

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of the
Engineering
Arizona State University

CSE 520
Computer Architecture II

Review: A Brief History of Computer Systems

Prof. Michel A. Kinsky

1

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of the
Engineering
Arizona State University

Computing: The Art of Abstraction

Application
Algorithm
Programming Language
Operating System/Virtual Machine
Instruction Set Architecture (ISA)
Microarchitecture
Register-Transfer Level (RTL)
Circuits
Devices
Physics

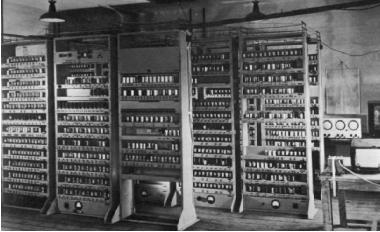
2

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of the
Engineering
Arizona State University

Computing Devices Now

3



STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Computing Devices Then...

4

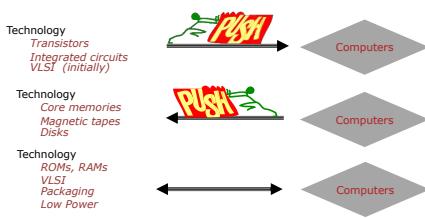
STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Importance of Technology

- New technologies not only provide greater speed, size and reliability at lower cost, but more importantly these dictate the kinds of structures that can be considered and thus come to shape our whole view of what a computer is.

Bell & Newell


5

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Computer Design

- Technology is the dominant factor in computer design

6

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

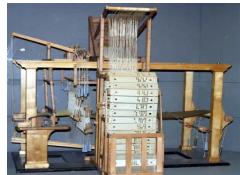
ASU is a proud member of
Engineering
Arizona State University

What about the Software...

- As people write programs and use computers, our understanding of programming and system behavior improve
- This has profound though slower impact on computer design
- Modern computer engineers cannot avoid paying attention to software and compilation issues.

Software → **Computers** ← Technology

7


STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Who invented the Computer?

- Lot of people and it is still being invented!
 - You can be part of it too!!!

Punch Cards
Jacquard Card
1801

8


STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Who invented the Computer?

- Lot of people and it is still being invented!
 - You can be part of it too!!!

Charles Babbage

The forerunner of modern digital computer:
Difference Engine -1823

9

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is A Polytechnic School of
Engineering
Arizona State University

Charles Babbage 1791-1871

- Difference Engine 1823
- Analytic Engine 1833
 - The forerunner of modern digital computer!
- Application
 - Mathematical Tables – Astronomy
 - Nautical Tables – Navy
- Background
 - Any continuous function can be approximated by a polynomial
 - Any Polynomial can be computed from difference tables

10

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is A Polytechnic School of
Engineering
Arizona State University

The First Programmer

- Ada Byron aka "Lady Lovelace" 1815-52
 - Ada's tutor was Babbage himself!

11

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is A Polytechnic School of
Engineering
Arizona State University

More Recent: Linear Equation Solver

- 1930's:
 - Atanasoff built the Linear Equation Solver
 - It had 300 tubes!
 - Application:
 - Linear and Integral differential equations
 - Background:
 - Vannevar Bush's Differential Analyzer - an analog computer
 - Technology:
 - Tubes and Electromechanical relays

12

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Harvard Mark I

- Built in 1944 in IBM Endicott laboratories
 - Howard Aiken – Professor of Physics at Harvard
 - Essentially mechanical but had some electro-magnetically controlled relays and gears
 - Weighed 5 tons and had 750,000 components
 - A synchronizing clock that beat every 0.015 seconds
 - Performance:
 - 0.3 seconds for addition
 - 6 seconds for multiplication
 - 1 minute for a sine calculation
 - Broke down once a week!

13

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Electronic Numerical Integrator

- Designed and built by Eckert and Mauchly at the University of Pennsylvania during 1943-45
 - The first, completely electronic, operational, general-purpose analytical calculator!
 - 30 tons, 72 square meters, 200KW
 - Performance
 - Read in 120 cards per minute
 - Addition took 200 ms, Division 6 ms
 - 1000 times faster than Mark I
 - Also not very reliable!

