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Abstract—We evaluated the area overhead of security 
extensions on RISC-V that is an open instruction set architecture 
for general-purpose processors. Recently, the importance of 
security support is increasing, especially in the IoT era, the 
security of a large-scale system is affected by the vulnerability of a 
low-end processor in a terminal device of the system. However, it 
is important to reduce area and power of a low-end processor even 
by compromising on performance. The evaluated result shows the 
area of physical memory protection (PMP) function is comparable 
to that of the other parts of memory management unit, which 
greatly affects a low-end processor area. Further, the PMP area 
increases when virtual memory is enabled. The PMP area 
overhead reaches as much as 33.3% for a Mid RV32 Rocket tile 
with PMP=16.  
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I. INTRODUCTION 
The importance of security support is increasing even in low-

end processors with the recent trend of security enhancement. 
Especially in the IoT era, the security of a large-scale system is 
affected by the vulnerability of a low-end processor in a terminal 
device of the system. On the other hand, it is important to reduce 
area and power of a low-end processor even by compromising 
on performance. Under this background, we evaluated the area 
overhead of security extensions on RISC-V, which is gaining 
attention as an open instruction set architecture (ISA) for 
general-purpose processors. 

II. OVERVIEW OF RISC-V
The RISC-V ISA [1, 2] was developed as a free and open 

ISA at UC Berkeley. It is currently maintained by RISC-V 
Foundation, whose member organizations have increased and 
exceed 325 [3]. It is gaining attention, and is expected to spread 
to actual products. 32- and 64-bit ISAs are defined, and specified 
by a parameter XLEN. The software of development and 
runtime environments is provided based on the ISA, and 
includes compilers, debuggers, simulators, boot loaders and 
OSes. Many RISC-V ISA cores have been developed along with 
fulfilling its ecosystem, and the official page lists 86 cores [4].  

Berkeley Architecture Research released processor cores of 
Rocket [5, 6] and BOOM [7, 8] written in its original hardware 
construction language Chisel [9, 10]. It released a tool chain that 
automatically translates codes from Chisel to verilog, and 
Chipyard [11], a Rocket-based SoC construction environment. 

III. SECURITY EXTENTION OF RISC-V
The security extension of RISC-V is now available as a draft 

version 1.12 [2]. This section is its overview of the related parts 

to this paper. Machine- (M-) mode is defined as the highest 
privilege level as well as conventional Supervisor- (S-) and 
User- (U-) modes for mainly OSes and applications, respectively. 
There are three implementation types assumed: a simple 
embedded system with the M-mode only, a secure embedded 
system with the M- and U-modes, and a system running an OS 
like Unix with all the M-, S- and U-modes. The mode switches 
to the M-mode after reset or unmasked interrupt. 

Several control and status registers (CSRs) and privileged 
instructions are defined only for the M-mode. A physical 
memory attribute (PMA) checker manages a PMA of each area 
of the physical memory map of the entire system. The checker 
manages hardware-specific attributes with hardware, and the 
others with M-mode software, and informs the attributes to U- 
and S-mode software. Physical memory protection (PMP) for 
security enhancement is also realized in the M-mode. The details 
are explained in the next section. 

Several CSRs and privileged instructions are defined for the 
S-mode, and can be used in the S- and M-modes. Page-based 
virtual memory (VM) is defined as an S-mode function, and the 
relevant CSR and instructions for the VM are defined. Three 
types of the VM, Sv32, Sv39, and Sv48, are defined, and handle 
32, 39, and 48-bit addresses, respectively. Assuming hardware 
implementation, a page table walk (PTW) is defined to 
accelerate miss handling of a translation lookaside buffer (TLB). 

