finding the Complement FCM Pairs for
“all-to-all” Communication Requirement

Input: Irregular Network
Output: Complement FCM pairs for “all-to-all” communica-

tion requirement
Generate different turn model based AICDGs with associated FCMk;

SETFCM contains all the FCMks;
Loop1: foreach FCMk in SETFCM do
copy SETk

FCM ¼ SETFCM ;
remove FCMk from SETk

FCM

Initialize SETk as an empty set
foreach aki;j in FCMk: do
if aki;j ¼¼ 0 then
if aki;n ¼¼ 0 ðn ¼ 0 . . .KÞ then
go to Loop1

else
SETk contains all the aki;n ¼¼ 1

foreach aki;n in SETk do
loop2: foreach FCMl in SETk

FCM do
if aln;j ¼¼ 0 then
remove FCMl from SETk

FCM go to loop2
if SETk

FCM is not empty then
Return SETk

FCM

else
Return Null

For example, although routing from node 2 to 6 is not
feasible (Fig. 4d). We can, however, first route from 2 to 8

Fig. 5. An AICDG constructed with two VC sets: VC0 and VC1 apply West-First and West-Last respectively. VC0 is assigned a higher priority than V1.
The VC labels are in bold type. Dummy nodes (2 and 6) and edges are added and set to dotted when making a route from node 2 to 6.

REN ETAL.: FAULT-AWARE LOAD-BALANCING ROUTING FOR 2D-MESH AND TORUS ON-CHIP NETWORK TOPOLOGIES 879

using VC0 (applied West-First turn model), and then switch
to VC1 (applied West-Last turn model) at node 8 to reach
destination 6 to accomplish the desired communication.
However, it may not be practical to determine the exact
number of VCs sufficient for any application, since the
irregular network topology under fault conditions is unpre-
dictable and flows could be affected by multiple regions.
Moreover, network topology could be complicated when
more faulty components are considered. For some extreme
cases, the FCM could be very sparse.

3.4 Weighted Shortest-Path Based Flow Control

Load balancing is the measurement of how uniformly
resources across the network are being utilized [14]. It is
widely known that traffic imbalance causes some links to
stay idle while others are over-utilized, resulting in heavy
congestion at the overloaded intersections and premature
network saturation. Although some algorithms that split
flows across multiple paths spatially [30] or temporally [31]
could potentially achieve better throughput, this will come
at the cost of out-of-order packet delivery. In this paper we
only investigate undivided flow problems, and assign each
flow with unique path to guarantee packets are delivered in
the original transmission order.

Before running the off-line Dijkstra’s weighted short-
est-path algorithm [32] to choose the “maximum available
bandwidth” path for each flow, we make a temporary
modification to the underlying AICDG. For example, for
a flow i with source Si and destination Di, firstly, we add
dummy vertices Si and Di, then add direction edges from
Si to all vertices that have Si as the source, and to Di

from all vertices that have Di as the destination. Fig. 5
shows an example of traffic flow from node 2 to node 6.
The weight function is similar to [29] and [33]: each link
starts with an initial normalized weight W ¼ 1, and once
a flow i routes through it, the link weight will be updated
by residual capacity which is:

W 0 ¼ 1�P
i diC C >

P
i di

1 C � P
i di;

�

where C is the capacity of link and di is the bandwidth
demand of flow i. Note that flow assignment follows
decreasing bandwidth demand, and thus a minimum-
weight path is derived using Dijkstra’s algorithm. Dummy
vertices and connected edges are removed from AICDG
afterwards. This way, instead of choosing the shortest
path as usual, flows always pick a path with more avail-
able bandwidth as the primary option to avoid congestion,
allowing traffic workload to distribute evenly across the
network.

Applying different types of turn model and different
priority partition for VC sets will generate different
AICDGs. In other words, different channel topology
graphs may result in different qualities of network perfor-
mance. We can select the best result among all the AICDGs
by computing the minimal maximum channel load and the
number of channels with the maximum load. It is worth
noting that since the Dijkstra’s weighted shortest-path
based algorithm is constructed off-line, it does not directly
resolve runtime faults.

3.5 TBOR Routing Algorithm System Level
Implementation

From the system implementation view, in order to effi-
ciently deal with various OCN component failure patterns
under different application traffic, run-time rerouting or
route reprogramming are required. Therefore we design the
TBOR routing algorithm to be used for the fault detection and
analysis. Once the communication resource assignment has
been determined according to the TBOR algorithm, route
reprogramming can be performed using table-based routing
[14] and static virtual channel allocation [34]. The coupling
of the TBOR algorithm with table-based routing and static vir-
tual channel allocation requires no additional specialized
mechanism or hardware.

3.6 Generalization of the TBOR Routing Algorithm

It is worth noting that the TBOR algorithm is not limited to
routing under faulty conditions. It covers more general
cases where some of the routers or links are unavailable due
to various reasons, e.g., irregularity in topology caused by
OIP blocks and off-mode VFIs containing one or more
routers.

Figs. 1b and 1d illustrate cases where OIP blocks may
contain routers and links classified as out-of-service. Here
routers and links associated with OIP1 and OIP2 are
unavailable. In Figs. 1c and 1d, when VCC1, VCC2 or VCC3
is powered off, all the communication resources belonging
to the VFI become inaccessible. In which case the disabled
routers and links are treated in the same manner as faulty
components in our framework, although the locations of
OIPs and VFIs are known in advance [6], [35].

