STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

%‘ Ira A.Fulton Schools of
Engineering

Arizona State University

Adaptive and Secure Computing Systems Lab « Boston Liniversity

Sljif\/ Simulator

A Browser-based RISC-V Simulator

Adaptive and Secure Computing Systems (ASCS) Laboratory

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

BRISC-V Simulator

= BRISC-V Simulator let's you:
* Run RISC-V assembly code in the browser
* Debug hand-written assembly
* Run code until completion or until it hits a breakpoint
* Step through execution, instruction-by-instruction
* View the state of memory and registers at each step

* View how each instruction is constructed — opcodes, registers, immediate
values etc.

https://ascslab.org/research/briscv/simulator/simulator.html

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Let's get Familiar with the GUI

BRISC-V Home
Slesc-V Simulator
Rdaptive and Secure Camputing Systems Lab e Boston Universit

BRISC-V Simulator

WASCS

Manual & Examples

ADAPTIVE
COMPUTING SYSTEMS

& SECURE

LABORATORY

“---.. G UEEEEEEEEEEEEEEEEEEENEEEEEEEENEEEER,
o7 - I *a o
= | Csource RISC-V Assembly : : Registers = Memory .
- :: :: Register Value Register Value =
E 1 int fib(int n) { n 2} addi zero,zero,0 ‘ : e o o = m o :
. 2 if (n<=1) { : kernel: n n
n 3 return n; n 1 addi sp,zero,1536 ; : sp 2] o gp B] O : a)
. 4 } else { o 2 call main 2 . " C
- 5 return fib(n-1)+fib(n-2); - 3 addi zero,zero,@ = tp 4 0 t0 [51 0 .
[6 } - 4 mv s1,a@ : : m
. 7} - 5 addi zero,zero,® . t1 6] 0 t2 71 o0 X n-
n 8 : 6 addi zero,zero,@ ™ sO/fp 8] 0 s1 9] 0 :
: 9 int return_function (int result) { . 7 auipc ra,exe - L
u 10 return result; - 8 jalr ra,e(ra) : a0 [10] o0 al 1] o : b
: 1} : 9 addi zero,zero,0 . .
|ow oo SR avaaaal ta n2 o a3 R o]
n 12 int main(){ .file "gcd.c” - E
: 14 int n = 9; E .option nopic : a4 [141 0 a3 [151 0 : E
15 int result = return_function (fib(n)); .text - =
: 16 return result; : .align 2 RI SC-V : 25 e o o o : m
BT . .globl gcd L7 [18] o0 s3 [19] o .
= : .type gcd, @function : A 20 0 5 21 o :
= d - Assembly i s -
u - 11 addi sp,sp,-48 Sse : : ﬁ
: ource Loae rane o s ramce N B :
u - 13 sw s@,40(sp) =
: : 14 addi s0,sp,48 Pa n e E *® e ° * - ’ E B
i Not interesting for this class & @ 2% ; I
™ 16 sw al,-48(se) L []
: 9 oy e Let's you run e e oo ERE R%)
. . : 8 W a5,-48(s a t5 [30) 0 t6 [311 0 .
:| Let's you compile C to RISC-V assembly o memen assemblv ste : : O)
= " 20 5 - L
: 3o s as200 y p- i Shows the state of : O
- n 22 j .3 - . M ‘ z
. . S - registers and memo :
. . 23 1w a4,-36(se) by Step E g ry .
ey g 24 1w a5,-40(s@ g y
‘:'-'-='-'-'-='-'-'-='-'-'-='-'-'-=='-'-=='-'-=='-'-=='-'-=='-'-=='-'-=='-'-=='-'-= :--'-'m'-'-'-'-'-'-v?/r':'-'-'-'-;--'.'-'-'-'.'-'-'-'.'-'-'-'.'-'-'-'.'-'-'-'.'-'-'-'.'-'-'-'.'-'-'-'.'-'.: :'============= ================::
» Console . Instruction breakdown .
Y oo Parser Output »»*ssrsssss . . - 0:
R parstng successtuns Shows messages from the compiler and the simulator i fnstructlon Eregﬂ(gzo 7Pao’,l§1e :
= . - =
: Console Pane Also used for system calls — let's you input and print values =2 coooo0o000 00000 00 00000 oon0onr
* v

LAS
AN NN NN NSNS NN NSNS SN NN NS NN SN NS SN NS EEEN NSNS EENEEEEEESEEENEEEEEEEEEEEEEEnussennnssennnnes® CssssEssssEEssEEEEsEEEEEEEEEEEEEEEE?

FSi

Arizona State University

Ira A.Fulton Schools of

Engineering

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Don’t have valid RISC-V assembly code to start with?

