A Lightweight ISA Extension for AES and SM4

Markku-Juhani O. Saarinen
mjos@pgshield.com

PQShield Ltd.
Oxford, United Kingdom

August 23, 2020

R First International Workshop on Secure RISC-V

Workahop 2020 Architecture Design Exploration (SECRISC-V’20).

Talk Outline ‘"SHIELD

© Introduction: AES, SM4, and Crypto TG

AES: Advanced Encryption Standard “"SHIELD

FIPS PUB 197

-» Specified in FIPS PUB 197, International standards.
> 128-bit block size, 128 / 192 / 256-bit secret key.
-» Single 8 x 8-bit S-Box, Substitution-Permutation.

-» Rijndael by Joan Daemen and Vincent Rijmen (1998).
Clear, open, well-understood design methodology.

-» Very common. Hardware support saves energy in
comms (TLS, IPSec, WiFi), storage (XTS), etc.

> ARMv8.0-CE (SIMD) and Intel AES-NI (SIMD) ISAs.

-> Embedded often have memory mapped AES engines.
No real standard for those; vendor-specific drivers.

SM4: The Chinese Standard Block Cipher

EWAE%EEW&EEQ& -» Specified in GM/T 0002-2012, GB/T 32907-2016,
internationally ISO/IEC 18033-3:2010/DAmd 2.

-» 128-bit block size, 128-bit secret key (one key size).

SV BB -» Single 8 x 8-bit S-Box, Generalized Feistel Structure.

-» Credited to Lu Shuwang (= iA) et al, early 2000s.
Design methodology and criteria difficult to find.

=» Important to RISC-V International (due to export etc.)
> ARMVS8.2-SM (SIMD) ISA has SM4 support, Intel no.
-» SM4 has regulatory preference over AES in PR China.

ERERENR & %

GM/T 0002-2012

Crypto TG: The RISC-V Crypto Spec

Crypto Spec v0.6.2, August 13, 2020

-» The RISC-V Cryptographic Extensions Task Group
(Crypto TG) has been operating since 2017.

> In late 2019 the scope was extended from Vector
(RVV, SIMD-style) AES to “Scalar” RV32 and RVé4.

-» | proposed the present work (as ENC1S) in Feb 2020.
It was evaluated and adopted as the preferred option
for RV32 some months later (as SAES32 & SSM4).

-» Evaluation (as AES “v3”): B. Marshall, G. R. Newell, D.
Page, M.-J. O. Saarinen, and C. Wolf: “The design of
scalar AES Instruction Set Extensions for RISC-V.”
https://eprint.iacr.org/2020/930

-» The crypto spec is going to freeze soon; you can find
it at: https://github.com/riscv/riscv-crypto

https://eprint.iacr.org/2020/930
https://github.com/riscv/riscv-crypto

Talk Outline ‘"SHIELD

() SAES32 and SSM4 Instruction Set Extension

AES Steps

w(4i...4i+3]
S|S|S|S
s|s|s|s e
state;
B BERE —
xor
s|s|s|s —
AddRoundKey SubBytes ShiftRows

Xiw
Xiw
Xiw
Xiw

MixColumns

— state;;;

> AES has {10, 12,14} rounds - for {128,192, 256} bit keys, respectively.
-» Rounds are made of: AddRoundKey, SubBytes, ShiftRows, MixColumns.

-» Contrary to Feistel ciphers - like SM4 - Inverse of Substitution-Permutation
Network (SPN) like AES requires inversion of each step (inverse SB, SR, MC).

AES Steps: T-table “"SHIELD

w(4i...4i+3]
S|S|S|S
SISIS|S -3 3|3 /3|3
statei—>@—> Sigls — dEIEIELE: —» state;
xor
s|s|s|s —
AddRoundKey SubBytes ShiftRows MixColumns

-» ShiftRows just shuffles bytes and SubBytes operates on individual bytes.
-» SubBytes and Mixcolumns can be combined into 8 — 32 - bit “T table” lookups.
- MixColumns is 4 x 4 byte matrix multiplication defined in GF(28); it’s linear!