4 RELATED WORK

Chien and Kim’s planar adaptive routing algorithm [36] is
able to tolerate any number of faults using three VCs but
this approach sacrifices a large number of faultless nodes.
Glass and Ni [37] proposed one-fault-tolerant routing derived
from negative-first routing algorithm without VCs with (n-
1) fault-tolerant degree for n-dimensional meshes. Wu [15]
presented a dimension-order and odd-even turn model
based algorithm for 2D meshes, with the restriction that the
fault components cannot be on the first and last two col-
umns of the east and west boundaries.

Block based fault models [38], [39] sacrifice system proc-
essing capacity because some fault-free nodes are isolated
and marked as faulty in order to form rectangle or convex
regions. In addition, packets are routed around fault
regions, thus leading to a significantly unbalanced link utili-
zation and degraded network performance.

Based on Duato’s protocol [40], Gomez et al. [16] pre-
sented a multi-phase routing scheme, where adaptive rout-
ing is used and deadlock-freedom is guaranteed by using
different escape channel for each phase. The two-phase ver-
sion of the algorithm requires a minimal of three VCs. In the
multiple intermediate nodes version, adaptive routing is
disabled and misrouting for some paths is adopted to
improve the fault tolerance degree. The multi-phase algo-
rithm performs well because it distributes traffic more
evenly across the network. However, it still exhibits some
limitations due to the fact that the underlying Duato’s

880 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016

protocol may not make full use of the escape channel’s
bandwidth.

Gopalan [41] proposed a fault-tolerant load balancing
routing named FTLBR, by selecting primary and backup
routes for virtual private networks with QoS guarantees.
They claimed that achieving network-wide load balancing
in the routes selection is the key to maximizing network per-
formance. Fick [42] presented a highly resilient fault-toler-
ant routing, applying flag transmission and a routing entry
update mechanism to achieve a high reliability rate. But the
fraction of permitted turns may be very low under high fail-
ure rates. Ebrahimi [43], [44] proposed various minimal
path-based fault-tolerant routings to reduce packet latency
and congestion around faulty regions. Giuseppe [45] pro-
posed a selection algorithm that can be coupled with adap-
tive routing algorithms to relieve congestion. A Q-learning
method using two-hop fault information to reconfigure
routing tables and to avoid faults was introduced in [46].

However, as pointed out by Ren [47], the unpredictable
nature of the fault location may lead to a disconnected net-
work. If one of the faulty routers or links happens to be the
cut-vertex(bridge) of the network, the failure will disconnect
all node pairs belonging to disconnected subgraphs. A mis-
routing-supporting adaptive routing method based on vir-
tual network partitioning [48] for 2D and 3D mesh, called
channel overlapping, has been proposed. This method con-
structs fault blocks inside separate planes and deadlock
freedom is guaranteed by allowing and disallowing some
turns in order to break potential cyclic dependencies.

Lotfi-Kamran [49] proposed the BARP-A routing algo-
rithm to balance traffic distribution among all the shortest
path output ports. With this approach, routing fails when
all the shortest paths become faulty. In [50], Palesi and
Daneshtalab gave a good overview of existing routing algo-
rithms, including fault-tolerant routing algorithms, for
OCNs and next-generationmany-core OCN-based SoCs.

Xanthopoulos [51] and Linder [52] applied channel
dependency graphs (CDG) to exploring fault-tolerant adap-
tive routing; Kinsy [29] took advantage of a weighted CDG
to avoid deadlock in a fault-free network. These methodolo-
gies form the basis for our work, and we expanded them to
irregular and faulty networks. To the best of our knowledge,
we are the first to construct elaborate weighted fault CDGs
though fine-grained fault-diagnosis to find the minimal
number of VCs adequate for fault tolerance. Furthermore,
we use a heuristic approach for achieving workload balance
across the network.

5 PERFORMANCE EVALUATION AND DISCUSSION

For the comprehensive comparative study of the pro-
posed traffic load balancing routing algorithm with previ-
ous works, we implement both coarse- and fine-grained
versions of the algorithm using two (TBOR(coarse)- or TBOR

(fine)-VC2) and four (TBOR(coarse)- or TBOR(fine)-VC4)
VCs. In addition, we implement the uDIREC algorithm
presented by Parikh [53], the fDATE09 scheme proposed by
Fick in [42] and the intermediate-node based fault-toler-
ant algorithm (finter) proposed by Gomez [16]. The
Gomez scheme using one and two intermediate nodes
(finter(I) and finter(Ix2)) are part of the study. To limit the

overhead associated with VCs, we kept the maximum
number of intermediate nodes at two, since each subpath
needs a separate escape channel (subpaths need to share
at least one adaptive channel). The finter algorithm
requires five VCs for more than two intermediate nodes.
Experiments show that the TBOR algorithm offers better
performance even with fewer virtual channels. The fine-
grained based TBOR algorithm achieves better performance
then the coarse-grained version.

5.1 Simulation Details

In the experiments, we used HORNET, a cycle-accurate many-
core simulator [54]. HORNET integrates DSENT [55] and HOTSPOT

5.0 [56] to enable power and thermal analysis. In our experi-
mental set-up, we operate HORNET in the network-only
mode. Table 2 summarizes configurations and traffic pat-
terns used for the experiments. For synthetic benchmarks,
all flows have the same bandwidth demands; for the H.264
application, the flow bandwidth requirements are derived
through profiling.

We simulated a 8�8 2D mesh with 5, 10, 15, 20, 30 and 40
percent of unavailable links, including fault situations and
irregular networks because of embedded OIP blocks and
VFIs that are powered off. The positions of the unavailable
nodes and links were randomly generated. The positions of
OIPs and VFIs partition are predefined.