L

- : example code herel ASCS |,
HRJisT-V Simulator A R L ORY

Adaptive and Secure Computing Systems Lab « Boston University

C source Assembly Registers = Memory
ﬂ > M Register Value Register Value
J

BRISC-V Home BRISC-V Simulator Documentatlon and >

1 int fib(int n) {] 0] 0 17 0
% if (n <= 1) { T Load an assembly (*.s) file } Load your Code here! zere [l @ n
3 return n; sp [21 0O gp Bl 0
4 belse { . Example assembly files:
5 return fib(n-1)+fib(n-2); tp 4 0 t0 b1 oo
6 } Greatest common divisor
. E)(1 6] 0 2 7] 0
8 } Fibonacci amples S0/ ES; 0 s1 EQ; 0
9 int return_function (int result) { . .I bl h I 2
10 return result; Binary search aval a e ere‘ a0 [10] o0 al 11 o
11
12 ! a2 [121 0 a3 [13] o0
13 int main(){
14 int n = 9; a4 14 O a5 151 o
15 int result = return_function (fib(n)); a6 [16] 0 a7 [17] 0
16 return result;
17} s2 [181 0 s3 [191 o
. 4 20] O 5 21 0
Click the load button to ¢ ™ cw
d d s6 [221 o0 s7 [231 ©
open a drop down menu 8 P4 o s 5] 0
for loading examples a0 el o s o
t3 [281 0 t4 [29] 0
t5 [30] O 6 311 o0

Console Instruction breakdown

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Don’t have valid RISC-V assembly code to start with?

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS| tonrumie sverrae
Sl'ﬂjlsc-v Simulator DASCSIEE

Adaptive and Secure Computing Systems Lab « Boston University

C source RISC-V Assembly Registers = Memory
ﬂ > M Register Value Register Value

1 int fib(int n) {

2 if (n<=1) { T Load an assembly (*.s) file ZEr0 o o {3 I

3 return n; sp [2] 0 gp [3] 0

4 } else {

5 return fib(n-1)+fib(n-2); tp 4] o0 t0 51 O

i , } Greatest common divisor t’I 6 o © m o

¢ 0/f 8] 0 1 CI

9 int return_function (int result) { 8i | h SUfiE & s &

10 return result; inary searc a0 [o] o a1 M o

1}

12 a2 [121 0 a3 [13] o0

13 int main(){

14 intn=o9; a4 [14 o0 as [151 o0

15 int result = return_function (fib(n)); a6 [16] 0 =7 n7 o

16 return result;

17} s2 18] o s3 191 o0

Load the GCD example . o EDC

s6 [22] 0 s7 [231 ©
s8 24 o s9 251 0
s10 [26] 0 s11 271 o0
t3 [28] 0 t4 [291 O
t5 [30] O 6 311 o0

Console Instruction breakdown

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Kernel and User Instructions

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS| tonrumie sverrae
Sl'ﬂjjlsc-v Simulator DASCS SIS

Adaptive and Secure Computing Systems Lab « Boston University

C source RISC-V Assembly Registers = Memory
m Register Value Register Value
1 int fib(int n) { p— addi zero,zero,0 ie e o o = m o
2 if (n<=1) { T kernel:
3 return n; 1 addi sp,zero,1536 sp 2] o gp B] O
4 } else { 2 call main
5 return fib(n-1)+fib(n-2); 3 addi zero,zero,@ tp 4 0 t0 [51 0
6 ¥ 4 mv s1,a@
7 } 5 addi zero,zero,@ t [6] 0 2 71 0
8 6 addi zero,zero,@ sO/fp 8] 0 s1 9] 0
9 int return_function (int result) { 7 auipc ra,exe
10 return result; 8 jalr ra,e(ra) a0 [10] 0 al 1 0
11 } 9 addi zero,zero,®
12 10 addi zero,zero,@ a2 [12] © a3 [13] 0
13 int main() file "gcd.c”
14 int n E 9; .option ngpic a4 [141 0 a3 [151 0
15 int result = return_function (fib(n)); .text a6 [16] 0 a7 [71 o
16 return result; .align 2
7} Our COde gOt .globl ged s2 1 o s3 fa o
= .type gcd, @function
|Oaded! ged: s4 201 © s5 21 o
11 addi sp,sp,-48
12 sw ra,44(sp) e [22] Y = [23] °
13 sw s8,40(sp) s8 [24] © 59 5] 0
14 addi s0,sp,48
15 sw a@,-36(s8) s10 [26] O s11 271 0
16 sw al,-48(se)
17 1w a4,-36(s0) t3 [28] © t4 [291 o0
18 1w a5,-46(se) t5 30] 0 6 B1 0
19 bne a4,a5,.L2
20 1w a5,-36(s@)
21 sw a5,-208(se)
22 j .3
LL2:
23 1w a4,-36(s8)
24 1w a5,-40(se)
— bla ma oA 4
Console Instruction breakdown
s RGP EITIa it alll - 20 19 15 14 12 11 7 6 0
imm rs1 funct3 rd opcode

rone sttt +———— The console says that it Earsed the file without problems
If there were pro |emS, they would pop up here _ 000000000000 00000 000 00000 0010011

