
 1

Examination of applicability of RISC-V security
specifications to low-end processors

Fumio Arakawa†
arakawa@silicon.u-tokyo.ac.jp

Akira Tsukamoto‡
 akira.tsukamoto@aist.go.jp

Kuniyasu Suzaki§‡

k.suzaki@aist.go.jp
Makoto Ikeda†

ikeda@silicon.u-tokyo.ac.jp

† Graduate School of Engineering,
The University of Tokyo,
Tokyo, Japan

‡ Cyber Physical Security Research Center (CPSEC),
National Institute of Advanced Industrial Science
and Technology (AIST), Tokyo, Japan

§ Technology Research Association of Secure
IoT Edge application based on RISC-V
Open architecture (TRASIO), Tokyo, Japan

Abstract—We evaluated the area overhead of security
extensions on RISC-V that is an open instruction set architecture
for general-purpose processors. Recently, the importance of
security support is increasing, especially in the IoT era, the
security of a large-scale system is affected by the vulnerability of a
low-end processor in a terminal device of the system. However, it
is important to reduce area and power of a low-end processor even
by compromising on performance. The evaluated result shows the
area of physical memory protection (PMP) function is comparable
to that of the other parts of memory management unit, which
greatly affects a low-end processor area. Further, the PMP area
increases when virtual memory is enabled. The PMP area
overhead reaches as much as 33.3% for a Mid RV32 Rocket tile
with PMP=16.

Keywords—RISC-V, ISA, security, low-end, processor, area,
PMP, TLB, MMU, Rocket, Chisel, Chipyard

I. INTRODUCTION
The importance of security support is increasing even in low-

end processors with the recent trend of security enhancement.
Especially in the IoT era, the security of a large-scale system is
affected by the vulnerability of a low-end processor in a terminal
device of the system. On the other hand, it is important to reduce
area and power of a low-end processor even by compromising
on performance. Under this background, we evaluated the area
overhead of security extensions on RISC-V, which is gaining
attention as an open instruction set architecture (ISA) for
general-purpose processors.

II. OVERVIEW OF RISC-V
The RISC-V ISA [1, 2] was developed as a free and open

ISA at UC Berkeley. It is currently maintained by RISC-V
Foundation, whose member organizations have increased and
exceed 325 [3]. It is gaining attention, and is expected to spread
to actual products. 32- and 64-bit ISAs are defined, and specified
by a parameter XLEN. The software of development and
runtime environments is provided based on the ISA, and
includes compilers, debuggers, simulators, boot loaders and
OSes. Many RISC-V ISA cores have been developed along with
fulfilling its ecosystem, and the official page lists 86 cores [4].

Berkeley Architecture Research released processor cores of
Rocket [5, 6] and BOOM [7, 8] written in its original hardware
construction language Chisel [9, 10]. It released a tool chain that
automatically translates codes from Chisel to verilog, and
Chipyard [11], a Rocket-based SoC construction environment.

III. SECURITY EXTENTION OF RISC-V
The security extension of RISC-V is now available as a draft

version 1.12 [2]. This section is its overview of the related parts

to this paper. Machine- (M-) mode is defined as the highest
privilege level as well as conventional Supervisor- (S-) and
User- (U-) modes for mainly OSes and applications, respectively.
There are three implementation types assumed: a simple
embedded system with the M-mode only, a secure embedded
system with the M- and U-modes, and a system running an OS
like Unix with all the M-, S- and U-modes. The mode switches
to the M-mode after reset or unmasked interrupt.

Several control and status registers (CSRs) and privileged
instructions are defined only for the M-mode. A physical
memory attribute (PMA) checker manages a PMA of each area
of the physical memory map of the entire system. The checker
manages hardware-specific attributes with hardware, and the
others with M-mode software, and informs the attributes to U-
and S-mode software. Physical memory protection (PMP) for
security enhancement is also realized in the M-mode. The details
are explained in the next section.