In the emulation of component availability changes and
fault cases, we made the assumption that the number of
out-of-service nodes and links ratio is around 1:2 similar
to Boppana [38]. For example in the 10 percent inaccessible
links case, 11 of the 112 links in the network are deemed
faulty and five nodes are disabled. Under the fine-grained
scheme, virtual channels and switch links of the crossbar
have the same probability of failure in a faulty router. We
gave the same total amount of buffer resources to all the
schemes in experiment. Moreover, in order to get the per-
formance results independent of the relative distribution
of the faulty or unavailable links, we performed 20 simula-
tions for each particular fault rate case.

TABLE 2
Network Configuration Summary

Characteristic Configuration

Topology 8� 8 2D irregular network
Routing TBOR, finter, fDATE09 and uDIREC
Flit size 64-bit
Router pipeline stages four
Link bandwidth 1 flits/cycle
Per-hop (link) latency 1 cycle
VCs per port none, 2, 4
VC buffer size 4, 8, 16 flits
Average packet length 8 flits
Transistor type (DSENT) LVT (Low Vth)
Clock frequency (DSENT) 1 GHz
Manufacturing Process
(DSENT)

45 nm technology

Traffic workload BIT-COMPLEMENT, TRANSPOSE,
SHUFFLE, UNIFORM-RANDOM,
H.264 decoder profile

Warmup cycles 10,000
Analyzed cycles 1,200,000

REN ETAL.: FAULT-AWARE LOAD-BALANCING ROUTING FOR 2D-MESH AND TORUS ON-CHIP NETWORK TOPOLOGIES 881

5.2 Traffic Patterns

Synthetic benchmarks and traffic profiles obtained from a
parallel implementation of a H.264 decoder are used to
investigate network performance. For the coarse-grained
scheme, flows with faulty nodes as source or destination are
removed. For the H.264 decoder profiles, we re-assigned
threads to the available cores. In the fine-grained scheme, a
node is unavailable as a source node when all the virtual
channels of its input port from the local processing element
are broken, or if all the switch links of the crossbar con-
nected with local input port are dead. Similarly, a node can-
not be a destination node if all the switch links of the
crossbar leading from other input ports to the local output
port are out-of-service.

5.3 Throughput Analysis

Fig. 6 represents the average throughput of 20 simula-
tions for each traffic pattern under 5, 10 and 15 percent
unavailable-link rates. Note that there are two adaptive
channels for finter with one intermediate node (finter(I))
and only one adaptive channel for the two intermediate
nodes case (finter(Ix2)).

5.3.1 TBOR versus Others

An intermediate-node based routing algorithm like finter
always chooses the same qualified intermediate node for
different source-destination pairs. Packets belonging to
independent flows must compete against each other for the
communication resources at intermediate nodes. Heavy
congestion at intermediate nodes may lead to performance
bottlenecks that will exacerbate when the number of
unavailable links increases. Based on our observation, for
all the traffic patterns under 10 and 15 percent unavailable-
link rates, finter(I) can only handle three and two out of 20
simulations. The problem, which is summarized by Gomez
in [16], is caused by the inherent limitation of the fault-tol-
erance degree with only one intermediate node. The
fDATE09 algorithm determines where turns and links are
disallowed based on the network topology to safely route

packets around failures, however, it overlooks the load bal-
ancing issue.

For the BIT-COMPLEMENT benchmark, the simulation results
show an average throughput gain of 97.13 percent for TBOR-
VC4 compared to uDIREC, Fig. 6. The uDIREC algorithm
aims at maximizing connectivity of the network by applying
Up*/Down* routing. It has relatively larger number of for-
bidden turns which leads to poor routing flexibility and
overall lower network performance. In our experiments, the
average percentage of forbidden turns for the uDIREC
scheme is 20.563 percent for an 8�8 2D-mesh.

In order to maximize the throughput, TBOR can utilize any
path—minimal or non-minimal—to transmit a message
from its source to destination, and chooses the best solution
by comparing the maximum channel loads and number of
channels with the maximum load among all the AICDG
candidates. The detailed analysis of the network topology,
faulty or unavailable links, and algorithms shows that TBOR

outperforms all the other algorithms for all the traffic pat-
terns and consistently selects the “maximum available
bandwidth” path among all the possible routes. Further-
more, based on the evaluation results, TBOR with only two
VCs offers higher throughput than the other algorithms
using greater numbers of VCs.

5.3.2 TBOR(Fine) versus TBOR(Coarse)

The results show that in faulty situations the fine-grained
scheme always provides more routing paths than the
coarse-grained method—Figs. 4d and 4e. The judicious use
of partially functional resources allows the TBOR(fine) ver-
sion of the algorithm to provide better traffic loads distribu-
tion and consistently higher throughput when compared to
the TBOR(coarse) approach. In the BIT-COMPLEMENT bench-
mark, we use the uDIREC algorithm as the baseline for our

Fig. 6. TBOR(fine)-VC4, TBOR(fine)-VC2, TBOR(coarse)-VC4, TBOR(coarse)-VC2, Finter(Ix2)-VC4, Finter(I)-VC4,
fDATE09-VC4. uDIREC-VC4. Load-throughput graphs for benchmarks on 8�8 2D mesh with two or four virtual channels. We ran the

same experiment on other traffic patterns (SHUFFLE and H.264), the results exhibited the same feature and we omit them here for brevity.2

2. The combined turn models of TBOR used for each VC set with pri-
ority are: East-Last > North-First > Odd-Even > Negative-First for
TBOR(fine)-VC4; West-First > Odd-Even for TBOR(fine)-VC2; Odd-Even
> South-First > North-Last > North-First for TBOR(coarse)-VC4; and
West-Last > Odd-Even for TBOR(coarse)-VC2.