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Kernel and User Instructions

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS| tonrumie sverrae
Sl'ﬂjjlsc-v Simulator DASCS SIS

Adaptive and Secure Computing Systems Lab « Boston University

C source RISC-V Assembly Registers = Memory
21 m Register Value Register Value
1 int fib(int n) { propm— addi zero,zero,0 H e o o = m o
2 if (n<=1) { T kernel:
3 return n; . . 1 addi sp,zero,1536 sp 2] o gp B] O
4 } else { 2 call main
5 return fib(n-1)+fib(n-2); G rey InStrUCtIons 3 addi zero,zero,@ tp 4] o0 t0 51 0
6 } k | 4 mv 51,20
7 } a re ern e — 5 addi zero,zero,@ t [6] 0 2 71 0
8 6 addi zero,zero,@
. . o o 0/} 8] O 1 9] O
9 int return_function (int result) { Instruc‘tlons 7 auipc ra,exe SO/1p @l s el
10 return result; 8 jalr ra,e(ra) a0 [10] o0 al 1] o
11 } 9 addi zero,zero,®
12 e addi zero,zero,@ a2 [M2] o a3 [13] O
13 int main(){ .file "gecd.c”
14 int n = 9; .option nopic a4 [141 0 a3 [151 0
15 int result = return_function (fib(n)); .text a6 [16] 0 a7 [71 o
16 return result; .align 2
17} .globl gecd s2 18] o0 s3 191 o
.type gcd, @function
ged: s4 [200 O s5 [21] O
1 1 11 addi sp,sp,-48
They setup some reglsters I|ke - T raraniem s6 221 © s7 23 o©
. H 13 sw s8,48(sp) s8 24] 0 s9 25] 0
the stack pointer, and jump to | = LU0 2 =
" . 15 sw a@,-36(s8) s10 [26] O s11 271 0
16 sw al,-48(se)
label “main - o seceer 3 8] 0 t4 29 0
18 1w a5,-46(se) t5 30] 0 6 B1 0
19 bne a4,a5,.L2
20 1w a5,-36(s@)
21 sw a5,-208(se)
22 j .3
LL2:
23 1w a4,-36(s8)
24 1w a5,-40(se)
ar bla ma oA 4
Console Instruction breakdown
B RGP EITIat it alll - 20 19 15 14 12 11 7 6 0
Parsing successful!
imm rs1 funct3 rd opcode

000000000000 00000 000 00000 0010011

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Kernel and User Instructions

BRISC-V Home BRISC-V Simulator Manual & Examples

i ' DASCS B s e
SRJISE-V Simulator DASCS SIS

Adaptive and Secure Computing Systems Lab « Boston University

C source RISC-V Assembly Registers = Memory
X - Register Value Register Value
1 int fib(int n) { e addi zero,zero,0 e o o = m o
2 if (n<=1) { T kernel:
3 return n; 1 addi sp,zero,1536 sp 2] o gp B] O
4 } else { 2 call main
5 return fib(n-1)+fib(n-2); 3 addi zero,zero,@ tp 4 0 t0 [51 0
6 } 4 mv s1,a@
7 } 5 addi zero,zero,@ t [6] 0 2 71 0
8 6 addi zero,zero,@ sO/fp 8] 0 s1 9] 0
9 int return_function (int result) { 7 auipc ra,exe
10 return result; 8 jalr ra,e(ra) a0 [10] 0 al 1 0
11 } 9 addi zero,zero,®
12 1;_ addi zero,zero,@ a2 [12] © a3 [131 ©
13 int main() file "gcd.c”
14 int n E 9; .option ngpic a4 [141 0 a3 [151 0
15 int result = return_function (fib(n)); .text a6 [16] 0 a7 [71 o
16 return result; .align 2
17} .globl gcd s2 [18] o s3 191 o0
.type gcd, @function
ged: s4 [200 O s5 [21] o0
L1 addi sp,sp,-48
> su ra,aa(sp) s6 [22] 0 s7 [23] 0
White instructions are e o 2 Ee = O
L4 addi s0,sp,48
. . ——s sw a@,-36(se) s10 [26] 0 s11 271 o0
user Instructions s s an-de(s0)
i 1w a4,-36(s0) t3 [28] © t4 [29] o©
L8 1w a5,-46(se) t5 30] 0 6 B1 0
Lo bne a4,a5,.L2
po 1w a5,-36(se)
All the assembly you s esGo)
b2 j .3
ite will be h
write will be here b: 1 aa,36050)
pa 1w a5,-40(se)
—— Rla ~d Ar 1a
Console Instruction breakdown
B RGP EITIat it alll - 20 19 15 14 12 11 7 6 0
Parsing successful!
imm rs1 funct3 rd opcode

