S

Workshop 2020

Veritying RISC-V Physical
Memory Protection

By Kevin Cheang, Cameron Rasmussen, Dayeol Lee, David W,
Kohlbrenner, Krste Asanovic, Sanjit A. Seshia

RISC.V \Votivation

* Physical memory protection (PMP) is a standard RISC-V feature that
allows firmware to specify physical memory regions

= Controls memory access permissions
" E.g. Used in Keystone’s security monitor for memory isolation

e Systems that use the PMP feature depend on strong security
guarantees provided by the PMPChecker mechanism

" E.g. Memory isolation via integrity and confidentiality properties

* First step to verify RISC-V’s Keystone

= Keystone is a platform for architecting trusted execution environments
* Composed of hardware (Rocket Chip) and software (security monitor)

SECIRISC-V M otivation

(Automatically generated)

(Configures)

First International Workshop on Secure RISC-V Architecture Design Exploration (SECRISC-V'20)

SECIRISC.Y Problem Statement

* Given an implementation of the PMP feature, how can we verify its
correctness?

I addr
Oy
I size
Ow
I cfg
> 0,
I prv

First International Workshop on Secure RISC-V Architecture Design Exploration (SECRISC-V'20)

RISC.V Main Contributions

1. Automated Verification Workflow for the PMPChecker

2. Formal Specifications for the PMPChecker
* Define PMP primitives
* PMPChecker Functional Specifications

RISC.V Related Work

* Existing implementations of enclaves like Intel’s SGX lacks transparency
" Formal correctness properties
" High level security properties

* Non-commercial implementations of enclaves such as MIT’s Sanctum
need more assurance

= No verification at the hardware level

* A Formal Foundation for Secure Remote Execution of Enclaves [CCS’ 17]

" Defines a trusted abstract platform
" Does not extend to RISC-V’s PMP

RISC.Y Background: PMP

* PMP controls the access permissions to physical memory regions
using a set of control status registers (CSR) in the RISC-V architecture

* Each core may have 0-16 PMP registers

= PMP Configuration
» Addressing mode
» Permission Bits

= PMP Address
» Address range (based on an addressing mode): NAPOT, TOR, NA4

e PMP entries act as a whitelist

RISC.Y Background: PMP

._/_. pmpcfg0 | pmpaddr0 rwx=000
2 | |
5 pmpcfgl | pmpaddrl | : rwx=000
"
C: pmpcfg2
2 : : :
! ! ! '
T ' ' '
pmpcfgN | pmpaddrN rwx=111
p | | |
-~ < - /,’ \\\ l ' : '
P g | \ I :
= SM Enclave
Mode |R | W| X Address Range Region Region

PMP reqisters

Untrusted Context

SECIRISC,) Background: PMPChecker

* The PMPChecker is the module (written in Chisel) that is used to
check whether the memory access is permitted

Laaar
Oy
I size
Ow
I cfg
> 0,
I prv

First International Workshop on Secure RISC-V Architecture Design Exploration (SECRISC-V'20)

RISC.Y Formal Specification

* Input and Output Definitions

= |44 € {0,1}": address to the PMPChecker, where N = XLEN

n 2lsize, [, € {0,1}*: size of the memory access

" Irg E{Lx, W, T} struct of 1-bit variables, where [, x, w, r are the lock,
read, write, and execute permission bits

" [y € {0,1}*: privilege mode

" 0, € {0,1}: read permission output bit

= 0,, € {0,1}: write permission output bit

" 0, € {0,1}: execute permission output bit

RISC.Y Formal Specification

* PMP Primitive Functions

" A set of addresses
* r'(addr,i) - {0,1}: predicate that determines if address addr is

contained in the i-th region
=, (i) » A: returns the low address boundary for the i-th region
= (D) » A: returns the high address boundary for the i-th region
* a'(addr,i) - {0,1}: predicate that determines if addr is aligned to the

i-th region’s addressing mode
* r(addr, i): predicate that determines if the address is between the

low and high boundaries of the region

" a(addr,i): predicate that determines if the address is within the region’s

range (as defined by r) then so should the last byte be

RISC.Y Formal Specification

* Primary PMP Functional Property
1. If the address is not contained in any region, return the default permission bits
1. High privilege => full permissions
2. Low privilege => no permissions
2. If we are operating in high privilege mode

1. And if the region is not locked => full permissions
2. If theregion is locked => permissions according to PMP CSRs

3. Deny accesses that exceed the regions boundaries

RISC.Y Formal Specification

* Primary PMP Functional Property

(Zpry = low) =

RISC.Y Formal Specification

1. If the address is not contained in any region, return the default permission bits
1. High privilege => full permissions
2. Low privilege => no permissions

Vaddr € A,—~(3i € N,r(addr,i)) =

RISC.Y Formal Specification

2. If we are operating in high privilege mode
1. And if the region is not locked => full permissions
2. If the region is locked => permissions according to PMP CSRs

3. Deny accesses that exceed the regions boundaries

(Zprv # low) =

SECIRISC,Y Evaluation

* Verified the PMP FIRRTL implementation from Rocket Chip core
= By encoding the functional correctness of the PMPChecker
= Verified using UCLID5 Model Checker

First International Work

RISC.V Evaluation

* Chisel implementation of the PMPChecker contains 48 LoC
* UCLID5 Model contains 1125 LoC

* Verifying the problem using UCLID5
= 73 SMT solver as backend
= 1-step induction

= 41.331s on average
= 2.6 GHz Intel Core i7 machine with 16 GB RAM on OSX

* Revealed that we missed specifying an unimplemented feature
(hypervisor mode)

RISC.V Future Work

* Rocket core enforces PMP rules using multiple hardware components
= PMPChecker
" Translation look-aside buffer (TLB)
= Page table walker (PTW)

* Higher-level properties such as memory isolation relies on software
= E.g. Keystone’s security monitor

* Provided a formal specification of the PMPChecker

* Introduced and implemented a workflow using the Chisel generator
and LIME transpiler to automatically generate a model of the
PMPChecker

* Verified the functional property of the PMPChecker

SEC

Questions?

First International Workshop on Secure RISC-V Architecture Design Exploration (SECRISC-V'20)