882 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016

discussion because second to TBOR, it achieves the best per-
formance. The coarse-grained TBOR algorithm using four VC
has 1.28� throughput with 5 percent unavailable-link rate,
1.1� with 10 percent, and 1.1� with 15 percent unavailable-
link rate in comparison to the uDIREC scheme. The fine-
grained TBOR approach gains over the baseline are 1.96�,
2.09� and 1.89� for 5, 10, and 15 percent unavailable-link
rates. The TBOR algorithm is more resilient to faulty or
unavailable links and degrades more gracefully with
increasing number of inaccessible links when compared
with the other algorithms. For the TRANSPOSE benchmark,
when the unavailable-link rate is increased from 5 to 15 per-
cent, the uDIREC algorithm throughput drops from 19.92 to
18.13 (flits/cycle) – 8.99 percent degradation, the finter(Ix2)
scheme sinks from 18.53 to 15.86 (flits/cycle) – 14.4 percent
degradation, the TBOR(coarse)-VC4 approach falls from 20.38
to 18.86 (flits/cycle) – 7.4 percent degradation and the TBOR

(fine)-VC4 throughput decreases from 24.28 to 23.38 (flits/
cycle) – only 3.7 percent degradation. These results further
highlight the effectiveness of our routing algorithms and
the benefits of salvaging partly defective components.

5.4 Latency and In-Order Delivery

Fig. 7 shows the average packet latency for the different
benchmarks and routing algorithms. Traffic balancing prop-
erties of the TBOR algorithm help prevent some links from
reaching premature saturation while large portions of the
network remain underutilized. This eliminates some prema-
ture uneven local congestions. The average packet latency
benefits from better traffic load distribution. In the SHUFFLE

benchmark case, the latency of the TBOR-VC4 approach is
20.80 percent lower than the uDIREC scheme, 34.95 percent
lower than the finter(Ix2) algorithm and 32.4 percent lower
than the fDATE09 technique under unsaturated condition.
Notice that the TBOR algorithm is a throughput-driven algo-
rithm which aims at distributing traffic evenly across the
network. Routing options are directly proportional to the
number of VC sets. In heavily loaded networks, packets
may make detours to avoid the congestion. Fig. 7 shows
that the TBOR algorithm using four VCs has a higher
throughput than the two VCs version but with longer

transmission time. For relatively light traffic loads, the TBOR

algorithm also produces better average latency than other
algorithms, shown in Fig. 8 using the FFT and RADIX SPLASH-2
benchmarks.

In-order packet delivery is a strict requirement for many
applications and some higher-level NoC protocols, e.g.
cache coherence. The Finter scheme with multiple adaptive
VCs cannot guarantee in-order delivery, since packets
belonging to same flow may be allocated to any available
adaptive VCs and may encounter different levels of conges-
tion and network delays. Therefore, there is a high possibil-
ity that packets will arrive at the destination node out-of-
order. Although reordering of out-of-order packets at the
destination can address this problem, it significantly
increases latency and resource overheads (reordering buffer
and control logic). In-order delivery is ensured by static VC
allocation in the TBOR algorithm. Each flow uses a single VC
in every phase following a unique path.

5.5 Virtual Channel Restriction and Reliability
Analysis

Virtual channels were originally proposed to solve head-
of-line blocking and deadlock problems. They are also
widely used for fault-tolerant routing [52], [58]. Most vir-
tual channel based routing algorithms for irregular net-
works impose restrictions on the shape, location, number
of unavailable links, and the minimum required number
of virtual channels. For instance, the finter [16] scheme
using four VCs can support no more than two intermedi-
ate nodes.

Virtual channels can be very expensive to implement,
requiring additional memory resources and associated allo-
cation and arbitration logic. The TBOR algorithm has much
more relaxed constraints with regard to the number of VCs.
Even without a virtual channel, node pairs are able to com-
municate as long as there exists a connectable path in the
AICDGs. Nevertheless, for better fault tolerance (Table 3)
and network performance, the proposed algorithm uses

Fig. 7. TBOR(fine)-VC4, TBOR(fine)-VC2, TBOR(coarse)-VC4, TBOR(coarse)-VC2, Finter(Ix2)-VC4, fDATE09-VC4.
uDIREC-VC4. Latency graphs for benchmarks on 8�8 2D mesh with two or four virtual channels.3

3. The combined turn models are consistent with the results shown
in Fig. 6.

REN ETAL.: FAULT-AWARE LOAD-BALANCING ROUTING FOR 2D-MESH AND TORUS ON-CHIP NETWORK TOPOLOGIES 883

multiple VCs. In the fine-grained scheme, if a link is not
physically broken or all its related crossbar switches are not
damaged, then the link is deemed functional as long as one
of its VCs is still operational. Therefore, using more VCs
also decreases the possibility of out-of-service links caused
by unavailable downstream VCs.

We evaluated the relationship between the unavail-
able-link rate and the reliability of the network by repeat-
ing the experiment 100; 000 times for each rate to explore
as many different combinations as possible. The statistical
results are shown in Table 3.The TBOR-fine method using
two VCs shows very good reliability even with 30 percent
unavailable links (34 out-of-service links of 112 total
links). Only 8.9 percent of the simulations fail to complete
under the UNIFORM-RANDOM traffic. For lower rates, a single
turn model is sufficient to satisfy communication require-
ments for most cases. For instance, with 5 percent
unavailable-link rate under the UNIFORM-RANDOM traffic,
92.18 and 93.51 percent of the simulations are handled
without a virtual channel. Furthermore, applying the
fine-grained scheme and using more VCs exhibit better
results than applying the coarse-grained scheme and less
virtual channels.