A. Physical Memory Protection (PMP) 
Table I.  FIELD ASSIGNMENT OF PMPCFG 

bit name description 
7 L Lock control (0: writable, 1: write is locked) 
6-5 reserved 
4-3 A Address-matching mode 

0: OFF Null region (disabled) 
1: TOR Top of range 
2: NA4 Naturally Aligned (NA) 4-byte region 
3: NAPOT NA Power-of-two region, ≥8 bytes 

2 X Execution control (0: not permitted, 1: permitted) 
1 W Write control (0: not permitted, 1: permitted) 
0 R Read control (0: not permitted, 1: permitted) 

TOR:  An address A is matched when 
 (i-1)-th pmpaddr ≤ A <  i-th pmpaddr for i-th entry (0 < i), 

0 ≤ A < 0-th pmpaddr for 0-th entry. 
NA4:  An NA address matches if it is in the 4-byte region of pmpaddr. 
NAPOT: When bit j of pmpaddr is the first '0' from the LSB, an NA address 

matches if it is in the 2 j+3-byte region of the address made by clearing 
lower j bits of the pmpaddr to '0's. 

PMP function uses PMP CSRs to control the PMP of read, 
write, and execute for secure processing. The granularity of the 
control is platform-specific, but the standard supports as small 
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as 4 bytes. The PMP is basically managed by M-mode software 
although a certain region privilege can be fixed by hardware. 

Each PMP entry consists of a pair of 8-bit configuration CSR 
(pmpcfg) and XLEN-bit address CSR (pmpaddr), and the 
number of the entries is 16 at maximum. Each entry is accessible 
only in the M-mode, but an entry with L-bit set cannot be 
updated even in the M-mode, and is to be cleared by reset. 

Table I shows the field assignment of each pmpcfg, which 
is packed into four CSRs for RV32 and two CSRs for RV64. 
The pmpaddr supports 4-byte granularity, its higher 10 bits are 
fixed to '0's for RV64, and the addressable range is 0 to 234-4 in 
RV32 and 256-4 in RV64. The smaller number entry has priority 
if multiple entries are matched. Then, a part of a region can be 
set to have another access privilege by this priority.  

Table II.  LIST OF PMP CASES 

R W X 
S-/U- 
mode 

M-mode 
L=1 L=0 

0 0 0 – – – r w x 
0 0 1 – – x r w x 
0 1 0 reserved reserved 
0 1 1 reserved reserved 
1 0 0 r – – r w x 
1 0 1 r – x r w x 
1 1 0 r w – r w x 
1 1 1 r w x r w x 

Table II lists PMP cases. The access privilege is checked 
with the R, W, X, and L of the matched highest priority entry 
and the security mode. The r, w, and x indicate read, write, 
and execute permissions, respectively, and '–' indicates no 
permission. An access fault exception occurs for the read, 
write, or execution if it is not permitted. The combination of 
R=0 and W=1 is not necessary, and reserved for future 
extension. Any access is permitted in the M-mode and no 
access is permitted in the S-/U-mode if no entry matches. 

 It is effective to skip changing access permission in the M-
mode if the M-mode code is highly reliable. So, full access is 
permitted if L=0 in the M-mode. However, it is better to execute 
the M-mode code with minimum access privilege if it becomes 
bloated and less reliable. For this reason, an extension of the 
PMP specification is currently discussed. 

B. PMP implementation in Rocket Tile 
Rocket tile is a Rocket core conforming to Tilelink [12, 13]. 

The Chipyard [11] supports five configurations of Big, Mid and 
Small RV64 tiles and Big and Tiny RV32 tiles, but other types 
are configurable by setting parameters. 

Figure 1 shows PMP implementation in the Rocket tile. Each 
tile has modules of Rocket including the CSRs, Frontend, Data 
cache (DC), Tile I/F, and so on. The Big tile has also BTB 
(Branch Target Buffer) in the Frontend, and FPU. Further, the 
Big and Mid tiles have also memory management unit (MMU) 
consisting of TLBs in the DC and Frontend, and PTW, and the 
MMU manages Sv39 VM for RV64 and Sv32 VM for RV32. 

The PMP is distributed and implemented in the CSRs, TLBs 
and PTW. Regardless of the configuration, the PMP of the 
Rocket tile in the Chipyard is 8 entries, which is half of the 
maximum, and the pmpaddr is 30 bits corresponding to a 32-bit 
physical address. Adding used 6 bits of the pmpcfg, one entry is 
36 bits, and the total is 288 bits for the 8 entries.  