32-bit T-table

“"SHIELD

The original 1998 Rijndael Reference code targeted 32-bit systems of the day:

s0 =
TeO [(t0O
Tel[(t1
Te2[(t2
Te3[(t3
rk[0];
sl =
TeO [(t1
Tel[(t2
Te2[(t3
Te3[(t0
rk([1];
s2 =
TeO [(t2
Tel [(t3
Te2 [(t0
Te3[(t1
rk[2];
s3 =
TeO [(t3
Tel[(t0
Te2[(t1
Te3[(t2
rk[3];

>> 24)
>> 16)
>> 8)

>> 24)
>> 16)
>> 8)

>> 24)
>> 16)
>> 8)

>> 24)
>> 16)
>> 8)

] -
& Oxff] ~
& Oxff] ~
& Oxff] ~

] -
& Oxff] ~
& Oxff] -
& Oxffl -

] -~
& Oxff] ~
& Oxff] ~
& Oxff]l ~

] -
& Oxff] ~
& Oxff] ~
& Oxff] =

-» For a decade, all AES Implementations looked = like this.
=» 4 input bytes x 256 S-Box entries x 32 bits = 4 kB.
-» Another 4 kB for decryption, possibly 1 kB for last rounds.

-» Serious cache timing attacks emerged after mid-2000s
(Bernstein, Osvik, et al [2,12]). Can be exploited remotely.

-» Need to replace table lookups with with straight-line logic.
-» On RV32 targets such bit-sliced implementations are
2.5x slower than table-based ones (Stoffelen [15]).

ARM32: Google (Android, Chrome) tries to negoatiate
ChaCha20 for TLS instead of AES on systems that do not
have AES instructions. Secure AES is just too slow.

Old school: Hand-optimized RV32I T-Table AES ‘SHIELD

https://github.com/Ko-/riscvcrypto/blob/master/aes128tables/aes_asm.S

andi \TO, \X0, Oxff srli \X0, \X0, 4 srli \X0, \X0, 8 srli \X0, \X0, 8
andi \T1, \X1, Oxff srli \X1, \X1, 4 srli \X1, \X1, 8 srli \X1, \X1, 8
andi \T2, \X2, Oxff srli \X2, \X2, 4 srli \X2, \X2, 8 srli \X2, \X2, 8
andi \T3, \X3, Oxff srli \X3, \X3, 4 srli \X3, \X3, 8 srli \X3, \X3, 8
s1li \TO, \TO, 4 and \TO, \X1, \C and \TO, \X2, \C and \TO, \X3, \C
s1li \T1, \T1, 4 and \T1, \X2, \C and \T1, \X3, \C and \T1, \X0, \C
s11i \T2, \T2, 4 and \T2, \X3, \C and \T2, \X0, \C and \T2, \X1, \C
s11i \T3, \T3, 4 and \T3, \X0, \C and \T3, \X1, \C and \T3, \X2, \C
add \T4, \TO, \LUT1 add \T4, \TO, \LUT3 add \T4, \TO, \LUTO add \T4, \TO, \LUT2
1w \TO, (\T4) 1w \TO, (\T4) 1w \TO, (\T4) 1w \TO, (\T4)

add \T4, \Ti, \LUT1 add \T4, \Ti, \LUT3 add \T4, \Ti, \LUTO add \T4, \T1, \LUT2
1w \T1, (\T4) 1w \T1, (\T4) 1w \T1, (\T4) 1w \T1, (\T4)

add \T4, \T2, \LUT1 add \T4, \T2, \LUT3 add \T4, \T2, \LUTO add \T4, \T2, \LUT2
1w \T2, (\T4) 1w \T2, (\T4) 1w \T2, (\T4) 1w \T2, (\T4)

add \T4, \T3, \LUT1 add \T4, \T3, \LUT3 add \T4, \T3, \LUTO add \T4, \T3, \LUT2
1w \T3, (\T4) 1w \T3, (\T4) 1w \T3, (\T4) 1w \T3, (\T4)

xor \YO, \YO, \TO xor \YO, \Y0, \TO xor \YO0, \Y0, \TO xor \YO, \Y0, \TO
xor \Y1, \Y1, \T1 xor \Y1, \Y1, \T1 xor \Y1, \Y1, \T1 xor \Y1, \Y1, \T1
xor \Y2, \Y2, \T2 xor \Y2, \Y2, \T2 xor \Y2, \Y2, \T2 xor \Y2, \Y2, \T2
xor \Y3, \Y3, \T3 xor \Y3, \Y3, \T3 xor \Y3, \Y3, \T3 xor \Y3, \Y3, \T3

4 x 20 = 80 instructions (+ key fetch) per round.

https://github.com/Ko-/riscvcrypto/blob/master/aes128tables/aes_asm.S

Approach: Roll T-Table Operations into a Single Instruction “"SHIELD

SAES32 & SSM4: Scalar RV32 AES,SM4

| rs1[31:0] || rs2[31:0] | saes32.encsm 1rd, rsl, rs2, bs
saes32.encs rd, rsl, rs2, bs
fn[1:0] saes32.decsm rd, rsl, rs2, bs
saes32.decs rd, rsl, rs2, bs
fn[4:3] ssmé . ed rd, rsl, rs2, bs
. ssm4 . ks d, rsl, rs2, bs
l4:2] . e e
< rotate fn[1:0] -» encs and decs lack MixColumns.
¢ Used for final round, key schedule.