000000000000 00000 000 00000 0010011

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Simulator Controls

BRISC-V Simulator

BRISC-V Home

SRJ)E?V Simulator

Adaptive and Secure Computing Systems Lab « Boston Universit

Manual & Examples
ADAPTIVE & SECURE
Js & COMPUTING SYSTEMS

Here are some simulator controls: LABORATORY

C source RISC-V Assembly Registers = Memory
.

e —— Reset Slmulator Register Value Register Value
1 int fib(int n) { e addi zero,zero,0 I et 0 o = m o
2 if (n<=1) { T ké&Pnel:

3 return n; 1 addi sp 2] o gp B] O
4 } else { 2 call

5 return fib(n-1)+fib(n-2); 3 addi tp 4] o0 t0 51 O
6 } 4 mv

7 } 5 addi zero,zero,@ t [6] 0 2 71 0
8 6 addi zero,zero,@ sO/fp 8] 0 s1 9] 0
9 int return_function (int result) { 7 auipc ra,exe

10 return result; d d 3 i l’d ,8(ra) S h h d i a0 [10] o0 al [11] o
S Load code Run code::... Step through code
12 10 addi zero,zero,@ a2 [12] © a3 [131 ©
13 int main(){ file "ged.c”

14 int n = 9; .option nopic a4 [141 0 a3 [151 0
15 int result = return_function (fib(n)); .text a6 [16] 0 a7 [71 o
16 return result; .align 2
17} .globl gcd s2 [18] o s3 191 o0

.type gcd, @function

ged: s4 [200 O s5 [21] o0
o e s6 22 o s7 231 0
13 sWw $0,40(sp) s8 241 © s9 251 ©
14 addi s0,sp,48
15 sw a@,-36(s8) s10 [26] O s11 271 0
16 sw al,-48(se)
7 1w a4,-36(s8) t3 [28] 0 t4 [291 ©
18 1w a5,-46(se) t5 30] 0 6 B1 0
19 bne a4,a5,.L2
20 1w a5,-36(se)
21 sw a5,-208(se)
22 j .3

LL2:
23 1w a4,-36(s8)
24 1w a5,-40(se)
ar bla ma oA 4

Console Instruction breakdown

B RGP EITIat it 31 20 19 15 14 12 11 7 6 0

Parsing successful!

imm rs1 funct3 rd opcode
000000000000 00000 000 00000 0010011

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Stepping Through a Program

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS| tonrumie sverrae
Sl'ﬂjjlsc-v Simulator DASCS SIS

Adaptive and Secure Computing Systems Lab « Boston University

C source RISC-V Assembly Registers = Memory
X - Register Value Register Value
i int f\i{béin: ni){{ . 2} :di zero,zero,0 e o o = m o
if (n <= el:
3 return n; addi sp,zero,1536 sp 2] o gp B] O
4 } else { » 2 call main
5 return fib(n-1)+fib(n-2); / 3 addi zero,zero,@ tp 4] o0 t0 51 O
6 } 4 mv s1,a@
7 } 5 addi zero,zero,@ t [6] 0 2 71 0
8 ' |' k h 6 addi zero,zero,@ o/ g 0 1 9 0
9 int return_function (int result) { Let S C IC t e Step 7 auipc ra,exe SO/1p @l s el
10 return result; . 8 jalr ra,e(ra) a0 [10] o0 al 1] o
11 } button thce 9 addi zero,zero,®
12 10 addi zero,zero,@ a2 [M2] o a3 [13] O
13 int main(){ .file "gecd.c”
. . X : M4 a4 [14] O as [15] 0
14 int n=9; .option nopic h bl | h
15 int result ; return_function (fib(n)); .tixt T e ue Ine s OWS a6 [16] 0 a7 [71 o
16 return result; .align 2 h' h M . '” b
7o) glob] ges which instruction willbe . 1y & s 9 o
.type gcd, @function A 20 0 5 21 o
ged: d s B
o s executed next
- su ra,aa(sp) s6 [22] 0 s7 [23] 0
13 sWw $0,40(sp) s8 241 © s9 251 ©
14 addi s0,sp,48
15 sw a@,-36(s8) s10 [26] O s11 271 0
16 sw al,-48(se)
17 1w a4,-36(se) 3 [28] 0 4 [29] 0
18 1w a5,-46(se) t5 30] 0 6 B1 0
19 bne a4,a5,.L2
20 1w a5,-36(s@)
21 sw a5,-208(se)
22 j .3
LL2:
23 1w a4,-36(s8)
24 1w a5,-40(se)
ar bla ma oA 4
Console Instruction breakdown
B RGP EITIat it alll - 20 19 15 14 12 11 7 6 0
Parsing successful!
imm rs1 funct3 rd opcode