 Big Core

            Mid Core  Small Core

Fig. 1.  PMP implementations in Rocket Tile 

IV. AREA EVALUATION OF PMP
Since a smaller core must be affected more by adding the 

PMP, we added Mid and Small RV32 tiles to the existing five 
types, and used totally six types excluding the Tiny tile, whose 
area is similar to the Small tile’s. Then, we evaluated the three 
cases of PMP=0, 8 and 16 for each type.  

First, we prepared totally 18 evaluating configurations by 
modifying two "Configs.scala"s of subsystem and system of 
rocket-chip in generators of the Chipyard, and created 18 RTL 
verilog descriptions of the tiles with the verilator construction 
environment of the Chipyard.  

Next, we synthesized a gate-level verilog from each RTL 
verilog using Synopsis Design Compiler and Renesas 65nm 
SOTB library, with setting the Rocket tile as the top module, 
without hierarchical structure flattening. Then, we got the total 
cell area (not including RAM area; hereinafter simply called 
area) of the gate-level verilog of each tile. Further, we obtained 
the module areas from each gate-level verilog. 

Table III shows the areas and increments of the modules 
of the 6 types, which are the relative values when the Small 
RV32 Rocket tile with PMP=0 is 100, and Table IV shows the 
area and increment ratios of the modules of each type, which 
is the percentage to the area of each Rocket tile with PMP=0. 
A column of PMP=0 shows the areas of modules excluding 
the PMP, and columns of PMP=8 and 16 show the increments 
by adding the PMP. The CSR F/F increments correspond to 
the 288-bit F/Fs, combinatorial logic increments are 
distributed to the CSRs, TLBs, and PTW, and the total 
increments are shown as Rocket tile increments.  

Figure 2 is the graph of Table III for PMP=16. The 
increments are placed to the left side to form the total 
increment for the PMP addition of each type. From Table III, 
the increments by the PMP are proportional to the number of 
entries and increase when the VM is enabled, but other 
parameters do not affect. Therefore, it is confirmed that a 
smaller core is affected more by adding the PMP. Further, 
even a larger Mid tile with the VM is affected more than a 
smaller Small tile without it. 
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Table III.   MODULE AREAS OF EACH CONFIGURATION  (Relative area when Small RV32 tile with PMP=0 is 100) 

Table IV.   MODULE AREA RATIOS OF EACH CONFIGURATION (Percentage to each Rocket tile area with PMP=0) 

Fig. 2. Graph of Table III for PMP=16 

From Table IV, the area increase ratios are 14.4 and 
29.7% for the smallest Small RV32 tile with PMP=8 and 16, 
respectively. However, the ratios are 16.6 and 33.3% for the 
Mid RV32 tile with PMP=8 and 16, respectively. The 
increase is the largest even it is not the smallest tile because its 
VM is enabled. 

V. COMPARISON OF PMP AND TLB 
A. Difference between PMP and TLB 

Here, the TLB is for the VM excluding the PMP function. 
Both the PMP and TLB are searched on each memory access, 
and the information of the selected entry is used. However, there 
are various differences affecting the area. The important 
difference is that the mapping is overlapped in the PMP and 
exclusive in the TLB. With the overlapped mapping, all the 
entries are to be searched and the highest priority entry is 
selected from the matched entries. Then all the entries must 
always be in the core. On the other hand, the TLB is a buffer that 
holds a part of a large page table with the exclusive mapping, 
and a hit entry is always the matching entry. Any number of the 
TLB entries is selectable with the exclusive mapping. 

The next important difference is the region size variations. 
The variations of the TLB are 4 KiB and 4 GiB for Sv32, 4 KiB, 
2 MiB, and 1 GiB for Sv39, and the Sv39's plus 512 GiB for 
Sv48, whereas the size for each PMP entry is freely from 4 bytes 
to the entire address space. Each entry must have an additional 
10-bit comparator and a bitwise mask to realize the region of the 
4-byte and the arbitrary size, respectively. 