5.6 Power and Area Analysis

Link utilization can be used for high level power analysis for
OCNs [59]. The amount of traffic or flits traversing the cross-
bar, being written into and being read out of virtual channels
is fully captured in the link activity. Fig. 9 shows the spatial
power distribution of the traffic load on the network.
Cuboids of height zero indicate the position of unavailable
nodes (TBOR using the coarse-grained scheme), while taller
cuboids indicating higher link activities. Traffic loads are
more evenly distributed across the network using the TBOR

approach than the finter(Ix2) scheme. This is because the TBOR

routing algorithm will choose non-minimal paths to avoid
traffic congestion, making load balancing another key rout-
ing goal. Although approximations of the power utilization
in networks are generally done based on traffic loads, rout-
ing algorithms cannot be overlooked. Fig. 10 using energy-
delay product per flit (EDPPF) as the power-efficiency met-
ric, shows that in most cases, the TBOR algorithm is a little bet-
ter than the finter(Ix2) scheme, even though non-minimal
routing is applied. Better traffic load-balancing leads to a less
congested network which can result in overall lower latency
per packet. The TBOR(fine) approach is better than the TBOR

(coarse) method for the same reason.
Detecting faulty states in the on-chip network fabric is pri-

marily the function of fault diagnosis schemes. Compared
with the coarse-grained approach, the fine-grained diagnosis
needs to specify the correct functionality of individual com-
ponents and links. We applied the same mechanism as pro-
posed by Kohler [17] for collecting detailed diagnostic
information. Error detection units are needed at each input
and output port. Crossbar faults can be managed by fault
matrices, which are implemented as in� out register arrays.
Link faults can be detected by comparing the two counters,
one located at the input – recording the number of received
packets and the other one located at the output – keeping

TABLE 3
Reliability with Increasing Number of Unavailable Links in an 8� 8 2D Mesh Using TBOR

Unavailable
link’s rate

BIT-COMPLEMENT TRANSPOSE UNIFORM-RANDOM

Without VC 2 VCs Without VC 2 VCs Without VC 2 VCs

Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine

5% 96.82% 97.74% 99.65% 100% 99.79% 99.88% 100% 100% 92.18% 93.51% 99.72% 100%
10% 74.34% 88.63% 98.42% 99.67% 97.90% 99.23% 99.37% 99.36% 68.71% 81.81% 98.55% 99.67%
15% 43.62% 57.92% 94.39% 98.13% 94.02% 95.26% 96.67% 99.12% 37.78% 52.87% 93.78% 98.42%
20% 22.13% 45.46% 88.86% 96.73% 82.12% 93.32% 92.65% 98.84% 15.79% 38.83% 87.82% 97.48%
30% 4.80% 11.18% 66.01% 91.45% 44.83% 69.91% 74.31% 92.40% 1.82% 8.67% 67.71% 91.10%
40% 1.45% 3.90% 56.24% 88.10% 27.14% 48.10% 64.98% 92.00% 0.54% 2.64% 46.83% 85.29%

Fig. 8. Latency graphs for the FFTand RADIX SPLASH-2 benchmarks.

Fig. 9. Power distribution derived from HORNET [57] and DSENT [55] of an 8� 8 2D network with four-VC per port. The buffer depth is 8 flits, the manufac-
ture process technology is 45nm, and the frequency is 1 GHz. The benchmark in (a) and (b) is BIT-COMPLEMENT, the unavailable node and links are 35
and (13, 21), (48, 49); in (c) and (d) the TRANSPOSE traffic pattern is used, unavailable nodes and links are 23, 35, 52, and (3, 4), (5, 6), (17, 18), (25,
26), and (48, 49). Here we are showing the coarse-grained TBOR algorithm; other configurations exhibited the same pattern.

884 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016

track of the number of sent probes. As described in [17], the
area overhead is less than 10 percent for the fine-grained
scheme comparedwith the coarse-grained approach.

6 CONCLUSIONS

In this work, we develop an efficient approach for routing
on-chip traffic around unavailable network resources,
including topological irregularities caused component fail-
ures, oversized IP blocks and fine-grained ON/OFF opera-
tion of VFIs that significantly improves on-chip network
routing performance. The key contributions of this work are:

1) Using a weighted acyclic channel dependency graph
derived from the irregular network with one or more
turn models and VC partitioning to overcome dead-
lock, load balancing, and resource under-utilization
issues.

2) Proposing an algorithm for determining the mini-
mum number of virtual channels needed to meet
specific or universal application communication
requirements.

3) Proposing both fine- and coarse-grained analysis
schemes to achieve full utilization of network resour-
ces and to avoid the negative effect on network per-
formance when a partially operational router is
disabled completely.

4) Describing a novel traffic balancing oblivious rout-
ing algorithm named TBOR as a concrete implementa-
tion of the aforementioned techniques.

Experiments show that a fine-grained scheme, which
treats a defective router as semi-faulty, significantly
improves network performance and minimizes fault-
induced loss of functionality- or processing- capability. The
network fault diagnosis mechanism gives information on
the network fault status. The fine-grained diagnosis method
needs to investigate the fault status of each individual com-
ponents of the router, which is much more expensive to
implement than simply determining whether the router is
defective. In our coarse-grained fault diagnosis approach, a
defective router is classified as fully out-of-service to sim-
plify design complexity. The version of the TBOR algorithm
still improves throughput as well as the average flit latency
over existing solutions. The TBOR algorithm uses fewer vir-
tual channels while maintaining higher throughput than
other algorithms. Additionally, in-order delivery is guaran-
teed by unsplit flow analysis and static virtual channel
allocation.