Several CSRs and privileged instructions are defined for the
S-mode, and can be used in the S- and M-modes. Page-based
virtual memory (VM) is defined as an S-mode function, and the
relevant CSR and instructions for the VM are defined. Three
types of the VM, Sv32, Sv39, and Sv48, are defined, and handle
32, 39, and 48-bit addresses, respectively. Assuming hardware
implementation, a page table walk (PTW) is defined to
accelerate miss handling of a translation lookaside buffer (TLB).

A. Physical Memory Protection (PMP)
Table I. FIELD ASSIGNMENT OF PMPCFG

bit name description
7 L Lock control (0: writable, 1: write is locked)
6-5 reserved
4-3 A Address-matching mode

0: OFF Null region (disabled)
1: TOR Top of range
2: NA4 Naturally Aligned (NA) 4-byte region
3: NAPOT NA Power-of-two region, ≥8 bytes

2 X Execution control (0: not permitted, 1: permitted)
1 W Write control (0: not permitted, 1: permitted)
0 R Read control (0: not permitted, 1: permitted)

TOR: An address A is matched when
 (i-1)-th pmpaddr ≤ A < i-th pmpaddr for i-th entry (0 < i),

0 ≤ A < 0-th pmpaddr for 0-th entry.
NA4: An NA address matches if it is in the 4-byte region of pmpaddr.
NAPOT: When bit j of pmpaddr is the first '0' from the LSB, an NA address

matches if it is in the 2 j+3-byte region of the address made by clearing
lower j bits of the pmpaddr to '0's.

PMP function uses PMP CSRs to control the PMP of read,
write, and execute for secure processing. The granularity of the
control is platform-specific, but the standard supports as small

 2

as 4 bytes. The PMP is basically managed by M-mode software
although a certain region privilege can be fixed by hardware.

Each PMP entry consists of a pair of 8-bit configuration CSR
(pmpcfg) and XLEN-bit address CSR (pmpaddr), and the
number of the entries is 16 at maximum. Each entry is accessible
only in the M-mode, but an entry with L-bit set cannot be
updated even in the M-mode, and is to be cleared by reset.

Table I shows the field assignment of each pmpcfg, which
is packed into four CSRs for RV32 and two CSRs for RV64.
The pmpaddr supports 4-byte granularity, its higher 10 bits are
fixed to '0's for RV64, and the addressable range is 0 to 234-4 in
RV32 and 256-4 in RV64. The smaller number entry has priority
if multiple entries are matched. Then, a part of a region can be
set to have another access privilege by this priority.

Table II. LIST OF PMP CASES

R W X
S-/U-
mode

M-mode
L=1 L=0

0 0 0 – – – r w x
0 0 1 – – x r w x
0 1 0 reserved reserved
0 1 1 reserved reserved
1 0 0 r – – r w x
1 0 1 r – x r w x
1 1 0 r w – r w x
1 1 1 r w x r w x

Table II lists PMP cases. The access privilege is checked
with the R, W, X, and L of the matched highest priority entry
and the security mode. The r, w, and x indicate read, write,
and execute permissions, respectively, and '–' indicates no
permission. An access fault exception occurs for the read,
write, or execution if it is not permitted. The combination of
R=0 and W=1 is not necessary, and reserved for future
extension. Any access is permitted in the M-mode and no
access is permitted in the S-/U-mode if no entry matches.

 It is effective to skip changing access permission in the M-
mode if the M-mode code is highly reliable. So, full access is
permitted if L=0 in the M-mode. However, it is better to execute
the M-mode code with minimum access privilege if it becomes
bloated and less reliable. For this reason, an extension of the
PMP specification is currently discussed.

B. PMP implementation in Rocket Tile
Rocket tile is a Rocket core conforming to Tilelink [12, 13].

The Chipyard [11] supports five configurations of Big, Mid and
Small RV64 tiles and Big and Tiny RV32 tiles, but other types
are configurable by setting parameters.

