
Verifying RISC-V Physical
Memory Protection

By Kevin Cheang, Cameron Rasmussen, Dayeol Lee, David W.
Kohlbrenner, Krste Asanovic, Sanjit A. Seshia

Motivation

• Physical memory protection (PMP) is a standard RISC-V feature that
allows firmware to specify physical memory regions
§ Controls memory access permissions
§ E.g. Used in Keystone’s security monitor for memory isolation

• Systems that use the PMP feature depend on strong security
guarantees provided by the PMPChecker mechanism
§ E.g. Memory isolation via integrity and confidentiality properties

• First step to verify RISC-V’s Keystone
§ Keystone is a platform for architecting trusted execution environments
§ Composed of hardware (Rocket Chip) and software (security monitor)

Motivation

Rocket Chip

FIRRTL

from Chisel Source

PMP

Implementation Accurate

Security Monitor UCLID5

Model

Implementation Accurate

Rocket Chip UCLID5 Model

(TCB)
(Automatically generated)

Integrity + Confidentiality Guarantees / High-level Security Properties

Abstract Model in

UCLID5

Security Monitor

(RISC-V Binary) Source

(Configures)

Problem Statement

• Given an implementation of the PMP feature, how can we verify its
correctness?

PMPChecker

!"##$

!%&'(

!)*+

!,$-

.$

./

.0

Main Contributions

1. Automated Verification Workflow for the PMPChecker

2. Formal Specifications for the PMPChecker
• Define PMP primitives
• PMPChecker Functional Specifications

Related Work

• Existing implementations of enclaves like Intel’s SGX lacks transparency
§ Formal correctness properties
§ High level security properties

• Non-commercial implementations of enclaves such as MIT’s Sanctum
need more assurance
§ No verification at the hardware level

• A Formal Foundation for Secure Remote Execution of Enclaves [CCS’ 17]
§ Defines a trusted abstract platform
§ Does not extend to RISC-V’s PMP

Background: PMP

• PMP controls the access permissions to physical memory regions
using a set of control status registers (CSR) in the RISC-V architecture
• Each core may have 0-16 PMP registers

§ PMP Configuration
ØAddressing mode
ØPermission Bits

§ PMP Address
ØAddress range (based on an addressing mode): NAPOT, TOR, NA4

• PMP entries act as a whitelist

Background: PMP

Background: PMPChecker

• The PMPChecker is the module (written in Chisel) that is used to
check whether the memory access is permitted

PMPChecker

!"##$

!%&'(

!)*+

!,$-

.$

./

.0

Formal Specification

• Input and Output Definitions
§ !"##$ ∈ 0,1): address to the PMPChecker, where * = ,-.*
§ 201234 , !5678 ∈ 0,1 9: size of the memory access
§ !:;< ∈ =, >, ?, @ : struct of 1-bit variables, where =, >, ?, @ are the lock,

read, write, and execute permission bits
§ !A$B ∈ 0,1 9: privilege mode
§ C$ ∈ {0,1}: read permission output bit
§ CF ∈ {0,1}: write permission output bit
§ CG ∈ {0,1}: execute permission output bit

Formal Specification

• PMP Primitive Functions
§ A:	 set	of	addresses
§ ,′ .//,, 1 ↦ {0,1}: predicate that determines if address .//, is

contained in the 1-th region
§ ,78

9 1 ↦ :: returns the low address boundary for the 1-th region
§ ,;<

9 1 ↦ :: returns the high address boundary for the 1-th region
§ .9 .//,, 1 ↦ {0,1}: predicate that determines if .//, is aligned to the

1-th region’s addressing mode

§ ,(addr, i): predicate	that	determines	if		the	address	is	between	the	
low	and	high	boundaries	of	the	region

§ .(.//,, 1): predicate	that	determines	if	the	address	is	within	the	region’s	
range	(as	defined	by	r)	then	so	should	the	last	byte	be

Formal Specification

• Primary PMP Functional Property
1. If the address is not contained in any region, return the default permission bits

1. High privilege => full permissions
2. Low privilege => no permissions

2. If we are operating in high privilege mode
1. And if the region is not locked => full permissions
2. If the region is locked => permissions according to PMP CSRs

3. Deny accesses that exceed the regions boundaries

Formal Specification

• Primary PMP Functional Property

Formal Specification

1. If the address is not contained in any region, return the default permission bits
1. High privilege => full permissions
2. Low privilege => no permissions

Formal Specification

2. If we are operating in high privilege mode
1. And if the region is not locked => full permissions
2. If the region is locked => permissions according to PMP CSRs

3. Deny accesses that exceed the regions boundaries

Evaluation

• Verified the PMP FIRRTL implementation from Rocket Chip core
§ By encoding the functional correctness of the PMPChecker
§ Verified using UCLID5 Model Checker

Evaluation

• Chisel implementation of the PMPChecker contains 48 LoC

• UCLID5 Model contains 1125 LoC

• Verifying the problem using UCLID5

§ Z3 SMT solver as backend

§ 1-step induction

§ 41.331s on average

§ 2.6 GHz Intel Core i7 machine with 16 GB RAM on OSX

• Revealed that we missed specifying an unimplemented feature

(hypervisor mode)

Future Work

• Rocket core enforces PMP rules using multiple hardware components
§ PMPChecker
§ Translation look-aside buffer (TLB)
§ Page table walker (PTW)

• Higher-level properties such as memory isolation relies on software
§ E.g. Keystone’s security monitor

Summary

• Provided a formal specification of the PMPChecker
• Introduced and implemented a workflow using the Chisel generator

and LIME transpiler to automatically generate a model of the
PMPChecker
• Verified the functional property of the PMPChecker

Questions?

