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Abstract—The large attack surface of commodity operating
systems motivated academia and industry to develop novel secu-
rity architectures which provide strong protection for sensitive
applications in so-called enclaves that only require trust in
the hardware and minimal software components. However, the
enclave architectures proposed by industry often lack important
features, such as secure I/O, and assume threat models which
leave out important classes of attacks, such as microarchitectural
attacks. Thus, recent works in academia have proposed a new
line of enclave architectures with distinct features and more
comprehensive threat models, many of which were developed on
the open RISC-V architecture. In this paper, we present a brief
overview of the RISC-V based enclave architectures proposed in
academia, discuss their features, limitations and open challenges
which we tackle in our current research.

Index Terms—RISC-V, Trusted Execution Environment (TEE),
Enclave, Side-Channel Security

I. INTRODUCTION

For decades, the ongoing discovery of exploitable memory
corruption bugs in modern software has fueled a persistent
arms race between software attacks and defenses. This gave
rise to a spectrum of defenses, such as control-flow integrity
(CFI), data-flow integrity (DFI), code-pointer integrity (CPI),
and fine-grained address space layout randomization (ASLR).
More critically, large code bases of commodity operating sys-
tems (OS), have also been found vulnerable in recent years and
thus, unsuitable to serve as an underlying Trusted Computing
Base (TCB) for protecting sensitive services. This motivated
increasing efforts and solutions to integrate hardware-assisted
security primitives tightly into the System-on-Chip (SoC)
to protect sensitive services, e.g., instruction extensions for
hardware-assisted CFI [7], in-process memory isolation [11],
or capability systems [27].

One most prominent and promising approach is that of
security architectures providing a Trusted Execution Environ-
ment (TEE). TEE architectures commonly deploy hardware
and software security primitives to enable isolated containers,
usually called enclaves. Enclaves are used to isolate the exe-
cution of sensitive services from all other software, including
the OS, and thus, protect them even against strong software
adversaries which can compromise the OS. Only a small
software/microcode TCB, which configures the underlying
hardware security primitives of the system and manages these
enclaves, is inherently trusted.

Enclave-based security architectures have been proposed
for a variety of computing platforms, ranging from resource-
constrained embedded systems, such as Sancus [20], Ty-
TAN [2], TrustLite [16], and TIMBER-V [25], to high-
performance computing systems, e.g., industry solutions like
Intel SGX [13], AMD SEV [14], ARM TrustZone [1], or
academic solutions such as Sanctum [6], Sanctuary [3], or
Keystone [17], to name some. While the industry solutions
successfully enable a new level of protection against a more
privileged software adversary, they often lack important fea-
tures, such as secure I/O or protection mechanisms against so-
phisticated software attacks, e.g. cache side-channels attacks,
which are typically not included in their threat models.

The advent of open-source hardware and the open architec-
ture RISC-V initiated a new line of research and an oppor-
tunity to explore, scrutinize and design enclave architectures
across the full stack, both hardware and software. This brought
rise to a number of academic solutions such as Sanctum [6],
Keystone [17] and TIMBER-V [25], which attempt to address
the shortcomings of existing industry solutions, and steer the
future for upcoming industry solutions.

In this paper, we provide a brief overview of recently
proposed RISC-V based enclave architectures in academia,
while highlighting their features, advantages and limitations.
We conclude with our envisioned proposal of next-generation
enclave architectures on which we are actively working, while
shedding light on open challenges for future research.

II. ENCLAVE-BASED SECURITY ARCHITECTURES ON
RISC-V

We introduce next the most well-known RISC-V enclave
architectures in academia, Sanctum [6], Keystone [17] and
TIMBER-V [25], and discuss their features and limitations,
whereas a summarized comparison is shown in Section II-B.

A. Sanctum

In 2016, Costan et al. [6] proposed the Sanctum security
architecture whose high-level design is shown in Figure 1.
Adversary Model. The authors assume a strong software ad-
versary who compromises the operating system (OS) executed
in the supervisor level. Moreover, the adversary is assumed
to use system peripherals to perform Direct Memory Access
(DMA) attacks [18] and to conduct cache side-channel attacks



from software [4], [21], [22]. However, all physical attacks,
such as fault-injection attacks [15] or cold-boot attacks [12],
are considered out of scope.