ACKNOWLEDGMENTS

The authors want to thank Mieszko Lis at the University of
British Columbia and Srinivas Devadas at MIT for their com-
ments and feedback on this work. This research is partially
funded by key project of NSFC No. 61231018, NSFC grant
No. 610303036, China Postdoctoral Science Foundation No.
2012M521777, National High Technology Research and
Development Program of China No. 2014AA01A301, and
the University of Oregon Division of Equity and Inclusion.

REFERENCES

[1] S. Borkar, “Thousand core chips: A technology perspective,” in
Proc. Des. Autom. Conf., 2007, pp. 746–749.

[2] R. Marculescu, U. Y.Ogras, L. shiuan Peh, N. E. Jerger, and Y.
Hoskote, “Outstanding research problems in NoC design: System,
microarchitecture, and circuit perspectives,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 28, no. 1, pp. 3–21, Jan. 2009.

[3] S. Rusu, H. Muljono, D. Ayers, S. Tam, W. Chen, A. Martin, S. Li,
S. Vora, R. Varada, and E. Wang, “5.4 Ivytown: A 22nm 15-core
enterprise xeon processor family,” in Proc. IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, 2014, pp. 102–103.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J.
MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C. Miao, C. Ramey,
D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F.
Montenegro, J. Stickney, and J. Zook, “TILE64 - processor: A 64-
Core SoC with mesh interconnect,” in Proc. IEEE Int. Solid-State
Circuits Conf., 2008, pp. 88–598.

[5] A. Ivanov and G. D. Micheli, “The network-on-chip paradigm in
practice and research,” IEEE Des. Test Comput., vol. 22, no. 5, pp.
399–403, 2005.

[6] S.-Y. Lin, C.-H. Huang, C.-H. Chao, K.-H. Huang, and A.-Y. Wu,
“Traffic-balanced routing algorithm for irregular mesh-based On-
chip networks,” IEEE Trans. Comput., vol. 57, no. 9, pp. 1156–1168,
Sep. 2008.

[7] M. K. Schafer, T. Hollstein, H. Zimmer, and M. Glesner,
“Deadlock-free routing and component placement for irregular
mesh-based networks-on-chip,” in Proc. IEEE/ACM Int. Conf. Com-
put.-Aided Des., 2005, pp. 238–245.

[8] P. Teehan, M. Greenstreet, and G. Lemieux, “A survey and taxon-
omy of gals design styles,” IEEE Des. Test Comput., vol. 24, no. 5,
pp. 418–428, Sep./Oct. 2007.

[9] M. H. Foroozannejad, M. Hashemi, A. Mahini, B. M. Baas, and S.
Ghiasi, “Time-scalable mapping for circuit-switched GALS chip
multiprocessor platforms,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 33, no. 5, pp. 752–762, May 2014.

[10] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung,
“Design and management of voltage-frequency island partitioned
networks-on-chip,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 17, no. 3, pp. 330–341, Mar. 2009.

[11] O. Ozturk, M. Kandemir, and G. Chen, “Compiler-directed
energy reduction using dynamic voltage scaling and voltage
islands for embedded systems,” IEEE Trans. Comput., vol. 62,
no. 2, pp. 268–278, Feb. 2013.

[12] S. Borkar, “Designing reliable systems from unreliable compo-
nents: The challenges of transistor variability and degradation,”
in IEEE Micro, vol. 25, no. 6, pp. 10–16, Nov./Dec. 2005.

[13] C. Nicopoulos, S. Srinivasan, A. Yanamandra, D. Park, V.
Narayanan, C. Das, and M. Irwin, “On the effects of process varia-
tion in network-on-chip architectures,” IEEE Trans. Dependable
Secure Comput., vol. 7, no. 3, pp. 240–254, Jul.–Sep. 2010.

[14] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA, USA: Morgan Kaufmann, 2004.

[15] J. Wu, “A fault-tolerant and deadlock-free routing protocol in 2d
meshes based on odd-even turn model,” IEEE Trans. Comput.,
vol. 52, no. 9, pp. 1154–1169, Sep. 2003.

[16] M. Gomez, N. Nordbotten, J. Flich, P. Lopez, A. Robles, J. Duato,
T. Skeie, and O. Lysne, “A routing methodology for achieving
fault tolerance in direct networks,” IEEE Trans. Comput., vol. 55,
no. 4, pp. 400–415, Apr. 2006.

[17] A. Kohler, G. Schley, and M. Radetzki, “Fault tolerant network on
chip switching with graceful performance degradation,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 29, no. 6,
pp. 883–896, Jun. 2010.

Fig. 10. Energy-delay product per flit derived from HORNET and DSENT,
faulty or unavailable links rate is 10 percent. 10,000,000 flits were sent
and delivered in each case.

REN ETAL.: FAULT-AWARE LOAD-BALANCING ROUTING FOR 2D-MESH AND TORUS ON-CHIP NETWORK TOPOLOGIES 885

[18] K. Aisopos, C.-H. O. Chen, and L.-S. Peh, “Enabling system-level
modeling of variation-induced faults in networks-on-chips,” in
Proc. 48th Des. Autom. Conf., 2011, pp. 930–935.

