
1/27/26

1

A Browser-based RISC-V Simulator

Adaptive and Secure Computing Systems (ASCS) Laboratory

1

BRISC-V Simulator
§ BRISC-V Simulator let’s you:
• Run RISC-V assembly code in the browser
• Debug hand-written assembly
• Run code until completion or until it hits a breakpoint
• Step through execution, instruction-by-instruction
• View the state of memory and registers at each step
• View how each instruction is constructed – opcodes, registers, immediate

values etc.

https://ascslab.org/research/briscv/simulator/simulator.html

2

Let’s get Familiar with the GUI

Console Pane
Instruction Breakdown Pane

RISC-V
Assembly

Pane
C Source Code Pane

R
e

g
is

te
r

&
 M

e
m

o
ry

 P
an

e

Not interesting for this class
Let’s you compile C to RISC-V assembly

Let’s you run
assembly step-

by-step
Shows the state of

registers and memory

Shows messages from the compiler and the simulator
Also used for system calls – let’s you input and print values

3

1/27/26

2

Exam ples
available here!

Don’t have valid RISC-V assembly code to start with?

Load your code here!

Docum entation and
exam ple code here!

Click the load button to
open a drop down m enu

for loading exam ples

4

Don’t have valid RISC-V assembly code to start with?

Load the GCD exam ple

5

Kernel and User Instructions

The console says that it parsed the file without problem s
If there were problem s, they would pop up here

Our code got
loaded!

6

1/27/26

3

Grey instructions
are kernel

instructions

They setup som e registers like
the stack pointer, and jum p to

label “m ain”

Kernel and User Instructions

7

W hite instructions are
user instructions

All the assem bly you
write will be here

Kernel and User Instructions

8

Load code

Reset Sim ulator

Step through codeRun code

Here are som e sim ulator controls:

Simulator Controls

9

1/27/26

4

Stepping Through a Program

Let’s click the step
button twice

The blue line shows
which instruction will be

executed next

10

Stepping Through a Program

The blue line
m oved two lines

down

These instructions did
not do anything, but
the next one will

C lick the step
button again

The instruction
breakdown pane

shows how the
instruction is

stored in m em ory

The top row represents the bit ranges,
the m iddle row shows range nam es,

the bottom row shows binary values for the specific instruction

11

addi Changed the Register File

addi sp, zero, 1536
got executed

It sum m ed 0 and 1536,
and put it in register sp Register sp is

highlighted!

sp stands for stack
pointer

12

1/27/26

5

Setting Breakpoints

Right-clicking on an
instruction opens a m enu

Let’s click on the first item –
Add breakpoint

13

Setting Breakpoints

A breakpoint
got created!

Now if we click run,
sim ulator will keep

executing instructions until
it hits a breakpoint

14

Running Code until a Breakpoint

The instruction pointer
m oved to the breakpoint!

A lot of registers changed
values!

15

1/27/26

6

Text and Data Sections

.data and .rodata sections allow
us to set som e m em ory before

the program is run

.text sections are used for code.
Program s are in the text section

by default

16

Text and Data Sections

Labels in data sections point to
m em ory statically allocated after

them

Here we allocate the string
“HELLO!” by into two 32bit words

– one with “HELL” and one with
“O!00”

17

Text and Data Sections

You can see the allocated
m em ory in the data segm ent in

the m em ory pane! You can also
see the .HELLO pointer!

18

1/27/26

7

System Calls
§ We also provide some simple system calls
§ System calls are used for functionalities provided by the operating

system
• Think file systems, IO, etc.

§ In RISC-V, system calls look something like:
• Put the type of system call you want in register t0

§ More about that on the next slide
• Put any arguments you may have in a0 and a1
• Call instruction ECALL
• If the system call has return values, they will be in a0

§ To really get familiar with syscalls, try running the example syscall file
in the simulator

19

Supported Syscalls
Syscall Syscall ID

(put this in t0)
Description

Print integer 1 Print integer value in a0 to console

Print char 2 Print ascii value in a0 to console

Print string 3 Print string with address in a0 and length in a1 to console

Read integer 4 Read integer from console into a0

Read char 5 Read character from console into a0 as an ascii value

Read string 6 Read string of length given in a1 from console and store it
at address in a0

SBRK 7 Dynamically allocate the amount of bytes specified in a0.
The pointer to the beginning of the newly allocated
memory will be stored in a0. The value in a0 can be
negative, if you want to deallocate some memory!

20

That’s All Folks!

21

