
Real-time Thread Isolation and Trusted 
Execution on Embedded RISC-V

RISE Research Institutes of Sweden
Cybersecurity Lab

Samuel Lindemer, Gustav Midéus, Shahid Raza



Overview
• RISC-V Physical Memory Protection (PMP) is not yet supported by many 

embedded operating systems.

• We implemented support for userspace on Zephyr RTOS using PMP.
• Threads are sandboxed to prevent a malicious compromise.

• Programming errors cause thread termination rather than silent kernel corruption.

• We propose an extension to the RISC-V ISA.
• Standard RISC-V cannot support userspace and secure enclaves simultaneously.

• This could be done with a two-tiered PMP design.



Implementing Userspace on 
Zephyr RTOS
• Motivation for this work
• Performance
• Quirks of the RISC-V ISA



PMP Addressing Modes

region 1

region 2

region 0
PMP 0

PMP 1

PMP 2

PMP 3

0x0

Top of range (TOR)

PMP 0
PMP 1

Naturally-aligned 
power-of-two (NAPOT)

PMP 0

PMP 1

Naturally-aligned 4 (NA4)

region 0

region 2

0x0

word 0

word 1

0x0

RISC-V supports up to 16 PMP registers, though some implementations have 8.

PMP 2

region 1

word 2 PMP 2



Current RTOS Support for RISC-V PMP

32-bit 64-bit PMP

FreeRTOS ✓ ✗ ✓
Mynewt ✓ ✗ ✗
NuttX ✓ ✗ ✗
Pharos ✗ ✓ ✗
RIOT ✓ ✗ ✗
Tock ✓ ✗ TOR only

Zephyr RTOS ✓ ✓ ✓*
(this work)

* pull request under review

• Most open source RTOSes support RISC-V 
architectures, but

• all code (kernel and threads) run in M-mode

• PMP hardware is never used

• Hardware-backed memory protection 
requires support from the build system.

• TOR addressing is the easiest to implement.

• NAPOT addressing requires perfect alignment 
of thread stacks.

• Zephyr RTOS has a robust build system for 
memory alignment.



Zephyr RTOS System Call Performance

• Our userspace implementation 
supports both TOR and NAPOT.
• Other architectures (ARC, Arm) only 

support NAPOT regions.

• System call performance
• With TOR enabled, instructions do not 

execute in a predictable number of cycles.
• NAPOT is significantly faster to compute 

in hardware.

Mode PMP Instructions CPU Cycles
M N/A 4 7

U TOR 401 10000 to 20000

U NAPOT 401 5276

Zephyr RTOS system call latency on the HiFive1 Rev B.
These results may not reflect the final upstream code.



Problem: Which state am I in?

• Zephyr kernel API calls begin by checking the current privilege level.
• This facilitates a single API for both privileged and unprivileged code.
• Calls from unprivileged code trap into the system call handler.

• There is no way to check the current privilege level in RISC-V.
• Other architectures (ARC, Arm and x86) can do this in one instruction.
• This results in a significant performance overhead and hacky software 

workarounds.



Workaround 1 of 3:
Implement a dedicated system call.

csrr t0, mcause

li t1, RISCV_USER_ECALL

li t2, RISCV_MACHINE_ECALL

li t3, __SYSCALL_IS_USER_CONTEXT

beq t0, t1, handle_user_syscall

beq t0, t2, handle_machine_syscall

handle_user_syscall:

beq a7, t3, is_user_context

...

handle_machine_syscall:

beq a7, t3, is_machine_context

...

The mcause register indicates 
the reason the CPU has trapped 
into the ISR. 

The a7 register contains the 
system call ID.



Workaround 2 of 3:
Attempt a restricted operation.

SECTION_FUNC(TEXT, arch_is_user_context)

arch_is_user_context_fault_start: 
csrr t0, mstatus

arch_is_user_context_fault_end:
li a0, 0
ret

arch_is_user_context_fixup:
li a0, 1
ret

This operation might fault.

Jump here from ISR if a fault 
occurred.



Workaround 3 of 3:
Use a global flag.

• The CPU state is stored as a 
global flag in RAM.

• Requires one PMP NA4 register.

• The flag is toggled on each context 
switch.

• Better performance than the 
alternatives.

.text

.rodata

kernel memory

thread 1 stack

thread 2 stack

flag

RAM

ROM

PMP 0: NAPOT, RX

PMP 1: NAPOT, RO

PMP 2: NA4, RO

PMP 3: NAPOT, RW

0x0



Zephyr RTOS Memory Domains

https://docs.zephyrproject.org/latest/reference/usermode/memory_domain.html



Enclave Support in Embedded 
RISC-V Architectures
• Overview of related architectures
• Proposal for a new RISC-V based enclave architecture
• Implementation plan



Related: Arm TrustZone-MTM

https://developer.arm.com/documentation/100690/0200/Switching-between-Secure-and-Non-secure-states?lang=en

• Each world has a dedicated MPU.
• The non-secure world supports an RTOS 

(e.g., Zephyr).

• The secure world runs critical applications 
(see Trusted Firmware-M).

• Untrusted code can make secure API 
calls via a secure gateway.

• This architecture supports both
userspace memory protection and 
secure enclaves.

• Can this be done on RISC-V?
• Not without extensions.



Related: HexFive MultiZoneTM

https://content.riscv.org/wp-content/uploads/2019/03/15.05-RISC-V-Security-Multizone-v-TrustZone-3-12-19.pdf

• Application code runs in U-mode 

zones enforced by PMP.

• Context switching is handled by a 

security monitor in M-mode.

• The applications (e.g., an RTOS) 

cannot reconfigure PMP.

• This approach is incompatible

with userspace threads.

• Is this a reasonable tradeoff?
• We would argue no.



Related: Keystone Enclave

• The OS and secure enclaves run 
in S-mode, separated by PMP.

• U-mode processes are 
protected by the MMU.

• Constrained embedded 
systems do not have an MMU.Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. 2020. Keystone: 

an open framework for architecting trusted execution environments. In Proceedings of the 
Fifteenth European Conference on Computer Systems (EuroSys '20). Association for Computing 
Machinery, New York, NY, USA, Article 38, 1–16. DOI:https://doi.org/10.1145/3342195.3387532



Proposed ISA Enhancement

Security	monitorM-mode

RTOSS-mode TEE	1 TEE	2

U-mode Thread	2Thread	1

• We propose a modification to the 
pmpcfgX registers.
• Bits 5 and 6 of each region field are 

currently unused.
• One of these can be used as an S-mode 
enable flag.

• S-mode would subdivide its memory 
space to restrict U-mode.

• This would facilitate embedded 
RISC-V implementations with three 
privilege levels.

L unused A X W R

pmp3cfg pmp2cfg pmp1cfg pmp0cfg

7 6 5 4 3 2 1 0

31 0



Ongoing Work

• Userspace port to LiteX VexRiscv
• VexRiscv is an open source embedded RISC-V 

implementation written in SpinalHDL.

• Zephyr supports this platform but userspace has 
only been tested on the HiFive1 Rev B.

• S-mode PMP prototype on VexRiscv

• Software support for the new architecture
• Viable security monitor and enclaves.

• Additional Zephyr modifications.



Thank you!
Samuel Lindemer

samuel.Lindemer@ri.se