Figure 1 shows PMP implementation in the Rocket tile. Each
tile has modules of Rocket including the CSRs, Frontend, Data
cache (DC), Tile I/F, and so on. The Big tile has also BTB
(Branch Target Buffer) in the Frontend, and FPU. Further, the
Big and Mid tiles have also memory management unit (MMU)
consisting of TLBs in the DC and Frontend, and PTW, and the
MMU manages Sv39 VM for RV64 and Sv32 VM for RV32.

The PMP is distributed and implemented in the CSRs, TLBs
and PTW. Regardless of the configuration, the PMP of the
Rocket tile in the Chipyard is 8 entries, which is half of the
maximum, and the pmpaddr is 30 bits corresponding to a 32-bit
physical address. Adding used 6 bits of the pmpcfg, one entry is
36 bits, and the total is 288 bits for the 8 entries.

 Big Core

 Mid Core Small Core

Fig. 1. PMP implementations in Rocket Tile

IV. AREA EVALUATION OF PMP
Since a smaller core must be affected more by adding the

PMP, we added Mid and Small RV32 tiles to the existing five
types, and used totally six types excluding the Tiny tile, whose
area is similar to the Small tile’s. Then, we evaluated the three
cases of PMP=0, 8 and 16 for each type.

First, we prepared totally 18 evaluating configurations by
modifying two "Configs.scala"s of subsystem and system of
rocket-chip in generators of the Chipyard, and created 18 RTL
verilog descriptions of the tiles with the verilator construction
environment of the Chipyard.

Next, we synthesized a gate-level verilog from each RTL
verilog using Synopsis Design Compiler and Renesas 65nm
SOTB library, with setting the Rocket tile as the top module,
without hierarchical structure flattening. Then, we got the total
cell area (not including RAM area; hereinafter simply called
area) of the gate-level verilog of each tile. Further, we obtained
the module areas from each gate-level verilog.

Table III shows the areas and increments of the modules
of the 6 types, which are the relative values when the Small
RV32 Rocket tile with PMP=0 is 100, and Table IV shows the
area and increment ratios of the modules of each type, which
is the percentage to the area of each Rocket tile with PMP=0.
A column of PMP=0 shows the areas of modules excluding
the PMP, and columns of PMP=8 and 16 show the increments
by adding the PMP. The CSR F/F increments correspond to
the 288-bit F/Fs, combinatorial logic increments are
distributed to the CSRs, TLBs, and PTW, and the total
increments are shown as Rocket tile increments.

Figure 2 is the graph of Table III for PMP=16. The
increments are placed to the left side to form the total
increment for the PMP addition of each type. From Table III,
the increments by the PMP are proportional to the number of
entries and increase when the VM is enabled, but other
parameters do not affect. Therefore, it is confirmed that a
smaller core is affected more by adding the PMP. Further,
even a larger Mid tile with the VM is affected more than a
smaller Small tile without it.

Ro
ck
et

Fr
on

te
nd

DC

PTW Tile
I/FPMP

CSRs

PMP
TLB TLB

PMP

PMP

Ro
ck
et

Frontend DC

Tile
I/FPMP

CSRs

PMP PMP

 3

Table III. MODULE AREAS OF EACH CONFIGURATION (Relative area when Small RV32 tile with PMP=0 is 100)

Table IV. MODULE AREA RATIOS OF EACH CONFIGURATION (Percentage to each Rocket tile area with PMP=0)

Fig. 2. Graph of Table III for PMP=16

From Table IV, the area increase ratios are 14.4 and
29.7% for the smallest Small RV32 tile with PMP=8 and 16,
respectively. However, the ratios are 16.6 and 33.3% for the
Mid RV32 tile with PMP=8 and 16, respectively. The
increase is the largest even it is not the smallest tile because its
VM is enabled.

V. COMPARISON OF PMP AND TLB
A. Difference between PMP and TLB

Here, the TLB is for the VM excluding the PMP function.
Both the PMP and TLB are searched on each memory access,
and the information of the selected entry is used. However, there
are various differences affecting the area. The important
difference is that the mapping is overlapped in the PMP and
exclusive in the TLB. With the overlapped mapping, all the
entries are to be searched and the highest priority entry is
selected from the matched entries. Then all the entries must
always be in the core. On the other hand, the TLB is a buffer that
holds a part of a large page table with the exclusive mapping,
and a hit entry is always the matching entry. Any number of the
TLB entries is selectable with the exclusive mapping.