000000000000 00000 000 00000 0010011

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Stepping Through a Program

Click the step
button again

BRISC-V Home

SRj)isc-V Simulator

Adaptive and Secure Computing Systems Lab « Boston University

BRISC-V Simulator Manual & Examples

DA SCS | conrurive svsrems
LABORATORY

C source RISC-V Assembly, Registers = Memory
These inStrUCtionS dld Register Value Register Value
1 int fib(int n) {] addi zero,zero,@ 1
y [pumn L : = not do anything, bu o [0 0 2 1o
3 return n; /l addi sp,zero,1536 the next one wi” sp 2] O ap [B1 0
4 } else { call main
5 return fib(n-1)+fib(n-2); /ﬂ 3 addi zero,zero,@ tp 4 0 t0 51 0
6 } 4 mv s1,a@
7 } 5 addi zero,zero,@ t [6] 0 2 71 0
8 M 6 addi zero,zero,@
9 int return_function (int result) { The blue ||ne 7 auipc ra,exe sO/fp l 0 1 Bl 0
10 return result; . 8 jalr ra,e(ra) a0 [10] o0 al 1] o
n o) moved two lines o st zerozere
12 10 addi zero,zero,8 a2 [12] 0 a3 [13] 0
13 int main(){ .file "gecd.c”
14 int n = 9; down .option nopic a4 [141 0 a3 [151 0
15 int result ; return_function (fib(n)); .tixt a6 [16] 0 a7 [71 o
16 return result; .align 2
17} .globl gecd . . s2 18] o0 s3 191 o
“type ged, Efunction The InstrUCtlon s4 201 © s5 21 o
ged:
11 addi sp,sp,-48 b kd 5 2> 0 7 23 0
12 sw ra,44(sp) rea Own ane S [22] 2 [23]
13 Sgd s@,48(sp) h h pth s8 241 © s9 251 ©
14 addi s0,sp,48
15 sw a@,-36(se) s OWS ow e s10 [26] O s11 271 0
16 sw al,-48(se) . . .
17 L at,-36(se) Instruction Is B (28] 0 t4 (291 0
. a5 aels9) t di t5 Bl 0 t6 B 0
e e i) stored In memory
21 sw a5,-208(se)
22 j o2
LL2:
23 1w a4,-36(s8)
24 1w a5,-48(se)
Consale The top row represents the bit ranges, — instuction breakdown
#3333%%% Parser Output >>****sss 2
Parsing successful! . L v i i | i T
the middle row shows range names, b i © fn @ opeode
ey 011000000000 00000 000 00010 0010011

the bottom row shows binary values for the specific instruction

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

addi Changed the Register File

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS| tonrumme sverrae
Sl'ﬂjlsc-v Simulator DASCS s

Adaptive and Secure Computing Systems Lab « Boston University

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

C source RISC-V Assembly Registers = Memory
Register Value Register Value
1 int fib(int n) { e addi zero,zero,@ et 0 o = m o
2 if (n<=1) { T kernel:
3 return n; 1 addi sp,zero,1536 sp 2] 1536 gp B] O
4 } else { call main
5 return fib(n-1)+fib(n-2); 3 addi zero,zero,@ tp [0 t0 [51 0
6 } 4 mv s1,a@
7 } 5 addi zero,zero,@ (6] 0 2 71 0
8 M 6 addi zero,zero,@
o o 8 0 1 9 0
9 int return_function (int result) { addl Sp, Zero, 1 53 7 auipc ra,exe el s el
10 return result; ot e e ted 8 jalr ra,e(ra) [10] o0 al 11 o
11 } 9 addi zero,zero,®
12 g X Cu 10 addi zero,zero,@ a2 [12] © a3 [13] 0
13 int main(){ .file "gcd.c”
) . . : : a4 [14] O as [15] 0
14 int n=9; .option nopic
R s «dt. summed 0 and 1536, e o e o o m oo
16 return result; . - - .align 2
17} and put It In reqister .globl gd . . s2 ne o s3 n9 o
g P & & «w Registerspis © o o
ged: . . s s
11 addi sp,sp,-48 h h | h d!
12 sw ra,44(sp) Ig Ig te - [22] Y 5/ (23] v
13 sw s8,40(sp) s8 24 o0 s9 [25] O
14 addi s0,sp,48
15 su ae,-36(s8) Sp Stands for StaCk s10 6] © s11 R o
16 sw al,-48(se) .
17 1w a4,-36(s8) po|nter 3 [28] 0 t4 9] ©
18 1w a5,-46(se)
t5 [30] O t6 311 0
19 bne a4,a5,.L2
20 1w a5,-36(s@)
21 sw a5,-208(se)
22 j o2
LL2:
23 1w a4,-36(s8)
24 1w a5,-40(s8)
ar bla ma a4
Console Instruction breakdown

wsxssser Parser Qutput *=erEssser

Parsing successfull .
Pseudo-Instructions don't have a breakdown

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Setting Breakpoints

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS |t svereas
SBJ)ISC-V Simulator PASCS St

