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Motivation

• Physical memory protection (PMP) is a standard RISC-V feature that 
allows firmware to specify physical memory regions
§ Controls memory access permissions
§ E.g. Used in Keystone’s security monitor for memory isolation

• Systems that use the PMP feature depend on strong security 
guarantees provided by the PMPChecker mechanism
§ E.g. Memory isolation via integrity and confidentiality properties

• First step to verify RISC-V’s Keystone
§ Keystone is a platform for architecting trusted execution environments
§ Composed of hardware (Rocket Chip) and software (security monitor)
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Problem Statement

• Given an implementation of the PMP feature, how can we verify its 
correctness?

PMPChecker
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Main Contributions

1. Automated Verification Workflow for the PMPChecker

2. Formal Specifications for the PMPChecker
• Define PMP primitives
• PMPChecker Functional Specifications



Related Work

• Existing implementations of enclaves like Intel’s SGX lacks transparency
§ Formal correctness properties
§ High level security properties

• Non-commercial implementations of enclaves such as MIT’s Sanctum 
need more assurance
§ No verification at the hardware level

• A Formal Foundation for Secure Remote Execution of Enclaves [CCS’ 17]
§ Defines a trusted abstract platform
§ Does not extend to RISC-V’s PMP



Background: PMP

• PMP controls the access permissions to physical memory regions 
using a set of control status registers (CSR) in the RISC-V architecture
• Each core may have 0-16 PMP registers

§ PMP Configuration
ØAddressing mode
ØPermission Bits

§ PMP Address
ØAddress range (based on an addressing mode): NAPOT, TOR, NA4

• PMP entries act as a whitelist



Background: PMP



Background: PMPChecker

• The PMPChecker is the module (written in Chisel) that is used to 
check whether the memory access is permitted

PMPChecker

!"##$

!%&'(

!)*+

!,$-

.$

./

.0



Formal Specification

• Input and Output Definitions
§ !"##$ ∈ 0,1 ): address to the PMPChecker, where * = ,-.*
§ 201234 , !5678 ∈ 0,1 9: size of the memory access
§ !:;< ∈ =, >, ?, @ : struct of 1-bit variables, where =, >, ?, @ are the lock,

read, write, and execute permission bits
§ !A$B ∈ 0,1 9: privilege mode
§ C$ ∈ {0,1}: read permission output bit
§ CF ∈ {0,1}: write permission output bit
§ CG ∈ {0,1}: execute permission output bit



Formal Specification

• PMP Primitive Functions
§ A:	 set	of	addresses
§ ,′ .//,, 1 ↦ {0,1}: predicate that determines if address .//, is 

contained in the 1-th region
§ ,78

9 1 ↦ :: returns the low address boundary for the 1-th region
§ ,;<

9 1 ↦ :: returns the high address boundary for the 1-th region
§ .9 .//,, 1 ↦ {0,1}: predicate that determines if .//, is aligned to the

1-th region’s addressing mode

§ ,(addr, i): predicate	that	determines	if		the	address	is	between	the	
low	and	high	boundaries	of	the	region

§ .(.//,, 1): predicate	that	determines	if	the	address	is	within	the	region’s	
range	(as	defined	by	r)	then	so	should	the	last	byte	be



Formal Specification

• Primary PMP Functional Property
1. If the address is not contained in any region, return the default permission bits

1. High privilege => full permissions
2. Low privilege => no permissions

2. If we are operating in high privilege mode
1. And if the region is not locked => full permissions
2. If the region is locked => permissions according to PMP CSRs

3. Deny accesses that exceed the regions boundaries
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• Primary PMP Functional Property



Formal Specification

1. If the address is not contained in any region, return the default permission bits
1. High privilege => full permissions
2. Low privilege => no permissions



Formal Specification

2. If we are operating in high privilege mode
1. And if the region is not locked => full permissions
2. If the region is locked => permissions according to PMP CSRs

3. Deny accesses that exceed the regions boundaries



Evaluation

• Verified the PMP FIRRTL implementation from Rocket Chip core
§ By encoding the functional correctness of the PMPChecker
§ Verified using UCLID5 Model Checker



Evaluation

• Chisel implementation of the PMPChecker contains 48 LoC

• UCLID5 Model contains 1125 LoC

• Verifying the problem using UCLID5

§ Z3 SMT solver as backend

§ 1-step induction

§ 41.331s on average

§ 2.6 GHz Intel Core i7 machine with 16 GB RAM on OSX

• Revealed that we missed specifying an unimplemented feature 

(hypervisor mode)



Future Work

• Rocket core enforces PMP rules using multiple hardware components
§ PMPChecker
§ Translation look-aside buffer (TLB)
§ Page table walker (PTW)

• Higher-level properties such as memory isolation relies on software
§ E.g. Keystone’s security monitor



Summary

• Provided a formal specification of the PMPChecker
• Introduced and implemented a workflow using the Chisel generator 

and LIME transpiler to automatically generate a model of the 
PMPChecker
• Verified the functional property of the PMPChecker



Questions?