The next important difference is the region size variations.
The variations of the TLB are 4 KiB and 4 GiB for Sv32, 4 KiB,
2 MiB, and 1 GiB for Sv39, and the Sv39's plus 512 GiB for
Sv48, whereas the size for each PMP entry is freely from 4 bytes
to the entire address space. Each entry must have an additional
10-bit comparator and a bitwise mask to realize the region of the
4-byte and the arbitrary size, respectively.

Since the PMP is checked at the PTW in addition to ordinary
memory access, check logics are to be at three places: instruction
and data TLBs, and the PTW, but no TLB is necessary for the
PTW. Further, the number of the PMP CSRs is at most 18 for
RV64 and 20 for RV32. In contrast, a page table is placed in
memory, so VM CSR is only the supervisor address translation
and protection (satp) register.

On the other hand, an increasing factor of the area of the TLB
is the number of bits to be retained and output. The PMP outputs
access permission. In addition, the TLB outputs a physical
address and page fault exception information. Another factor is
the difference between the number of logical and physical
address bits since the TLB is searched with a logical address.

B. Area Comparison of PMP and TLB
Table V shows the areas of the PMP, TLBs and PTW. A

PMP area is the Rocket tile’s area increment by adding the
PMP. The area for PMP=16 is about 44 and 30 when the VM
is enabled and disabled, respectively, and those are about half
for PMP=8.

On the other hand, the TLB areas are 68.0 for RV64 and 62.8
for RV32, when instruction and data TLBs are 32 entries each
and total 64. Those are 20.2 and 17.6 when TLBs are 4 entries
each and total 8. The area difference between RV64 and RV32
is because the TLB is searched by a logical address. The areas
of the PTW are 12.1 for RV64 and 6.7 for RV32, regardless of
the number of the TLB entries.

Therefore, the PMP occupies a large part of the MMU,
which consists of the PTW and TLBs including the PMP.

RV
64

RV
32

50 0 100 200 300 400 500

Ro
ck

et

DC
Fr

on
te

nd

PM
P

Bi
g

M
id

Sm
al

l
Bi

g
M

id
Sm

al
l

Max. PMP area
overhead: 33.3%

PMP area
overhead: 29.7%

CSR F/F
CSR Logic
D-TLB

others

I-TLB
BTB
PTW
FPU

0 8 16 0 8 16 0 8 16 0 8 16 0 8 16 0 8 16
100.0 4.0 8.0 100.0 11.4 23.0 100.0 10.7 22.1 100.0 6.9 13.6 100.0 16.6 33.3 100.0 14.4 29.7
24.1 58.6 69.9 23.3 53.8 64.9
3.7 1.6 3.2 10.4 4.6 9.2 8.7 4.6 9.5 5.1 2.8 5.5 12.5 6.8 13.6 11.0 6.1 13.0

F/F 1.6 0.6 1.3 4.6 1.8 3.6 3.6 2.3 4.7 2.2 1.1 2.1 5.3 2.7 5.3 4.5 3.5 6.9
20.2 12.0 8.3 31.9 15.6 11.9
9.3 14.8
5.8 0.8 1.6 5.1 2.2 4.4 2.8 5.7 9.1 1.4 2.9 7.2 3.2 6.9 4.2 8.4
10.2 14.9 11.7 15.1 16.9 12.5
6.6 1.0 1.9 5.6 2.7 5.5 3.2 6.9 10.4 1.4 2.8 6.4 3.3 7.0 4.0 8.3
2.2 0.7 1.3 6.3 1.9 3.9 2.1 1.3 2.3 5.2 3.2 5.8
40.5 24.2