-> R-type, immediate bs € {0, 1,2, 3}:

rd[31:0] 4 x 6 = 24 code points total.

-» The same logic also supports SM4.

SAES32 AES

https://github.com/mjosaarinen/lwaes_isa/blob/master/asm/saes32_enc.S

saes32.encsm t4, t4, t0, O
saes32.encsm t4, t4, ti1, 1
saes32.encsm t4, t4, t2, 2
saes32.encsm t4, t4, t3, 3
saes32.encsm t5, t5, t1, O
saes32.encsm t5, t5, t2, 1
saes32.encsm t5, t5, t3, 2
saes32.encsm t5, t5, t0, 3
saes32.encsm t6, t6, t2, O
saes32.encsm t6, t6, t3, 1
saes32.encsm t6, t6, t0, 2
saes32.encsm t6, t6, tl1, 3
saes32.encsm a7, a7, t3, O
saes32.encsm a7, a7, t0, 1
saes32.encsm a7, a7, tl, 2
saes32.encsm a7, a7, t2, 3

4 x 4 = 16 (+ key fetch).

->

L 20 2B 2 7

¥

From 80 instrs to 16 x saes32.encsm for
main rounds, 16 x saes32.encs for final.

Same for decryption, with saes32.decs [m].
No table lookups, which often require
multiple cycles. Timing-attack secure.

Key schedule uses the same instructions.

It would be possible to reduce insn count to
12 by having four parallel S-boxes, but that
has > 3x implementation size, more energy.

~ 5x faster than table-based (insecure),
> 10x faster than constant-time.

https://github.com/mjosaarinen/lwaes_isa/blob/master/asm/saes32_enc.S

SSM4.ED and SSM4.KS ‘SHIELD

https://github.com/mjosaarinen/lwaes_isa/blob/master/asm/sm4_encdec.S

> SM4 is a Generalized Feistel; unlike AES, encryption and decryption are the
same (with 32 expanded key words reversed). Separate key sched instruction.

-» 4xS-Box would probably give a bigger speed-up for SM4 than for AES.

=» The linear transformation in SM4 is based on rotations. In RISC-V rotation
instructions are in RV32B Bitmanip extension; those are not needed here.

-» Depending on availability of rotations, the speedup is similar or much better
than that of AES, without much additional area - and greatly reduced energy.

=» Importantly the instruction makes SM4 constant-time too.

https://github.com/mjosaarinen/lwaes_isa/blob/master/asm/sm4_encdec.S

Is this new? Prior Art ‘"SHIELD

No mainstream “pure scalar” 32-bit ISA currently has AES or SM4 instructions.
Similar, custom instructions for “T-Table” style AES has been discussed in:

[NIKO4] K. Nadehara, M. Ikekawa, and |. Kuroda. “Extended instructions for
the AES cryptography and their efficient implementation.” 2004 |IEEE
Workshop on Signal Processing Systems (SIPS), pp. 152-157, 2004.
D0I:10.1109/SIPS.2004.1363041.

[BBFRO6] G. Bertoni, L. Breveglieri, R. Farina, and F. Regazzoni. “Speeding up
AES by extending a 32-bit processor instruction set.” IEEE 17th International
Conference on Application-specific Systems, Architectures and Processors
(ASAP’06) pp. 275-282, 2006. DOI:10.1109/ASAP.2006.62.

However these proposals did not roll the AddRoundKey operation into the same
instruction, and apparently need 20 per round rather than 16 (plus key schedule).

Talk Outline ‘"SHIELD

([Implementation and Analysis

Custom-0 Encoding (Temporary)

“"SHIELD

[31:30] [29:25] [24:20] [19:15] [14:12] [11:7] [6:0]

R-Type: | 00 | #m | w2 | rst | 000 | ra [0001011
Instruction fn[4:2] Description or Use
saes32.encsm 3'b000 AES Encrypt round.
saes32.encs 3'b001 AES Final / Key sched.
saes32.decsm 3'b010 AES Decrypt round.
saes32.decs 3'b011 AES Decrypt final.
ssm4.ed 3'b100 SM4 Encrypt and Decrypt.
ssmé.ks 3'b101 SM4 Key Schedule.
Unused 3'blix (4 x 6 = 24 points used.)