Adaptive and Secure Computing Systems Lab s Boston University

C source RISC-V Assembly Registers | Memory
Register Value Register Value
1 int fib(int n) { § 2} addi zero,zero,@ et 0 o = n o
2 if (n<=1) { T kernel:
3 return n; 1 addi sp,zero,1536 sp 2] 1536 gp B] O
4 } else { 2 call main
5 return fib(n-1)+fib(n-2); 3 addi zero,zero,@ tp [4 0 t0 [51 0
6 ¥ 4 mv s1,a@ 1 6 0 © 0
7} 5 addi zero,zero,@ = [6] gl
8 6 addi zero,zero,@ sO/fp 8] 0 s1) 0
9 int return_function (int result) { 7 auipc ra,exe
10 return result; 8 jalr ra,e(ra) a0 [10] o0 al M o
11 } 9 addi zero,zero,@
12 10 addi zero,zero,@ a2 [M2] o a3 [13] o0
13 int main(){ .file "gcd.c”
14 int n = 9; .option nopic &3 4] 2 & 15 Y
int result = return_function (fib(n)); Jtext a6 [16] 0 a7 M7 0
16 return result; .align 2
17} .globl gecd s2 [18] 0 s3 [191 O
.type gcd, @function
ged: s4 [200 O s5 211 0
11 addi sp,sp,-48
. su ra,4a(sp) s6 221 0 s7 [23] O
13 sw $@,40(sp) s8 24 © s9 251 ©
14 addi s0,sf, "
o o . 15 sw a@,-36(fp) Add breakpoint s10 [26] O s11 [271 0
Right-clicking on an el IR
S 17 1w a4,-36(8) ° =] [28] © t4 [29] ©
1 1 18 1w as,-40(4L)
Instruction opens a menu O i S ts B o e I
20 1w a5,-36(4L)
I . ' .
S I — Let's click on the first item —
22 j .3
dd breakpoi
5 T e seee A reakpoint
24 1w a5,-48(se)
ar Wla anoar 12
Console Instruction breakdown

wssxsse Parser Qutput **ErEEsEEEr N

Parsing successful! .
Pseudo-Instructions don't have a breakdown

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Setting Breakpoints

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS |t svereas
SBJISC-V Simulator A

Adaptive and Secure Computing Systems Lab s Boston University

C source RISC-V Assembly Registers | Memory
Register Value Register Value
i int fibgin: ni){{ /0 I aidi zero,zero,@ v 0 o = m o
if (n <= ernel:
3 return n; . 1 addi sp,zero,1536 sp [2] 1536 gp Bl O
4 } else { . . / 2 call main
5 | return fib(n-1)+fib(n-2); NOW If we cl Ick run, 3 addi zero,zero,@ tp [4 0 t0 [51 0
6 4 mv s1,a@
? . . . — t1 6] O 12 [71 0
7 } | | | k 5 addi zero,zero,@
! simulator will keep o [E— wm m o » o o0
9 int return_function (int result) é . . . o 7 auipc ra,exe
10 return result; ex cutlng Instructions until - jalr ra,e(ra) a0 [o] o a m o
11 } 9 addi zero,zero,8
12 1 1 1 10 addi zero,zero,@ a2 [12] © a3 [13] 0
S it hits a breakpoint
: : : 4 [14] 0 ER) [151 0
14 int n = 9; .option nopic a
15 int result = return_function (fib(n)); Jtext a6 [16] 0 a7 M7 0
16 return result; .align 2
17} .globl gecd s2 [18] 0 s3 [191 O
.type gcd, @function
ged: s4 [20] O s5 211 0
o o e 56 221 o s7 231 o
A breakpoint D L e @@ o 2 e o
= : addi se,sp,[ls
t t d I 15 sw ae,-36(se) s10 [26] O s11 271 ©0
go Crea e . 16 sw al,-48(s8)
2| e aa-36(s0) 3 28 o t4 @9 0
18 1w a5,-40(s8) 5 B0] 0 6 B1] 0
19 bne a4,as5,.L2
20 1w a5,-36(se)
21 sw a5,-20(se)
22 j .3
.L2:
23 1w a4,-36(se)
24 1w a5,-48(se)
ar Wla an ar ia
Console Instruction breakdown

wssxsre Parser Qutput **ErEssEEEr -

Parsing successful! .
Pseudo-Instructions don't have a breakdown

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Running Code until a Breakpoint

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS | oo svereas
SBJ)ISC-V Simulator PASCS St

Adaptive and Secure Computing Systems Lab s Boston University

C source RISC-V Assembly Registers | Memory
Register Value Register Value
1 int fib(int n) { § 2} addi zero,zero,@ e 0 o = m 73
2 if (n<=1) { T kernel:
3 return n; 1 addi sp,zero,1536 0
4 } else { 2 call main
5 return fib(n-1)+fib(n-2); 3 addi zero,zero,8 0
6 } 4 mv s1,a@
7} 5 addi zero,zero,@ = 0
8 6 addi zero,zero,@ 0
9 int return_function (int result) { 7 auipc ra,exe /
10 return result; 8 jalr ra,e(ra) i 48
11 } 9 addi zero,zergpd . -7
" « s o= lot of registers changed 0
13 int main(){ .file "gcd.c”
14 intn=29; .option nopic values! - 4 0 J']'E‘ 48
1 int result = return_function (fib(n)); .text ——— [16] 0 a7 n7n 0
16 return result; .align 2
17} .globl gecd s2 [18] 0 s3 [191 O
.type gcd, @function
ged: s4 [200 O s5 211 0
))) o - e s6 221 o s7 231 o
The instruction pointer B | o sosep s @ o o @ o
- : addi 50,5p,48
d h b k H I 15 sw a@,-36(se) s10 [26] O s11 [271 0
moved to the breakpoint! 6 | a an-aeGee)
2 lu aa-3s(se) 3 28 o t4 @9 o
18 1w a5,-40(s8) 5 B0] 0 6 B1] o0
19 bne a4,as5,.L2
20 1w a5,-36(se)
21 sw a5,-20(se)
22 j .2
.L2:
23 1w a4,-36(se)
24 1w a5,-48(se)
ar Wla an ar 12
Console Instruction breakdown
Fest*#"* Parser Output sssssssssss alll - 20 19 15 14 12 11 7 6 0
Parsing successfull
imm rs1 funct3 rd opcode

000000110000 00010 000 01000 0010011

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Text and Data Sections

BRISC-V Home BRISC-V Simulator Manual & Examples
O Q| ADAPTIVE & SECURE
JRJisc-V Simulator R i
5 C AT
LABORATORY
C source RISC-V Assembly Register Memory
1 int fib(int n) { 22 ecall :: :: ::
if (ne=1) { # let's statically allocate a string "HELLO!"
3 return n; # we start this by creating a read-only data section :g :: :: ::
4 } else { .rodata
p 00 00 00 00
5 return fib(n-1)+fib(n-2); LHELLO: 80 06 60 00
6 N # strings should end with the null terminator \@ 60 96 60 00
S5 ata and -rOdata Sec‘t|ons a”ow q # the null terminator's binary value is ! 4
8 # we split HELLO!\@ into two 32bit words: ‘ o : :: :: ::
) in u nes i m (m m b f # HELL and 0!00 - note that thats an "0!" and 2 zeros : oarTane
10 uguxdesﬁgt SU é e Ory e Ore # we write HELL in ascii: 0x06000114 80 60 00 68
) #H - 0x48 0x00000110: 60 00 00 60
h II' # E - 0x45)x6000010c¢: 00 00 00 00
int main(){ the progra IS run # L - oxdC :i?: :2:‘::}
int n = 9; # since this is a little-endian architecture, we g PSR
int result = return_function (fib(n)); # write HELL in reverse - LEHH b ”j"m,‘
6 return result; word ©x4C4C4548 6x00000104: &€ 4¢ 45 48 /1 <-- .hello
17 } # now we write the second part 0!00 TEXT SEGMENT 5
)x0000010¢ 060 60 60 13 // addi zero,zera

. d 0x0000214F
WORe. X 0x000000 ¢ 00 00 60 13 // addi zero,zera

this section is parsed when you load the program - B . 2
not when the instruction pointer runs over it. s Hf x :: :g i: /" a::} 2eroizern
as soon as you loaded the program, you should see 80 80 80 7 A 11 zer:ize;u
this string in the memory pane's data section, e7 /" ja‘r 18: 0110
somewhere close to the bottom of it. : g: :: gg ?3 x ::dgc ;:;:x‘z’eru
i '
. d f d # now we can go back to a text section that has code ':" S "l"‘ g: :: g: E Z :::i ::::’i:::
.text x000000e0 : P 2
.text sections are usea tor code. I oo 6060013 /7 addy zerozers
P . th t t Ct‘ / 23 addi te, zero, 3 # this is the string printing syscall St o oy e 74T ":1
rograms are in € text section 24 lui 20, %hi(.HELLO) # this loads the top 20 bits L £cO

71 00 65 13 /" addi ae, zero,
00 70 62 93 /7 addi te, zero,
00 00 00 73 /" ecall

of .HELLO address into a@

0
by defaU|t 25 addi ae, a0, %lo(.HELLO) # this loads the bottom 12 bits 0
0
)

26 addi a1, zero, 7 # length of the string A
el
print characters ‘!', ‘\n', '-' L e LlLll Bl /" e

- —hdl Ao - ~ nxaanaaahe aA 73 1L PrAa v
Console Instruction breakdown
“sevesss Parser QULput **s+ssssss 31 0 1015 1412 11 7 6 0
Parsing successful!

imm rsl funct3 rd opcode

000000000000 00000 000 00000 0010011

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Text and

BRISC-V Home

JRjiSc-V Simulator

Adaptiv
C source

e and Secure Compt ns Lab * Boston University

1 int fib(int n) {
if (n<=1) {

3 return n;
} else {
5 return fib(n-1)+fib(n-2);

7

' Labels in data sections point to f
memmw statically allocated after
them

int main(){

int n = 9;

int result = return_function (fib(n));
16 return result;

Here we allocate the string J
"HELLO!" by into two 32bit words
— one with “HELL" and one with
"Ol00”

23

24

Console
“sssssss Parser Output **sssssssss
Parsing successful!

