

Enclave Computing on RISC-V: A Brighter Future for Security?

Ghada Dessouky, Ahmad-Reza Sadeghi, Emmanuel Stapf

Technical University of Darmstadt

 Enclaves prominent approach for protecting sensitive services

- Enclaves prominent approach for protecting sensitive services
- Isolated execution environment, backed by hardware-assisted security mechanisms, configured by trusted SW

- Enclaves prominent approach for protecting sensitive services
- Isolated execution environment, backed by hardware-assisted security mechanisms, configured by trusted SW

• Industry solutions (SGX, SEV, TrustZone) vulnerable to side-channel attacks and miss features (I/O)

- Enclaves prominent approach for protecting sensitive services
- Isolated execution environment, backed by hardware-assisted security mechanisms, configured by trusted SW

- Resources
- Industry solutions (SGX, SEV, TrustZone) vulnerable to side-channel attacks and miss features (I/O)
- Solutions (often) require HW modifications

- Enclaves prominent approach for protecting sensitive services
- Isolated execution environment, backed by hardware-assisted security mechanisms, configured by trusted SW
- App App Sensitive Service A

 Operating System Service B

 (extended) System-On-Chip

 OS A B

 Resources
- Industry solutions (SGX, SEV, TrustZone) vulnerable to side-channel attacks and miss features (I/O)
- Solutions (often) require HW modifications
- Open HW concept of RISC-V propels research on enclave computing

Enclave Security Architectures on RISC-V

Enclaves in user level

- Enclaves in user level
- OS manages enclaves and provides services (e.g., I/O, interrupt handling)

- Enclaves in user level
- OS manages enclaves and provides services (e.g., I/O, interrupt handling)
- SM checks OS management decisions

- Enclaves in user level
- OS manages enclaves and provides services (e.g., I/O, interrupt handling)
- SM checks OS management decisions
- Custom circuitry in MMU protects enclaves and SM memory

- Enclaves in user level
- OS manages enclaves and provides services (e.g., I/O, interrupt handling)
- SM checks OS management decisions
- Custom circuitry in MMU protects enclaves and SM memory
- Cache side-channel protection through page coloring, influences OS memory layout

Enclaves contain user and supervisor level

- Enclaves contain user and supervisor level
- Enclave runtime provides thread and page table management

- Enclaves contain user and supervisor level
- Enclave runtime provides thread and page table management
- Enclaves protected by Physical Memory Protection (PMP), configured by SM

- Enclaves contain user and supervisor level
- Enclave runtime provides thread and page table management
- Enclaves protected by Physical Memory Protection (PMP), configured by SM
- One PMP region reserved for each active enclave

Software TCB

- Enclaves contain user and supervisor level
- Enclave runtime provides thread and page table management
- Enclaves protected by Physical Memory Protection (PMP), configured by SM
- One PMP region reserved for each active enclave
- Assigns cache ways to processor cores

 Isolates sensitive part of app using memory tagging (in-process enclave)

- Isolates sensitive part of app using memory tagging (in-process enclave)
- TagRoot provides trusted services to enclaves and OS (e.g., sealing)

Software TCB

- Isolates sensitive part of app using memory tagging (in-process enclave)
- TagRoot provides trusted services to enclaves and OS (e.g., sealing)
- TagRoot configures custom Memory Protection Unit (MPU)

- Isolates sensitive part of app using memory tagging (in-process enclave)
- TagRoot provides trusted services to enclaves and OS (e.g., sealing)
- TagRoot configures custom Memory Protection Unit (MPU)
- Memory access controlled by Tag Engine

- Isolates sensitive part of app using memory tagging (in-process enclave)
- TagRoot provides trusted services to enclaves and OS (e.g., sealing)
- TagRoot configures custom Memory Protection Unit (MPU)
- Memory access controlled by Tag Engine
- Cache memory not considered in the design

Software TCB

	Sanctum	Keystone	TIMBER-V
User level enclaves			
User/Supervisor level enclaves			
In-process enclaves			
Dynamic cache side-channel resilience			
Controlled side-channel resilience			
Enclave-to-peripheral binding (MMIO/DMA)			