CSRs

BTB

DC
TLB

PTW
FPU

RV64 RV32
Big Mid Small Big Mid Small

Rocket

Frontend

TLB

PMP
RocketTile

0 8 16 0 8 16 0 8 16 0 8 16 0 8 16 0 8 16
550.9 22.2 44.2 190.0 21.7 43.7 147.5 15.8 32.6 321.3 22.2 43.6 129.5 21.4 43.1 100.0 14.4 29.7
132.5 111.3 103.1 75.0 69.6 64.9
20.1 8.7 17.6 19.7 8.8 17.4 12.8 6.8 14.0 16.3 9.1 17.8 16.2 8.8 17.6 11.0 6.1 13.0

F/F 8.8 3.5 6.9 8.7 3.5 6.9 5.4 3.5 6.9 7.0 3.5 6.9 6.9 3.5 6.9 4.5 3.5 6.9
111.2 22.9 12.2 102.3 20.2 11.9
51.0 47.7
31.9 4.5 9.1 9.6 4.2 8.4 4.2 8.5 29.3 4.5 9.2 9.4 4.2 8.9 4.2 8.4
56.3 28.4 17.3 48.4 21.8 12.5
36.1 5.3 10.3 10.6 5.1 10.4 4.7 10.1 33.6 4.6 9.0 8.3 4.3 9.1 4.0 8.3
12.1 3.7 7.2 12.1 3.6 7.5 6.7 4.1 7.5 6.7 4.1 7.6
223.3 77.7

CSRs

PMP
RocketTile

Rocket

Frontend

TLB
DC
TLB

BTB

PTW
FPU

RV64 RV32
Big Mid Small Big Mid Small

 4

Table V. AREA OF PMP, TLBS, AND PTW

The Rocket tile's TLB is 4-way set associative. Although its
area is smaller than a full associative one, it is difficult to support
multiple page sizes. So, another array for large page sizes is
implemented in addition to the array for 4 KiB pages. This is
possible when there are few size variations. Then, the areas per
entry for the Big tile are 1.1 for RV64 and 1.0 for RV32.

In the Mid tile, TLBs are 4 entries each with 4 ways, so it is
practically full associative, but only the parameters are changed
to 4 entries. The areas per entry are 2.5 for RV64 and 2.2 for
RV32, which are inefficient. On the other hand, the areas per
entry of the PMP are about 2.8 and 2.0 when the VM is enabled
and disabled, respectively. The 2.8 is the largest, and even larger
than the 2.5 of the inefficient TLB of the Mid tile.

Table VI. F/F RATIO OF EACH MODULE

Table VI shows the F/F ratio of each module. The smaller
the F/F ratio, the larger processing logic per F/F. The F/F ratio
of the PMP is very small, which means the processing logic
of the PMP is very large. Even the F/F ratio of the FPU, which
is a computing intensive unit, is 20 to 27%, whereas the F/F
ratio of the PMP is 16% and 21 to 24% when the VM is
enabled and disabled, respectively. On the other hand, the
TLBs and PTW have the FF ratio exceeding 50%, and the
processing logic per FF is small.

VI. CONCLUSION

We worried about an area overhead problem with a small
processor caused by adding the PMP function for the security
enhancement because there are various area-increasing factors
in comparison with the TLB, and evaluated the influence of
adding the PMP on the Rocket tiles.

We confirmed the security enhancement has a large area
overhead on a low-end processor core whose MMU occupies
a considerable part of its area. As shown in Table IV, the area
overhead is a minimum of 4.0% for the Big RV64 tile with
PMP=8, and a maximum of 33.3% for the Mid RV32 tile with
PMP=16. The area per entry of the PMP reaches to 2.8 when the
VM is enabled, whereas that of the TLB is 1.0 to 2.5 depending
on its configuration.

The Rocket core is a single-scalar processor with a five-stage
pipeline, but there are smaller two- [14] and three-stage [5, 15]
pipeline processors for the IoT, and their area overhead of the
PMP function must be even more severe.

The PMP is defined a maximum of 16 entries, but some say
that it is not enough. However, it is difficult to increase the
number of entries efficiently with the current specification
checking all entries with arbitrary region sizes reaching to a
minimum of 4 bytes on every memory access. Therefore, a
specification-level enhancement is necessary to increase the
number of entries efficiently.