Design, Features & Limitations. Sanctum offers isolated ex-
ecution contexts, called enclaves, to protect sensitive services
on RISC-V platforms. Every enclave, which runs in the user
level, comes bundled with a non-sensitive application which
invokes the enclave. The integrity of an enclave is verified
prior to its execution using local or remote attestation.

Sanctum relies on the untrusted OS to manage the enclave
memory and to provide OS services like interrupt handling or
I/O services. However, it has been shown that this may allow
adversaries, which compromised the OS, to conduct controlled
side-channel attacks on enclaves [19], [24], [28]. The adver-
sary can infer information of the enclave’s internal state by
observing the enclave page tables [28] or by interrupting the
enclave repeatedly [24]. Sanctum mitigates these attacks by
storing the enclave page tables in the enclave memory and
by making the enclaves interrupt-aware which allows them to
detect suspicious interrupt behavior.

Sanctum prevents cache side-channel attacks by two mech-
anisms: 1) flushing sensitive processor resources on every
enclave context switch, namely, the L1 cache and the Trans-
lation Lookaside Buffer (TLB), and 2) partitioning the shared
L2 cache through memory page coloring which allows to
assign cache lines exclusively to enclaves. However, Sanctum’s
cache partitioning design suffers in practice since all software
components of the system need to adhere to the coloring
scheme. As a result, the partitioning can only be set at run
time if the complete memory layout of the OS is rearranged
according to the coloring scheme, which is impractical.

Sanctum’s enclaves comprise unprivileged user-level code
and thus, cannot support use cases in which a secure connec-
tion to a peripheral, e.g., a sensor or GPU, is necessary because
this would require privileged driver code. Sanctum provides a
basic DMA attack protection which allows to restrict DMA to
one specific region of the memory.

Hardware Primitives & TCB. Sanctum enforces the isolation
of the enclave code and data by introducing small hardware
changes at the Page Table Walker (PTW) which is part of the
Memory Management Unit (MMU). The hardware changes
guarantee on the one hand that the OS cannot access enclave
memory, and on the other hand that an enclave cannot access
the OS memory or other enclaves by changing its page tables.
The custom PTW prevents a successful address translation of
virtual memory addresses which would map to physical mem-
ory addresses that the current execution context is not allowed
to access. The security critical functionalities of Sanctum are
implemented in a software component called the Security
Monitor (SM) which represents the Trusted Computing Base
(TCB) of the system. The SM runs in the machine level of
the RISC-V processor and is verified during a secure boot
process. Sanctum’s basic DMA protection is implemented by
adding two registers to the memory controller.
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Fig. 1: Design overview of Sanctum which provides user-level
enclaves and cache partitioning for the shared L2 cache.

B. Keystone

The high-level design of the Keystone [17] security archi-
tecture is shown in Figure 2.
Adversary Model. Keystone was designed to mitigate a strong
software adversary able to compromise the OS and perform
cache side-channel attacks. Simple physical attacks, in which
an adversary is able to read out the content of the DRAM,
e.g., by snooping the memory bus, are also considered.
Design, Features & Limitations. Keystone provides enclaves
which, in contrast to Sanctum’s enclaves, comprise of software
running in the user level and supervisor level. In the user
level, the enclave app (EApp) is executed which contains
sensitive application code. In the supervisor level, the enclave
runtime provides OS services to the enclave, such as, memory
management or interrupt handling. The ability to include
critical OS functionalities into the enclave allows Keystone to
protect against controlled side-channel attacks which exploit
the sharing of sensitive data or code structures, e.g., page
tables [28] or interrupt handlers [24].

Keystone’s enclaves are not integrated into the OS and thus,
not scheduled like unmodified processes. Whenever an enclave
is set up, the state of the OS needs to be stored (and later
restored) and the enclave runtime booted which introduces
an additional performance overhead. Moreover, providing a
runtime for each enclave increases the enclave development
effort and leads to duplicate code on the system since many
runtimes will provide the same basic functionalities.

