Eng“in"eeri‘ng

Arizona State University

CSE 420
Computer Architecture |

Brief Review
Computer Organization & Assembly Language

Prof. Michel A. Kinsy

1/10/26

Engineering

Arizona State University

Software Mechanics for Bridging

= The Art of Abstraction

Application

Algorithm

Programming Language
Operating System/Virtual Machine
Instruction Set Architecture (ISA)
Microarchitecture
Register-Transfer Level (RTL)
Circuits

Devices

Physics

Eng“in"eeri‘ng

Arizona State University

Another View of the Abstraction

Applications & Algorithms
Programming Language

Compiler

Operating System

ISA
Memory organization
Datapath & Control
| Digital Design |
Circuit Design

Processor

1/0 system

Eng“inﬂeeri‘ng

Arizona State University

Computer Organization
= The modern computer system has three major functional hardware
units: CPU (Processing Engine), Main Memory (Storage) and
Input/Output (I/O) Units

Processor Memory I/O Devices
2
e
3
100 el
17 B
114 a
- 2
T Control Bus T
[Address Bus
Data Bus

ering

ficcurs, usten, o assurto mickortecTRowcs Arizona State University

Computing Process

Computation ideas

Solutions
> > »,
“ 7 S 2
Q° L
— “,
= K2

N
&° 2,

< Central Processing Unit S
Arithmetic/
Logic Unit
[} it
Control Unit

Memory e computer

1/10/26

Eng“inﬂeeri‘ng

Arizona State University

Hardware Prospective

Real Machine Code

er En:

Bridging/Compiling Process
= High-Level Language

Human = ¢/c++/1ava program
Readable

assembly code

object code

library routines

executable

loader

memory

Machine
Code

Arizona State University

1/10/26

Program memory management

Higher Bottom of
Addresses the stack

Stack Segment Variable Size

[Stack frames consisting of parameters,
Top of the return addresses and local variables]
stack * Free space

Heap Segment
[Dynamic variables managed by Variable Size

malloc), free(), etc.]

BSS Segment Fixed Size

[initialized global and static variables]

Data Segment

Fixed Size
(Initialized global and static variables]
Lower Text Segment Fixed Size
Addresses [Program code]
er

Application Side

= Higher-level languages
= Allow the programmer to think in a more natural language and for
their intended use
= Improve programmer productivity Improve program maintainability

= Allow programs to be independent of the computer on which they are
developed

= Compilers and assemblers can translate high-level language programs to the
binary instructions of any machine

Eng“inﬂeeri‘ng

Application Side

= Higher-level languages

= Emergence of optimizing compilers that produce very efficient
assembly code

= As a result, very little programming is done today at the assembler
level

1/10/26

10

ering

ficcurs, usten, o assurto mickortecTRowcs Arizona State University

System Software Side

= System software
= Operating system — supervising program that interfaces the user’s
program with the hardware (e.g., Linux, MacOS, Windows)
= Handles basic input and output operations
= Allocates storage and memory
= Provides for protected sharing among multiple applications

= Compiler — translate programs written in a high-level language (e.g.,
C, Java) into instructions that the hardware can execute

11

Eng“inﬂeeri‘ng

Arizona State University

Application Compiling Process
= C Language

Readable
assembly code
object code library routines
executable
Machine
Code memory

12

Eng“inﬂeeri‘ng

Arizona State University

Application Compiling Process
= C Language
[cprogram | program S

Human
Readable

assembly code
assembler > "

object code

library routines

executable

Machine

Code memory

1/10/26

13

neering
ity

‘Arizona State Universi

Why is assembly level view?

* To become familiar with the process of compiling a
program/application (e.g., C) onto a computer system

= To know what assemblers are and what compilers do

* To understand the computer hardware view of the
program/application

14

Eng“inﬂeeri‘ng

Arizona State University

Why is assembly level view?
*= To become familiar with the process of compiling a
program/application (e.g., C) onto a computer system
= To, then, fully realize why computers are built the way they are
= In turn, you will gain new insights into how to write better and more
efficient code

= And explore new opportunities in the field of embedded system
programming

15

er

Greatest Common Divisor Example

Arizona State University

o S ro24(5p)
vn::[Iq ’ eall printf
o - FI’Om C to addi ad,50,-28
s assembly, the e
R translation is e
while(b I= i .
G staightforward | v
e o,
mo- e)
b ot
, return a; addisp,sp,32

16

Hardware Prospective

Real Machine Code Azﬂdressjes

17

er

Assembly Code

= Three types of statements in assembly language

= Typically, one statement per a line
1. Executable assembly instructions
= Operations to be performed by the processor
2. Pseudo-Instructions and Macros
= Translated by the assembler into real assembly instructions
= Simplify the programmer task
3. Assembler Directives
= Provide information to the assembler while translating a program
= Used to define segments, allocate memory variables, etc.