[19] A. Banerjee and S. Moore, “Flow-aware allocation for on-chip
networks,” in Proc. Int. Symp. Networks-on-Chip, 2009, pp. 183–192.

[20] X. Zhong and V. Lo, “Application-specific deadlock free worm-
hole routing on multicomputers,” in Proc. 4th Int. PARLE Conf.
Parallel Archit. Languages Europe, 1992, pp. 193–208.

[21] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in
Proc. Int. Symp. Comput. Archit., 1992, pp. 278–287.

[22] G. Chiu, “The odd-even turn model for adaptive routing,” IEEE
Trans. Parallel Distrib. Syst., vol. 11, no. 7, pp. 729–738, Jul. 2000.

[23] A. Shafiee, M. Zolghadr, M. Arjomand, and H. Sarbazi-Azad,
“Application-aware deadlock-free oblivious routing based on
extended turn-model,” in Proc. Int. Conf. Comput.-Aided Des., 2011,
pp. 213–218.

[24] B. Fu, Y. Han, J. Ma, H. Li, and X. Li, “An abacus turn model for
time/space-efficient reconfigurable routing,” in Proc. 38th Annu.
Int. Symp. Computer Archit., 2011, pp. 259–270.

[25] J. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo,
“Implications of classical scheduling results for real-time sys-
tems,” IEEE Comput., vol. 28, no. 6, pp. 16–25, Jun. 1995.

[26] V. Lo, “Heuristic algorithms for task assignment in distributed
systems,” IEEE Trans. Comput., vol. 37, no. 11, pp. 1384–1397,
Nov. 1988.

[27] B. Towles and W. Dally, “Worst-case traffic for oblivious routing
functions,” in Proc. 14th Annu. ACM Symp. Parallel Algorithms
Archit., 2002, pp. 1–8.

[28] W. Dally and C. Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” in IEEE Trans. Comput.,
vol. C-36, no. 5, pp. 547–553, May 1987.

[29] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk, and S.
Devadas, “Application-aware deadlock-free oblivious routing,” in
Proc. Int. Symp. Comput. Archit., 2009, pp. 208–219.

[30] M. H. Cho, C.-C. Cheng, M. Kinsy, G. E. Suh, and S. Devadas,
“Diastolic arrays: Throughput-driven reconfigurable computing,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2008, pp. 457–464.

[31] T. Nesson and S. L. Johnsson, “ROMM routing: A class of efficient
minimal routing algorithms,” in Proc. Int. Workshop Parallel Com-
put. Routing Commun., 1994, pp. 185–199.

[32] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2001.

[33] K. Walkowiak, “New algorithms for the unsplittable flow prob-
lem,” in Proc. Int. Conf. Comput. Sci. Its Appl., 2006, pp. 1101–1110.

[34] K. S. Shim, M. H. Cho, M. A. Kinsy, T. Wen, M. Lis, E. Suh, and S.
Devadas, “Static virtual channel allocation in oblivious routing,”
in Proc. Int. Symp. Networks-on-Chip, 2009, pp. 38–43.

[35] U. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu,
“Voltage-frequency island partitioning for GALS-based net-
works-on-chip,” in Proc. 44th ACM/IEEE Des. Autom. Conf., 2007,
pp. 110–115.

[36] A. Chien and J. Kim, “Planar-adaptive routing: Low-cost adaptive
networks for multiprocessors,” ACM SIGARCH Comput. Archit.
News, vol. 20, no. 2, pp. 268–277, 1992.

[37] C. Glass and L. Ni, “Fault-tolerant wormhole routing in meshes,”
in Proc. 23rd Int. Symp. Fault-Tolerant Comput. Dig. Papers., 1993,
pp. 240–249.

[38] R. Boppana and S. Chalasani, “Fault-tolerant wormhole routing
algorithms for mesh networks,” IEEE Trans. Comput., vol. 44,
no. 7, pp. 848–864, Jul. 1995.

[39] C. Chen and G. Chiu, “A fault-tolerant routing scheme for meshes
with nonconvex faults,” IEEE Tran. Parallel Distrib. Syst., vol. 12,
no. 5, pp. 467–475, May 2001.

[40] J. Duato, “A necessary and sufficient condition for deadlock-free
adaptive routing in wormhole networks,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 6, no. 10, pp. 1055–1067, Oct. 1995.

[41] K. Gopalan, T.-c. Chiueh, and Y.-J. Lin, “Load balancing routing of
fault tolerant QoS-guaranteed VPNs,” in Proc. 15th IEEE Int. Work-
shop Quality of Service, 2007, pp. 100–108.

[42] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D.
Blaauw, “A highly resilient routing algorithm for fault-tolerant
NoCs,” in Proc. Conf. Des., Autom. Test Eur. Conf. Exhib., 2009,
pp. 21–26.

[43] M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour, “MD:
Minimal path-based fault-tolerant routing in on-chip networks,”
in Proc. Des. Autom. Conf. 18th Asia South Pacific, 2013, pp. 35–40.

[44] M. Ebrahimi, M. Daneshtalab, J. Plosila, and H. Tenhunen,
“Minimal-path fault-tolerant approach using connection-retaining
structure in networks-on-chip,” in Proc. 7th IEEE/ACM Int. Symp.
Netw. Chip, 2013, pp. 1–8.

[45] M. Ebrahimi, M. Daneshtalab, F. Farahnakian, J. Plosila, P. Liljeberg,
M. Palesi, and H. Tenhunen, “HARAQ: Congestion-aware learning
model for highly adaptive routing algorithm in on-chip networks,”
in Proc. 6th IEEE/ACM Int. Symp. Netw. Chip., 2012, pp. 19–26.