In Keystone, device drivers could potentially be included
into the enclave runtime to connect to peripherals and perform
secure I/O. However, no two-way binding between an enclave
and a peripheral is proposed which would enable DMA-
capable peripherals to securely communicate with the enclave
over enclave memory. As a result, Keystone cannot protect
enclaves from DMA attacks [18].
Hardware Primitives & TCB. Keystone enforces the enclave
isolation using the Physical Memory Protection (PMP) module
specified in the RISC-V ISA manual [10]. The PMP allows to
define memory access permissions for the user and supervisor



level (together) and for the machine level. Keystone utilizes the
PMP to assign one continuous memory region to each active
enclave and to the software in the machine level. All other
memory regions are automatically assigned to the OS. The
machine level code, which is called Security Monitor (SM),
configures the PMP and represents the software TCB of the
system. The SM is verified during a secure boot process.

Keystone provides shared L2 cache partitioning by imple-
menting way-based partitioning which assigns complete cache
ways to processor cores that execute enclaves. This can lead to
cache under-utilization since cache lines that are unused by an
enclave cannot be allocated by any other software component.

Keystone can provide protection from simple hardware
attacks, e.g., bus snooping, when the executed enclave (EApp
+ enclave runtime) and the SM fit completely into an on-chip
scratchpad memory.
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Fig. 2: Design overview of Keystone which provides enclaves
(user-level enclave app (EApp) + supervisor-level runtime)

C. TIMBER-V

The high-level design of TIMBER-V [25], which targets
embedded systems, is shown in Figure 3.
Adversary Model. A strong software adversary is assumed
that compromises the OS, with physical attacks out of scope.
Design, Features & Limitations. The core idea of TIMBER-
V is to split applications into a normal and a trusted domain,
whereas memory tagging is used to assign memory words
to either one of the domains. All sensitive code and data
of an applications is included in the trusted domain. In
comparison to Sanctum and Keystone, TIMBER-V’s trusted
domains allow to create more fine-grained enclaves or sub-
process enclaves. TIMBER-V also defines a trusted domain
in the OS which is called TagRoot. The TagRoot enforces the
separation between the sub-process enclaves in user level by
configuring TIMBER-V’s hardware primitives. Moreover, the
TagRoot is used by the OS to setup the enclaves and provides
some services to the enclaves, e.g., shared memory for com-
municating with the normal domain, sealing or attestation.

TIMBER-V provides fine-grained enclaves for embedded
systems. However, TIMBER-V (as presented) does not provide

secure communication channels from enclaves to peripherals,
e.g., sensors. Theoretically, drivers and other services can be
included in the TagRoot and thus, offered to the enclaves.
However, then, TIMBER-V adopts the high-level security
model of ARM’s TrustZone-A [1] in which a trusted OS
provides services to a set of trusted applications. As repeatedly
shown, summarized in [5], this security model is flawed since
it substantially increases the attack surface of the system.

TIMBER-V does not provide any protection mechanisms
against cache side-channel attacks and is vulnerable to
interrupt-based controlled side-channel attacks [24] since the
enclave interrupt handling is performed by the OS.
Hardware Primitives & TCB. TIMBER-V implements mem-
ory tagging by making changes to the Memory Protection Unit
(MPU) of the system which enforces the separation between
all processes and between the normal and trusted domain of
the currently executed process. Furthermore, a hardware tag
engine is introduced which checks every memory access using
the tags stored in memory. TIMBER-V requires 2 bit tags for
every 32 bit of memory (6.25% memory overhead) and intro-
duces custom instructions for checking and manipulation the
tags. Additional tag engines are required at every peripheral
with Direct Memory Access (DMA) capabilities in order to
protect from DMA attacks [18].

The software TCB of the system consists of the TagRoot,
which verifies the MPU configuration set by the OS, and all
software running in the machine level of the processor.
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Fig. 3: Design overview of TIMBER-V which provides sub-
process enclaves on embedded systems.

III. OPEN CHALLENGES

In the following, we discuss open challenges of enclave-
based security architectures and give an outlook on how these
challenges could be tackled in next-generation architectures.
Customizable enclave architectures. The RISC-V security
architectures presented in Section II each provide a specific
type of enclave which either comprises of user-level code,
user-level and supervisor-level code or isolates only parts of
a process. In other words, all architectures adopt a rigid one-
size-fits-all approach to enclaves which require the developer



Enclave Type

Name User-Level User/Supervisor-Level Sub-Process
Dynamic Cache

Side-Channel Resilience
Controlled Side-

Channel Resilience
Enclave-to-Peripheral

Binding
Sanctum [6] ●∗ ○∗ ○∗ ◐∗ ●∗ ○∗

Keystone [17] ○∗ ●∗ ○∗ ●∗ ●∗ ○∗

TIMBER-V [25] ○∗ ○∗ ●∗ ○∗ ◐∗ ○∗

to adapt sensitive services to the enclaves’ features and re-
quirements, instead of adapting the enclave to the needs of the
sensitive service which is limiting and cumbersome in practice.

