CSE 520 Computer Architecture II
Lab 0: Getting Familiar with Pin

Assigned: January 15, 2026
Due on: Thursday January 28th by 11:59pm

1 Summary

This term in CSE 520 we will be using Pin, a binary instrumentation tool pro-
vided by Intel. The purpose of this lab is to familiarize you with compiling
and running Pin tools, as well as to make sure that you are able to use the
class infrastructure and computers. To test the infrastructure, you will build
and run a small Pin tool. In order to develop architectures that run programs
quickly architects must thoroughly understand the properties of representative
programs. Architects experiment with different programs to help them make
design decisions about features that will be included in processors. There are
a few approaches that can be used to evaluate the behavior a program. One is
simulation. In this case, a software model of a processor is built, and the pro-
gram executed on the model. Simulators have the advantage of being arbitrarily
detail — in theory one could build a SPICE processor simulator. Typically, ar-
chitectural simulators give cycle-accurate timing estimates. The penalty for
this level of detail is simulation speed: the more detailed a software simula-
tor is, the slower it can execute programs; advanced software simulators can
simulate at rates of tens of KIPS (kilo instructions per second). A second op-
tion is code instrumentation. Code instrumentation collects information about
program characteristics. In general, code instrumentation is less detailed than
simulation, but code instrumentation is faster to implement and enjoys faster
program execution. Thus code instrumentation which can be very useful in
guiding architectural decisions early in the development process, before detailed
simulators are available. The simplest form of code instrumentation, terminal
display statements (e.g. printf), is used by almost every programmer, computer
architect or otherwise. Clearly such manual instrumentation is time-consuming,
both in terms of writing code and collecting execution results. A better choice
is to use a meta language to describe the code instrumentation and develop a
tool that will efficiently instrument the target program at compile or runtime.

Pin is a free (though not open), industrial grade binary instrumentation
tool produced by Intel and used widely in industry and academia. Pin accepts
as inputs a compiled Pin tool and a generic binary executable. A Pin tool is
a C++ program that makes a series of calls to an instrumentation API and
provides code for Pin to execute at instrumented locations. The executable



itself is just-in-time compiled by Pin, and the instruments are inserted. The
code is then executed natively on the host machine. A major advantage of Pin
is that it can instrument programs without requiring recompilation. Thus, even
legacy binaries can be analyzed. Since Pin executes large portions of the target
program natively, it can be very fast, however, this constrains the programs
analyzed to the host architecture, namely x86. Yet, Pin is surprisingly versatile:
new instructions can be emulated by hijacking unused x86 opcodes.

1.1 Preliminaries:

Although you can develop Pin tools on your home machine, we suggest using
either the provided VM or the Sol compute server. If you are running an Intel
or AMD CPU and would like to use the VM, please follow the provided ”VM
Setup” instructions. If you are running a device with Apple Silicon, you will
need to utilize Sol. Please follow the ”Sol Setup” instructions below.

1.2 Sol Setup:

If you are using your personal machine (which utilizes an Intel or
AMD CPU) or plan to use the provided VM, please skip this section.
To utilize ASU’s compute infrastructure, you first need to ensure you are
connected to the ASU network. If you are off-campus, you will need to use the
ASU VPN.
We are currently waiting for Sol accounts to be setup. In the meantime,
please utilize the general ASU compute platform by running

ssh <asurite>@general.asu.edu

where you replace <asurite> with your own asurite ID. You may need to verify
your identity using your preferred two-factor authentication method.

Once the Sol accounts for this class have been created, we will send out an
announcement on Canvas. If you have completed Lab 0 on general.asu.edu,
you can transfer the Lab 0 files to Sol without any issues. To log in to Sol via
ssh, open a terminal and run

ssh <asurite>@login.sol.rc.asu.edu

You may need to verify your identity using your preferred two-factor authen-
tication method.

Once you have logged in to Sol, you can then start an 8-hour interactive
terminal session with 8 CPU Cores and 16 GB of RAM by running the following
within Sol:

interactive -¢ 8 --mem=16gb -t 0-08:00:00


https://asu.my.salesforce-sites.com/kb/articles/FAQ/How-do-I-Install-Cisco-AnyConnect-SSLVPN

1.3 Setting up:

Once you have decided which machine to use, download the Zip file we have
provided through Canvas.

If you are using Sol or general.asu.edu, you will first need to download
the file on your personal machine and upload it to the compute platform. We
recommend doing this via scp. On your host machine, for Sol run

scp <Path to CSE520.zip> <asurite>Qlogin.sol.rc.asu.edu:”
for general.asu.edu run
scp <Path to CSE520.zip> <asurite>Qgeneral.asu.edu:”

Once you have downloaded the file, extract it. You can do this by running
the following command in the same directory where the file is located:

unzip CSE520.zip

The command will create the directory structure we will use for this course.
Inside the ”CSE520/Lab0” directory created, you will find the script to setup
the Intel Pin tool and a basic test program. Run the following commands to
setup Pin:

cd CSE520/Lab0
chmod +x setup.sh run.sh
./setup.sh

You will notice that setup.sh fails to compile. While your instructor is
an expert in Verilog, his C is not so good. Fix his silly parse error, and run
setup.sh again. Once everything is setup, run

./run.sh

to verify that Pin has been installed correctly.

Since the inscountO Pin tool counts the number of instructions in the in-
strumented program, the output file will contain the number of instructions
executed when running the test program. If you are interested in the inner
workings of a real Pin tool, examine inscountO.cpp. The included scripts will
enable you to test your Pin tool, but will not verify correctness. The expected
results of the test cases will not be released. Furthermore, the TAs may use ad-
ditional test cases to verify the correctness of your solution. You are encouraged
to compare your results with your lab mates and craft your own test cases.

1.4 Submitting your lab:

When you have completed the lab to your satisfaction, rename your inscountO. cpp
according to

<ASURITE_ID>_labO.cpp



and submit to Canvas by the submission deadline. No late submissions will
be accepted!

If you are using Sol or general . asu. edu, you will need to transfer inscount0. cpp
from the compute server back to your personal machine. If you are using Sol
run the following command from your personal device

scp <asurite>@login.sol.rc.asu.edu:<path-to-inscountO.cpp> \
<path-to-save-file-on-personal-machine>

If you are using general.asu.edu, run the following command from your
personal device

scp <asurite>@general.asu.edu:<path-to-inscountO.cpp> \

<path-to-save-file-on-personal-machine>

1.5 Guides for the perplexed:

e Pin home page

e Pin documentation


https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/sites/landingpage/pintool/docs/97503/Pin/html/

	Summary
	Preliminaries:
	Sol Setup:
	Setting up:
	Submitting your lab:
	Guides for the perplexed:


