
A Browser-based RISC-V Simulator

Adaptive and Secure Computing Systems (ASCS) Laboratory



BRISC-V Simulator
§ BRISC-V Simulator let’s you:
• Run RISC-V assembly code in the browser
• Debug hand-written assembly
• Run code until completion or until it hits a breakpoint
• Step through execution, instruction-by-instruction
• View the state of memory and registers at each step
• View how each instruction is constructed – opcodes, registers, immediate 

values etc. 

https://ascslab.org/research/briscv/simulator/simulator.html



Let’s get Familiar with the GUI

Console Pane
Instruction Breakdown Pane

RISC-V
Assembly 

Pane
C Source Code Pane

Re
g

is
te

r 
&

 M
em

or
y 

Pa
ne

Not interesting for this class
Let’s you compile C to RISC-V assembly

Let’s you run 
assembly step-

by-step 
Shows the state of 

registers and memory

Shows messages from the compiler and the simulator
Also used for system calls – let’s you input and print values 



Examples 
available here!

Don’t have valid RISC-V assembly code to start with?

Load your code here!

Documentation and 
example code here!

Click the load button to 
open a drop down menu 

for loading examples



Don’t have valid RISC-V assembly code to start with?

Load the GCD example



Kernel and User Instructions

The console says that it parsed the file without problems
If there were problems, they would pop up here

Our code got 
loaded!



Grey instructions 
are kernel 

instructions

They setup some registers like 
the stack pointer, and jump to 

label “main”

Kernel and User Instructions



White instructions are 
user instructions

All the assembly you 
write will be here

Kernel and User Instructions



Load code

Reset Simulator

Step through codeRun code

Here are some simulator controls: 

Simulator Controls



Stepping Through a Program

Let’s click the step 
button twice

The blue line shows 
which instruction will be 

executed next 



Stepping Through a Program

The blue line 
moved two lines 

down

These instructions did 
not do anything, but 
the next one will

Click the step 
button again

The instruction 
breakdown pane 
shows how the 
instruction is 

stored in memory

The top row represents the bit ranges,
the middle row shows range names,

the bottom row shows binary values for the specific instruction



addi Changed the Register File

addi sp, zero, 1536
got executed

It summed 0 and 1536, 
and put it in register sp Register sp is 

highlighted!

sp stands for stack 
pointer



Setting Breakpoints

Right-clicking on an 
instruction opens a menu

Let’s click on the first item – 
Add breakpoint



Setting Breakpoints

A breakpoint 
got created!

Now if we click run, 
simulator will keep 

executing instructions until 
it hits a breakpoint



Running Code until a Breakpoint

The instruction pointer 
moved to the breakpoint!

A lot of registers changed 
values!



Text and Data Sections

.data and .rodata sections allow 
us to set some memory before 

the program is run

.text sections are used for code. 
Programs are in the text section 

by default



Text and Data Sections

Labels in data sections point to 
memory statically allocated after 

them

Here we allocate the string 
“HELLO!” by into two 32bit words 
– one with “HELL” and one with 

“O!00”



Text and Data Sections

You can see the allocated 
memory in the data segment in 
the memory pane! You can also 

see the .HELLO pointer!



System Calls
§ We also provide some simple system calls
§ System calls are used for functionalities provided by the operating 

system
• Think file systems, IO, etc.

§ In RISC-V, system calls look something like:
• Put the type of system call you want in register t0

§ More about that on the next slide
• Put any arguments you may have in a0 and a1
• Call instruction ECALL
• If the system call has return values, they will be in a0

§ To really get familiar with syscalls, try running the example syscall file 
in the simulator 



Supported Syscalls
Syscall Syscall ID

(put this in t0)
Description

Print integer 1 Print integer value in a0 to console

Print char 2 Print ascii value in a0 to console

Print string 3 Print string with address in a0 and length in a1 to console

Read integer 4 Read integer from console into a0

Read char 5 Read character from console into a0 as an ascii value

Read string 6 Read string of length given in a1 from console and store it 
at address in a0

SBRK 7 Dynamically allocate the amount of bytes specified in a0. 
The pointer to the beginning of the newly allocated 
memory will be stored in a0. The value in a0 can be 
negative, if you want to deallocate some memory!



That’s All Folks!