Since the PMP is checked at the PTW in addition to ordinary 
memory access, check logics are to be at three places: instruction 
and data TLBs, and the PTW, but no TLB is necessary for the 
PTW. Further, the number of the PMP CSRs is at most 18 for 
RV64 and 20 for RV32. In contrast, a page table is placed in 
memory, so VM CSR is only the supervisor address translation 
and protection (satp) register. 

On the other hand, an increasing factor of the area of the TLB 
is the number of bits to be retained and output. The PMP outputs 
access permission. In addition, the TLB outputs a physical 
address and page fault exception information. Another factor is 
the difference between the number of logical and physical 
address bits since the TLB is searched with a logical address. 

B. Area Comparison of PMP and TLB 
Table V shows the areas of the PMP, TLBs and PTW. A 

PMP area is the Rocket tile’s area increment by adding the 
PMP. The area for PMP=16 is about 44 and 30 when the VM 
is enabled and disabled, respectively, and those are about half 
for PMP=8. 

On the other hand, the TLB areas are 68.0 for RV64 and 62.8 
for RV32, when instruction and data TLBs are 32 entries each 
and total 64. Those are 20.2 and 17.6 when TLBs are 4 entries 
each and total 8. The area difference between RV64 and RV32 
is because the TLB is searched by a logical address. The areas 
of the PTW are 12.1 for RV64 and 6.7 for RV32, regardless of 
the number of the TLB entries. 

Therefore, the PMP occupies a large part of the MMU, 
which consists of the PTW and TLBs including the PMP. 
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Table V.   AREA OF PMP, TLBS, AND PTW  

The Rocket tile's TLB is 4-way set associative. Although its 
area is smaller than a full associative one, it is difficult to support 
multiple page sizes. So, another array for large page sizes is 
implemented in addition to the array for 4 KiB pages. This is 
possible when there are few size variations. Then, the areas per 
entry for the Big tile are 1.1 for RV64 and 1.0 for RV32. 

In the Mid tile, TLBs are 4 entries each with 4 ways, so it is 
practically full associative, but only the parameters are changed 
to 4 entries. The areas per entry are 2.5 for RV64 and 2.2 for 
RV32, which are inefficient. On the other hand, the areas per 
entry of the PMP are about 2.8 and 2.0 when the VM is enabled 
and disabled, respectively. The 2.8 is the largest, and even larger 
than the 2.5 of the inefficient TLB of the Mid tile. 

Table VI.   F/F RATIO OF EACH MODULE  

Table VI shows the F/F ratio of each module. The smaller 
the F/F ratio, the larger processing logic per F/F. The F/F ratio 
of the PMP is very small, which means the processing logic 
of the PMP is very large. Even the F/F ratio of the FPU, which 
is a computing intensive unit, is 20 to 27%, whereas the F/F 
ratio of the PMP is 16% and 21 to 24% when the VM is 
enabled and disabled, respectively. On the other hand, the 
TLBs and PTW have the FF ratio exceeding 50%, and the 
processing logic per FF is small. 

VI. CONCLUSION

We worried about an area overhead problem with a small 
processor caused by adding the PMP function for the security 
enhancement because there are various area-increasing factors 
in comparison with the TLB, and evaluated the influence of 
adding the PMP on the Rocket tiles. 

We confirmed the security enhancement has a large area 
overhead on a low-end processor core whose MMU occupies 
a considerable part of its area. As shown in Table IV, the area 
overhead is a minimum of 4.0% for the Big RV64 tile with 
PMP=8, and a maximum of 33.3% for the Mid RV32 tile with 
PMP=16. The area per entry of the PMP reaches to 2.8 when the 
VM is enabled, whereas that of the TLB is 1.0 to 2.5 depending 
on its configuration. 

The Rocket core is a single-scalar processor with a five-stage 
pipeline, but there are smaller two- [14] and three-stage [5, 15] 
pipeline processors for the IoT, and their area overhead of the 
PMP function must be even more severe. 

The PMP is defined a maximum of 16 entries, but some say 
that it is not enough. However, it is difficult to increase the 
number of entries efficiently with the current specification 
checking all entries with arbitrary region sizes reaching to a 
minimum of 4 bytes on every memory access. Therefore, a 
specification-level enhancement is necessary to increase the 
number of entries efficiently. 
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