ACKNOWLEDGMENT
This paper is based on results obtained from a project

commissioned by the New Energy and Industrial Technology
Development Organization (NEDO) entitled "Research and
Development of Fundamental Technology of Secure Open
Architecture and its Application to Edge AI." The synthesis
library and logic synthesis tool used in this study were provided
for chip prototype service at System Design Laboratory of
Graduate School of Engineering of the University of Tokyo.

REFERENCES
[1] A. Waterman, et al., "The RISC-V Instruction Set Manual Volume I:

Unprivileged ISA, Version 20190608," RISC-V Foundation, June 8, 2019.
[2] A. Waterman, et al., "The RISC-V Instruction Set Manual, Volume II:

Privileged Architecture, Version 1.12-Draft," RISC-V Foundation, Jan.
25, 2020.

[3] https://riscv.org/
[4] https://riscv.org/risc-v-cores/
[5] K. Asanović, et al., "The Rocket Chip Generator," Berkeley Tech. Report

No. UCB/EECS-2016-17, April 2016.
[6] https://github.com/chipsalliance/rocket-chip
[7] C. Celio, et al., "The Berkeley Out-of-Order Machine (BOOM): An

Industry-Competitive, Synthesizable, Parameterized RISC-V Processor,"
Berkeley Tech. Report No. UCB/EECS-2015-167, June 2015.

[8] C. Celio, et al., "BOOM v2: an open-source out-of-order RISC-V core,"
Berkeley Tech. Report No. UCB/EECS-2017-157, Sept. 2017.

[9] J. Bachrach, et al., "Chisel: constructing hardware in a scala embedded
language," Proceedings of the 49th Annual Design Automation
Conference, pp1216–1225, May 2016.

[10] "Chisel/FIRRTL Hardware Compiler Framework,"
https://chisel.eecs.berkeley.edu/.

[11] https://chipyard.readthedocs.io/
[12] H. Cook, et al., "Diplomatic Design Patterns: A TileLink Case Study,"

CARRV’17, Oct. 2017.
[13] https://www.sifive.com/documentation/tilelink/tilelink-spec/
[14] Andes Technology, "AndesCore™ N22,"

http://www.andestech.com/en/products-solutions/andescore-processors/
riscv-n22/

[15] Y. Lee, et al., "Z-scale: Tiny 32-bit RISC-V Systems", OpenRISC Conf.,
2015.

Big Mid Small Big Mid Small
33.0 42.9 40.9 40.2 43.1 40.7
33.5 38.9 38.4 36.2 37.5 36.4

CSRs 44.0 44.3 41.9 43.1 42.8 41.0
46.8 52.8 54.1 47.8 52.9 54.3

BTB 46.3 47.2
TLB 50.7 50.7 50.9 50.5

44.2 40.3 34.1 46.1 43.3 37.3
TLB 50.8 50.7 50.9 49.8

53.0 53.3 52.6 52.6
20.5 27.4

PMP 8 15.8 15.9 21.9 15.5 16.1 24.0
CSRs 39.3 39.1 51.3 38.3 39.4 50.4

PMP 16 15.6 15.8 21.2 15.8 16.0 23.2
CSRs 39.2 39.4 49.8 39.0 39.3 50.1

RocketTile
Rocket

Frontend

DC

PTW
FPU

RV64 RV32

8 16 8 64 8 16 8 64
RV64 2.8 2.8 1.1 22.2 44.2 68.0 12.1
RV32 2.8 2.7 1.0 22.2 43.6 62.8 6.7
RV64 2.7 2.7 2.5 21.7 43.7 20.2 12.1
RV32 2.7 2.7 2.2 21.4 43.1 17.6 6.7
RV64 2.0 2.0 15.8 32.6
RV32 1.8 1.9 14.4 29.7

TLBs PTW
Area

of entries

Area/entry

Mid

Small

PMP TLBs PMP

Big