[46] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable
fault-tolerant deflection routing algorithm based on reinforcement
learning for network-on-chip,” in Proc. 3rd Int. Workshop Netw.
Chip Archit., 2010, pp. 11–16.

[47] P. Ren, Q. Meng, X. Ren, and N. Zheng, “Fault-tolerant routing for
on-chip network without using virtual channels,” in Proc. 51st
Annu. Des. Autom. Conf. Des. Autom. Conf., 2014, pp. 1–6.

[48] D. Xiang, “Deadlock-free adaptive routing in meshes with fault-
tolerance ability based on channel overlapping,” IEEE Trans.
Dependable Secure Comput., vol. 8, no. 1, pp. 74–88, Jan./Feb. 2011.

[49] P. Lotfi-Kamran, M. Daneshtalab, C. Lucas, and Z. Navabi, “Barp-
a dynamic routing protocol for balanced distribution of traffic in
nocs,” in Proc. Conf. Des., Autom. Test Eur., 2008, pp. 1408–1413.

[50] M. Palesi and M. Daneshtalab, Routing Algorithms in Networks-on-
Chip. New York, NY, USA: Springer, 2014.

[51] T. Xanthopoulos, “Fault tolerant adaptive routing in multicom-
puter networks,” Ph.D. dissertation, California Inst. Technol.,
Pasadena, CA, USA, 1995.

[52] D. Linder and J. Harden, “An adaptive and fault tolerant worm-
hole routing strategy for k-ary n-cubes,” in IEEE Trans. Comput.,
vol. 40, no. 1, pp. 2–12, Jan. 1991.

[53] R. Parikh and V. Bertacco, “uDIREC: Unified diagnosis and recon-
figuration for frugal bypass of NoC faults,” in Proc. 46th Annu.
IEEE/ACM Int. Symp. Microarchit., 2013, pp. 148–159.

[54] P. Ren, M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan,
N. Zheng, and S. Devadas, “HORNET: A cycle-level multicore
simulator,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 31, no. 6, pp. 890–903, Jun. 2012.

[55] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal,
L.-S. Peh, and V. Stojanovic, “DSENT—A tool connecting emerg-
ing photonics with electronics for opto-electronic networks-on-
chip modeling,” in Proc. 6th ACM/IEEE Int. Symp. Netw.-on-Chip,
2012, pp. 201–210.

[56] K. Skandron, M. Stan, W. Huang, S. Velusamy, K. Sankaranar-
ayanan, and D. Tarjan, “Temperature-aware microarchitecture,”
in Proc. Int. Symp. Comput. Archit., 2003, pp. 2–13.

[57] M. Lis, P. Ren, M. Cho, K. Shim, C. Fletcher, O. Khan, and
S. Devadas, “Scalable, accurate multicore simulation in the 1000-
core era,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2011,
pp. 175–185.

[58] W. Dally and H. Aoki, “Deadlock-free adaptive routing in multi-
computer networks using virtual channels,” IEEE Trans. Parallel
Distrib. Syst., vol. 4, no. 4, pp. 466–475, Apr. 1993.

[59] N. Eisley and L. Peh, “High-level power analysis for on-chip
networks,” in Proc. Int. Conf. Compilers, Archit. Synthesis Embedded
Syst., 2004, pp. 104–115.

Pengju Ren received the PhD degree in electrical
engineering from Xi’an Jiaotong University in 2012.
He is an assistant professor in the School of Elec-
tronic and information Engineering, Xi’an Jiaotong
University. During 2009 to 2011, he was a visiting
PhD student in computer science andArtifical Intel-
ligence Laboratory in Massachusetts Institute of
Technology (MIT). His current research interests
include On-chip network, scalable many-core
designs and VLSI architecture for digital video
processing. He is amember of the IEEE.

886 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 3, MARCH 2016

Michel A. Kinsy received the BSE degree in
computer systems engineering and the BS in
computer science, both from Arizona State Uni-
versity, the MS degree in electrical engineering
and computer science from MIT, and the PhD
degree in electrical engineering and computer
science from the Massachusetts Institute of Tech-
nology (MIT) in 2013. He is an assistant professor
in the Department of Computer and Information,
University of Oregon and the director in the Com-
puter Architecture and Embedded Systems

(CAES) Laboratory. He is an MIT presidential fellow. His research inter-
ests include cognitive high-performance many-core architectures, self-
aware adaptive multicore systems, intelligent network-on-chip designs,
hardware and embedded systems security, and cyberphysical systems.
He is a member of the IEEE.

Nanning Zheng graduated from the Department
of Electrical Engineering, Xi’an Jiaotong Univer-
sity, Xi’an, China, in 1975, and received the PhD
degree in electrical engineering from Keio Univer-
sity, Yokohama, Japan, in 1985. He is currently a
professor and the director in the Institute of Artifi-
cial Intelligence and Robotics, Xi’an Jiaotong Uni-
versity. His research interests include computer
vision, pattern recognition, machine vision and
image processing, neural networks, and hard-
ware implementation of intelligent systems. He

became a member of the Chinese Academy of Engineering in 1999, and
he is the Chinese Representative on the Governing Board of the Interna-
tional Association for Pattern Recognition. He also serves as an execu-
tive deputy editor in the Chinese Science Bulletin. He is a fellow of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

REN ETAL.: FAULT-AWARE LOAD-BALANCING ROUTING FOR 2D-MESH AND TORUS ON-CHIP NETWORK TOPOLOGIES 887

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