14

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Automatic Computer

- Electronic Discrete Variable Automatic Computer
- ENIAC's programming system was external
 - Sequences of instructions were executed independently of the results of the calculation
 - Human intervention required to take instructions "out of order"
- EDVAC was designed by Eckert, Mauchly and von Neumann in 1944 to solve this problem
 - Solution was the stored program computer
 - "program can be manipulated as data"

15

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

The Big Idea in Today's Computers

- Stored Program Computer

Program = A sequence of instructions
- How to control instruction sequencing?
 - **Manual control**
 - Calculators
 - **Automatic control external (paper tape)**
 - Harvard Mark I, 1944
 - Zuse's Z1, WW2
 - **Internal**
 - Plug board ENIAC 1946

16

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

The Spread of Ideas

- ENIAC & EDVAC had immediate impact
 - Brilliant engineering: Eckert & Mauchley
 - Lucid paper: Burks, Goldstein & von Neumann

▪ IAS	Princeton	46-52	Bigelow
▪ EDSAC	Cambridge	46-50	Wilkes
▪ MANIAC	Los Alamos	49-52	Metropolis
▪ JOHNIAC	Rand	50-53	
▪ ILLIAC	Illinois	49-52	
▪ Argonne		49-53	
- UNIVAC - the first commercial computer, 1951

17

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

First Program Bug

- The first computer bug is a moth!
- Grace Murray Hopper found the bug while working on the Harvard Mark II computer

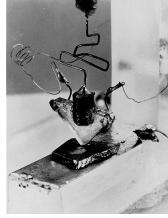
18

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Ira A. Fulton Schools of Engineering
Arizona State University

Kid, why all this excitement!!!

- But Albert, just look, look for yourself, how far we have come in just few decades!!!
- Is not this marvelous!!!

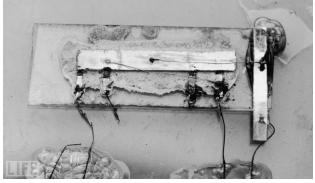

19

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Ira A. Fulton Schools of Engineering
Arizona State University

Transistor

- Uses Silicon
- Developed in 1947 in Bell Laboratories by William Shockley, John Bardeen and Walter Brattain
- Won a Nobel prize
- On-off switch


20

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Ira A. Fulton Schools of Engineering
Arizona State University

First Integrated Circuit

- Invented at Texas Instruments by Jack Kilby in 1958

21

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

First Microprocessor

- By Intel Corporation
 - 4-bit Microprocessor 4004 in 1971
 - 8-bit microprocessor 8008 in 1972

22

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Apple 1 Computer - 1976

23

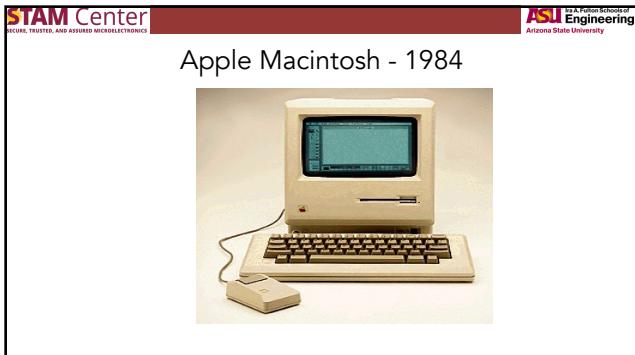
STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

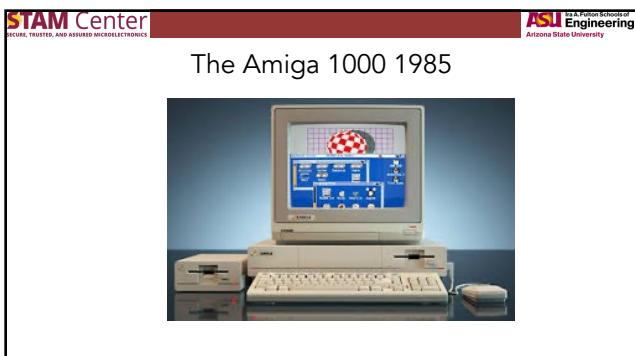
IBM PC - 1981

- IBM-Intel-Microsoft joint venture
 - First wide-selling personal computer used in business
 - 8088 Microchip - 29,000 transistors
 - 4.77 Mhz processing speed
 - 256 K RAM (Random Access Memory) standard

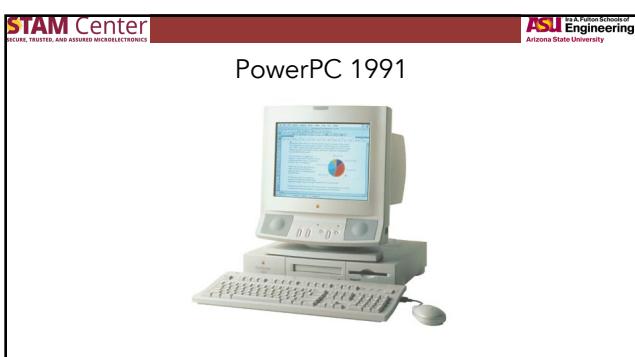
24



25



26



27

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Cell Phones

- One picture

28

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Apple 2016

29

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU is a proud member of
Engineering
Arizona State University

Next Lecture Module

- Influence of Technology and Software on Instruction Sets

30