1/10/26

18

Eng“inﬂeeri‘ng

Arizona State University

Computer Organization Overview
= The modern digital computer has three major functional
hardware units: CPU, Main Memory and Input/Output (I/O) Units

1/10/26

19

Assembly Code

= There are 3 main types of assembly instructions
Arithmetic

= add, sub, mul, sll, srl, and, or, etc. S
Load/store

= |w,sw,lb,sb
Conditional - branches
* beq, bne, j, jra

swapla,b) ————————

retwrna

20

Eng“inﬂeeri‘ng

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions
Avrithmetic

= add, sub, mul, sll, srl, and, or, etc.
Load/store

= lw,sw,lb,sb

Conditional - branches

= begq, bne, j, jra

w a5,-36(s0)

21

er

Eng“inﬂeeri‘ng

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions
= Arithmetic
= add, sub, mul, sll, srl, and, or, etc.
= Load/store
= lw,sw,lb,sb
= Conditional - branches
= begq, bne, j, jra
= Assembly language instructions have the format:
= [label:] mnemonic [operands] [#comment]

beqz x1, done # if(x1 == 0) goto done

1/10/26

22

ficcurs, usten, o assurto mickortecTRowcs Arizona State University

Assembly Code

= There are 3 main types of assembly instructions

Avrithmetic

= add, sub, mul, sll, srl, and, or, etc.

Load/store

= lw,sw,lb,sb

Conditional — branches

= beq, bne, j, jra

= Assembly language instructions have the format:
= [label:] mnemonic [operands] [#comment]

nain:

addi sp,sp,-32

sd ra,24(sp)

23

er

Eng“inﬂeeri‘ng

Arizona State University

Assembly Code

= There are 3 main types of assembly instructions
= Assembly language instructions have the format:
= [label:] mnemonic [operands] [#comment]
= Label: (optional)
= Marks the address of a memory location
= Typically appear in data and text segments

int array [] = {2, 4, 5, 0, 1, 7);

array(2];

24

er

bccu, austen, awo assuro micrortscraomcs Arizona State University

Assembly Code

= There are 3 main types of assembly instructions
= Assembly language instructions have the format:

= [label:] mnemonic [operands] [#comment]
= Label: (optional)

= Marks the address of a memory location

= Typically appear in data and text segments

int array [] = {2, 4, 5, 0, 1, 7);
int main(void)

di sp, sp,-48
ra, 44 (sp)

40 (sp)

sp, 48
hi (array)

lui a5,

1w x5,%1o (array) (a5)
1w x6,4(a5)

1w x7,8(a5)

1/10/26

25

Assembly Code

= .DATA directive
= TEXT directive
= .GLOBL directive
= Declares a symbol as global

int array [1 = {2, 4, 5, 0, 1, T};

1
- :) 1
char name (9]; ' .type main, @function
int main(void) { | !
L N

int x,y,2;

z = array(2];

26

er

Assembly Code

= .DATA directive
= TEXT directive
= .GLOBL directive
= .BSS directive

= The BSS contains variables that are initialized to zero or are explicitly
initialized in code
int array [] = {2, 4, 5, 0, 1, 7};
char name [9];

int main(void) {

27

1/10/26

Eng eeri‘ng

Arizona State University

er

Assembly Code

= .DATA directive
= Defines the data segment of a program containing data
= The program's variables should be defined under this directive
= TEXT directive
= Defines the code segment of a program containing instructions
= .GLOBL directive
= Declares a symbol as global
= .BSS directive
= The BSS contains variables that are initialized to zero or are explicitly
initialized in code

28

Assembly Code

.string "Enter positive
2 Zbyte &-bit comma separated

integers a and b: 2 words (maligned)
.align 2

Le1: abyte 32-bit comma separated
.string "td td" words (unalignet
-align 2 half 16-bit comma separated

zc2: words (naturally aligned)
.string "GCD = td" word 32-bit comma separated
Ltaxt words (naturally aigned)
.align 1 asciz “string” emit string (alas for string)
_globl main
e string “string” emitstring

main: macro nameargl [, argn] begin macro definition
addi sp,sp,-48 rgname to substitute
sw ra,44(sp) type symbol, @function accepted for source

compatibilty

29

Eng“inﬂeeri‘ng

Arizona State University

er

Assembly Languages

= Assemblers:

Convert mnemonic operation codes to their machine language
equivalents

Convert symbolic operands to their equivalent machine addresses
Build the machine instructions in the proper format

Convert the data constants to internal machine representations
Write the object program and the assembly listing

30

10

Eng“in"eeri‘ng

Arizona State University

System Calls

= Programs do input/output through system calls
= To obtain services from the operating system

= Using the syscall system services
= Issue the syscall instruction

= Retrieve return values, if any, from result registers

1/10/26

31

Application Compiling Process
= High-level language program (in C)

o0id swap (int array(], int i) {

int temp; one-to-many

C compiler

32

Eng“in"eeri‘ng

Arizona State University

Application Compiling Process

= A compiler is a software program that translates a human-
oriented high-level programming language code into computer-
oriented machine language

Input
Source » Target
Program C Program
(C, C++, etc.) (RISC-V, MIPS, x86,etc.)
Error messages Output

33

11

Eng“inﬂeeri‘ng

Arizona State University

Application Compiling Process
= Assembly language program (for RISC-V)

one-to-one

assembler

34

neering

Arizona State University

Application Compiling Process

= Detailed compilation process

Langusge focsed] | eiciure ocused
— et jrmtions

Highievel arser Sermartic Target

e - Analysis ™ langu:

onguaee % (C generator) enguge

= More on this later when you take a course on compilers

1/10/26

35

Eng“inﬂeeri‘ng

Application Compiling Process

= Symbol Table
= Identifiers are names of variables, constants, functions, data types,
etc.
= Store information associated with identifiers
= Information associated with different types of identifiers can be
different

= Information associated with variables are name, type, address, size
(for array), etc.

36

12

Highe!

Lower
Addresse

er

Addresses thestack — >

Arizona State University

Program memory management

" Bottom of

Stack Segment Variable Size

[Stack frames consisting of parameters,

TOP of the return addresses and local variables]
—
stack * } Free space

Heap Segment
[Dynamic variables managed by Variable Size

malloc), free(), etc.]

BSS Segment

[initialized global and static variables]

Fixed Size

Data Segment
[Initialized global and static variables]

Fixed Size

Text Segment
N [Program code]

Fixed Size

1/10/26

37

Stack Structure
= Procedure frame or activation record
Other value ervalie er value
Sp —>
P [Return address P
| Arg. registers
| Saved registers.
sp | Local variables
[
[
(f (I
I [f
[Bottom of stack || [Bottom of stack ||
Before call During call After call

38

er

= Least sign

= Big Endian

Big Endian - Little Endian

= Processors can order bytes within a word in two ways
= Little Endian

ificant byte stored at lowest byte address

= Intel IA-32, Alpha, AMD

= Most significant byte stored at lowest byte address
= SPARC, PA-RISC, IBM

Exsiernierifones] 4mp -

39

13

AVl Center [Engineering
Big Endian - Little Endian

int main(void) {
int var; // Integer values
char *ptr; /1 Bointer

n 'var' and output it in byte order and as a value
x12345678;
char) &var;

printf("ptr(0] = $02X
printf("ptr(l] = $02X
printf("ptr(2] = $02X
Printf("ptr(3] = 302X

perl01); // Prints 78
perlll); // Prints 56
ptr(21); // Prints 34
o peri31); // Prints 12

printf("var = 408X \n*, var); // Prints 12345678

1/10/26

40

Big Endian - Little Endian

int main(void) {
int var; 7/ Integer values
char *ptr; 7/ eointer

n 'var' and output it in byte order and as a value
%12345678;
char *) &var;

printf("ptr(0] = $02X \n",
printf("ptr(1] = $02X \n'
printf("ptr(2] = $02X \n'
printf("ptr(3] = 302X \n",

per(0)); // Prints 78
ptr(ll); // Prints 56
ptr(2]); // Prints 34
ptr(3]); // Prints 12

printf("var = 08X \n", var); / Big Endian Little Endian
! Solaris on SPARC | Windows on Intel

ptr(0] = 12 ptr(0] = 78
ptr(1] = 34 ptr(1] = 56
ptr(2] = 56 ptr[2] = 34
ptr(3] = 78 ptrl3] = 12
var = 12345678 var = 12345678

er Engineering

Arizons State University

Concluding Note

= If you feel the need to learn or refresh some of these foundational
concepts, you might consider taking CSE 420 first.

42

14