- Full feature support
- Limited feature support
- Feature not supported

	Sanctum	Keystone	TIMBER-V
User level enclaves	•	0	0
User/Supervisor level enclaves	0	•	0
In-process enclaves	0	0	•
Dynamic cache side-channel resilience			
Controlled side-channel resilience			
Enclave-to-peripheral binding (MMIO/DMA)			

- Full feature support
- Limited feature support
- O Feature not supported

	Sanctum	Keystone	TIMBER-V
User level enclaves	•	0	0
User/Supervisor level enclaves	0	•	0
In-process enclaves	0	0	•
Dynamic cache side-channel resilience	•	•	0
Controlled side-channel resilience			
Enclave-to-peripheral binding (MMIO/DMA)			

- Full feature support
- Limited feature support
- O Feature not supported

	Sanctum	Keystone	TIMBER-V
User level enclaves	•	0	0
User/Supervisor level enclaves	0	•	0
In-process enclaves	0	0	•
Dynamic cache side-channel resilience	•	•	0
Controlled side-channel resilience	•	•	•
Enclave-to-peripheral binding (MMIO/DMA)			

- Full feature support
- Limited feature support
- O Feature not supported

	Sanctum	Keystone	TIMBER-V
User level enclaves	•	0	0
User/Supervisor level enclaves	0	•	0
In-process enclaves	0	0	•
Dynamic cache side-channel resilience	•	•	0
Controlled side-channel resilience	•	•	•
Enclave-to-peripheral binding (MMIO/DMA)	0	0	0

- Full feature support
- Limited feature support
- O Feature not supported

CURE: Customizable and Resilient Enclaves

First International Workshop on Secure RISC-V Architecture Design Exploration (SECRISC-V'20)

CURE: Customizable and Resilient Enclaves

 Multiple types of enclaves, in user level, supervisor level or in-process

First International Workshop on Secure RISC-V Architecture Design Exploration (SECRISC-V'20)

CURE: Customizable and Resilient Enclaves

 Multiple types of enclaves, in user level, supervisor level or in-process

CURE: Customizable and Resilient Enclaves

- Multiple types of enclaves, in user level, supervisor level or in-process
- Select type depending on sensitive service
 & usage scenario requirements

CURE: Customizable and Resilient Enclaves

CURE: Customizable and Resilient Enclaves

• RISC-V enabled several novel security architectures

- RISC-V enabled several novel security architectures
- Sensitive services and usage scenarios are highly diverse (threat model, performance, required functionality)

- RISC-V enabled several novel security architectures
- Sensitive services and usage scenarios are highly diverse (threat model, performance, required functionality)
- Goal: Customizable enclave adapt to sensitive services

- RISC-V enabled several novel security architectures
- Sensitive services and usage scenarios are highly diverse (threat model, performance, required functionality)
- Goal: Customizable enclave adapt to sensitive services
- We tackled this problem with CURE by providing multiple enclave types

- RISC-V enabled several novel security architectures
- Sensitive services and usage scenarios are highly diverse (threat model, performance, required functionality)
- Goal: Customizable enclave adapt to sensitive services
- We tackled this problem with CURE by providing multiple enclave types
- Research proposals don't ignore side-channel attacks

- RISC-V enabled several novel security architectures
- Sensitive services and usage scenarios are highly diverse (threat model, performance, required functionality)
- Goal: Customizable enclave adapt to sensitive services
- We tackled this problem with CURE by providing multiple enclave types
- Research proposals don't ignore side-channel attacks
- Open Challenges:

- RISC-V enabled several novel security architectures
- Sensitive services and usage scenarios are highly diverse (threat model, performance, required functionality)
- Goal: Customizable enclave adapt to sensitive services
- We tackled this problem with CURE by providing multiple enclave types
- Research proposals don't ignore side-channel attacks
- Open Challenges:
 - Low-overhead (performance and memory) side-channel resilient cache architecture for enclaves

- RISC-V enabled several novel security architectures
- Sensitive services and usage scenarios are highly diverse (threat model, performance, required functionality)
- Goal: Customizable enclave adapt to sensitive services
- We tackled this problem with CURE by providing multiple enclave types
- Research proposals don't ignore side-channel attacks
- Open Challenges:
 - Low-overhead (performance and memory) side-channel resilient cache architecture for enclaves
 - Enclave architectures for Network-on-Chip platforms

Questions?

emmanuel.stapf@trust.tu-darmstadt.de