Hardware Implementation ‘"SHIELD

https://github.com/mjosaarinen/lwaes_isa/blob/master/hdl/saes32.v

| The original “reference implementation”

[rs1[31:0] || rs2[31:0] . . . o :
is pure combinatorial logic, in verilog.

fn[1:0]

module saes32(
output [31:0] rd, // not a reg
input [31:0] rsl, // rsl wire
fn[4:2] input [31:0] rs2, // rs2 wire
input [4:0] fn // 5-bit func

fn[4:3]

< rotate

fn[1:0])

€ Obtained 100 MHz timing signoff on

rd[31:0] Artix-7 (old!) when inserted into 1-cycle
decoding pipeline of the Pluto RV32 core.

https://github.com/mjosaarinen/lwaes_isa/blob/master/hdl/saes32.v

S-Boxes: Boyar-Peralta for SM4 too “"SHIELD

https://github.com/mjosaarinen/lwaes_isa/blob/master/hdl/sboxes.v

A
~ 26 X(N)ORs
AES/AES~1/SM4

from 21 bits
shared nc_>n_li|;ear layer
for z=1 in GF(28):
30 XORs, 34 ANDs

BEROH LI .

AES/AES—1/SM4
~ 38 X(N)ORs
(or expand)

S-BOX

AES and SM4 S-Boxes are not “random”:

-» Both are “Nyberg S-Boxes” [11] built from inversion
x~1in GF(28) and linear (XORs) input/output layers.

< AES, AES1, and SM4 S-Boxes are “affine equivalent”.

- We expanded Boyar-Peralta [4] low-depth AES S-Box
to the SM4 case by creating linear outer layers for it.

-» Non-linear middle layer could be muxed and shared;
probably not worth it due to latency, small size gain.

https://github.com/mjosaarinen/lwaes_isa/blob/master/hdl/sboxes.v

S-Boxes: Algebraic gate counts

https://github.com/mjosaarinen/lwaes_isa/blob/master/hdl/sboxes.v

~ 26 X(N)ORs Low-depth S-Boxes that implement AES,AES—1,SM4.
AES/AES—1/SM4

“““““““““““ Component In, Out XOR XNOR AND Total
from 21 bits Shared middle 21 — 18 30 - 34 64
o AES top 8 — 21 26 - - 26
shared nonlinear layer AESP?ttom 18 — 8 34 4 - 38
for 21 in GF(25): AES—1 top 8 21 16 10 - 26
30 XORs. 34 ANDs AES—1bottom 18 — 8 37 - - 37
o SM4 top 8 — 21 18 9 - 27
SM4 bottom 18 —» 8 33 5 - 38

B

AES/AES—1/SM4
~ 38 X(N)ORs
(or expand)

-» Each gate count ~ 128, only XORs and ANDs.
-» Usually better than synthesis from a table.

S-BOX

https://github.com/mjosaarinen/lwaes_isa/blob/master/hdl/sboxes.v

FPGA Area Example “"SHIELD

RV32 SoC area with and without SAES32 (AES, AES—1, SM4).

Resource Base | SAES32 (A) EXTAES (A)

Logic LUTs | 7,767 | 8,202 (+435) | 9,795 (+2,028)
Sliceregs | 3,319 | 3,342 (+23) | 4,361 (+1,042)
SLICEL 1,571 | 1,864 (+293) | 2,068 (+497)
SLICEM 734 737 (+3) 851 (+117)

> EXTAES is a CPU-external memory-mapped AES-only module (for comparison).
-» “Pluto” core on an Artix-7 FPGA. Area grows by ~ 5% for this simple core.

CMOS Area Estimates ‘"SHIELD

Yosys Simple CMOS Flow area estimates for SAES32 & SSM4

Target GE (NAND?2) | Transistors | LTP
AES Encrypt only 642 2,568 25
SM4 Full 767 3,066 25
AES Full 1,240 4,960 28
AES + SM4 Full 1,679 6,714 28

> It's very small. AES is a “lightweight cipher” for embedded RISC-V MCUs!
-» Not all applications need both SM4 and AES, or AES inverse (e.g. CTR, SIV).

Talk Outline ‘"SHIELD

@ Conclusions

Conclusions

-» Crypto TG is proposing three kinds of AES extensions: RV32, RVé4, and RVV.

> SAES32 - The scalar RV32 AES ISE - is very lightweight with only 1 S-Box.
Designed primarily for timing-attack security, latency, and energy savings.

-» Straight-forward design - rolling five T-table operations into one instruction:
Byte select, S-Box, MixColumns, Rotate, final XOR (MC / AddRoundKey).

> SM4: The same “architecture” optionally also supports the Chinese Standard.
-» Enables interoperable middleware for security functions in tiny RISC-V MCUs.

..Thank You!

	Introduction: AES, SM4, and Crypto TG
	SAES32 and SSM4 Instruction Set Extension
	Implementation and Analysis
	Conclusions