The rapidly growing diversity of services that process sensi-
tive data, e.g., biometric authentication, digital keys, Machine
Learning as a Service (MLaaS), among many others, demand
service-specific requirements from the underlying security
architecture. One such requirement is to establish secure
two-way binding between peripherals and enclaves, which
is inevitable in many IoT and AI usage scenarios in which
peripherals, such as sensors and GPUs are used. A two-way
binding between enclaves and peripherals includes performing
access control on the accesses from enclaves to peripherals
(over MMIO) and also on the accesses from DMA-capable
peripherals to enclave memory.

As mentioned in Section I, commercial enclave architectures
do not consider side-channel attacks in their threat models.
Sanctum and Keystone propose cache partitioning schemes,
yet these suffer from practical limitations or provide coarse-
grained allocation of cache resources to enclaves. Thus, an-
other open challenge is to incorporate adequate, practical
and customizable microarchitectural defenses [8], [23], [26]
against side-channel attacks into enclave architectures.

We envision next-generation enclave architectures, on which
we are actively working, which provide customizable enclaves
of different types where the privilege level of the enclave can
be selected as stipulated by the sensitive service’s functionality
and security requirements. Exclusive binding of individual
enclaves to peripherals (both MMIO and DMA) should also be
supported to enable emerging IoT and AI use cases. Moreover,
the architecture should provide flexible mechanisms by-design
to configure the required side-channel protection level at run
time for different enclaves individually and independently.
These configurable protection mechanisms need to be tightly
integrated throughout the full stack of a computing platform.
One approach that we are currently pursuing is to allow config-
urable and on-demand fine-grained cache resource partitioning
that can be flexibly customized for every enclave individually.
Reconfigurable and adaptive platform security. The chal-
lenge of providing flexible side-channel defenses is motivated
by numerous attacks performed on commercial enclave archi-
tectures [4], [29]. However, incorporating these defenses can
only protect against known or anticipated threats. Unknown or
unanticipated attacks might still require a more radical upgrade
of the entire system, at both the hardware and software layers,
to make computing platforms more future-proof.

However, hardware, unlike software, cannot be updated or
patched once fabricated in silicon. This also means that exten-
sive security analysis is required at the pre-silicon design phase

to verify the security of the underlying hardware design. As we
have witnessed through our work with Hack@DAC [9], this
is, however, very challenging to achieve in practice even with
state-of-the-art hardware verification and analysis techniques.

We envision a paradigm shift to a more comprehensive
design approach based on a secure open platform that enables
flexible updatability of both hardware and software primitives
at run time, such that it can thwart future attacks as well as
adapt to different functionality and security requirements. We
propose to augment the underlying hardware with just-in-time
reconfigurable hardware elements, thus enabling hardware se-
curity updates and secure reconfiguration of selected hardware
components/features even after deployment. One approach
would be to enable different granularities of this reconfigura-
bility for different features, largely depending on how tightly
integrated these features are into the processor pipeline and
their impact on the critical path (and thus performance). This
ranges from the coarse-grained per-process enabling/disabling
of tightly integrated microarchitectural optimizations, such as
speculative execution, or selecting 1-of-x cache partitioning
mechanisms to enable at run time, all the way to a more fine-
grained clean-slate reconfiguration of logic tiles that interface
less tightly with key components of the processor. These
logic tiles can be reconfigured entirely to implement different
processor security extensions, e.g., complete execution tracing
or only control-flow tracing or enforcement.

Realizing this platform requires tackling many open chal-
lenges, e.g., devising systematic techniques to identify the root
causes of vulnerable information leakage and which security-
critical components require this hardware reconfigurability.
Other challenges are identifying the security-performance
trade-offs that need to be incorporated by design, which level
of reconfigurability is feasible for different features without
degrading performance prohibitively in today’s complex SoCs,
and how to most efficiently design and integrate them into
enclave architectures.
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