BRISC-V Simulator

RISC-V Assembly

Data Secti

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

1ONS

Manual & Examples

| ADAPTIVE & SECURE

o '\S((l)\ll’l TING SYSTEMS
LABORATORY

ecall

let's statically allocate a string "HELLO!"

we start this by creating a read-only data section
.rodata

.HELLO:

strings should end with the null terminator \@

the null terminator's binary value is 6!

we split HELLO!\® into two 32bit words:

HELL and 0!'00 - note that thats an "0!" and 2 zeros
we write HELL in ascii:

H - 0x48

E - 0x45

L - 0xac

since this is a little-endian architecture, we

write HELL in reverse - LEHH

.word 0x4C4C4548

now we write the second part 0!00

.word 0x0000214F

this section is parsed when you load the program -
not when the instruction pointer runs over it.

as soon as you loaded the program, you should see
this string in the memory pane's data section,
somewhere close to the bottom of it.

*® % R R RN

now we can go back to a text section that has code
.text

print the string "HELLO!\n"

addi te, zero, 3
lui a@, %hi(.HELLO) # this loads the top 20 bits

of .HELLO address into a@
addi a@, a0, %lo(.HELLO) # this loads the bottom 12 bits
addi a1, zero, 7 # length of the string

ecall

print characters '!',

i

“\n', -t

this is the string printing syscall

Jister Memory
UU U6 00
00 08 00
60 00 66 00
00 00 00 00
00 00 00 00
060 00 60 00
) 060 00 60 00
) 60 00 00 00
:] g 00 00 00 00
0x00000114 60 00 06 00
0x00000110: 00 00 06 00
)x0000010¢ : 00 00 00 00
HEAP SEGMENT
DATA SEGMENT
)xB0000168 080 00 21 4f
0x00000104: 4C 4c 45 48 // <-- .hello
TEXT SEGMENT
)x0000010¢ 060 60 60 13 // addi zero,zera
0x0000001 ¢ 06 00 00 13 // addi zero,zerg
0x00000018 00 00 00 13 // addi zero,zerg
f 00 00 00 13 // addi zero, zerg
00 00 80 e7 // jalr ra,e(ra)
) 86 00 00 97 // auipc ra,exe
) 00 00 00 13 // addi zero,zera
0x000000e4 00 00 60 13 // addi zero, zerd
)1x000000e0 : 60 00 00 13 // addi zero,zera
0x000000dc: 60 00 60 13 // addi zero, zerg
)x000000d8 006 00 80 67 // jr ra
) 00 00 00 73 /" ecall
0 71 00 85 13 /" addi ae, zero,
0x 00 70 62 93 /7 addi te, zero,
0x000000¢ 00 00 00 73 /" ecall
)x000000¢ ff 00 65 13 /1 addi a@, zero,
)x000000CE 06 70 02 93 // addi te, zero,
laxpanaaahe "0 7 b i« e A Y.y i I 1|

Instruction breakdown
31 20 19 15 14 12

funct3

217 B 0
rd opcode
00000 0010011

imm rsl

000000000000 00000 000

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Text and

dRJiSc-V Simulator

1 int fib(int n) { 22
2 if (ne=1) {

3 return n;
} else {
5 return fib(n-1)+fib(n-2);

) int return_function (int result) {
1€ return result;

}

int main(){

int n = 9;

int result = return_function (fib(n));
16 return result;

You can see the allocated
memory in the data segment in
the memory pane! You can also

see the .HELLO pointer!

BRISC-V Simulator

RISC-V Assembly

Data Sections

Memory

WASCS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Manual & Examples

| ADAPTIVE &
| COMPUTING SYSTEMS

SECURE

LABORATORY

Console
“sssssss Parser Output **sssssssss
Parsing successful!

ecall UU U6 00
let's statically allocate a string "HELLO!" podtadladiy)
we start this by creating a read-only data section :: :: :: ::
.rodat
. 00 00 60 00
strings should end with the null terminator \@ : :g :: ::
the null terminator's binary value is 6!
we split HELLO!\@ into two 32bit words: e :e :: b
HELL and 0100 - note that thats an "0!" and 2 zeros :: s: s ::
we write HELL in ascii:
#H - oxd8 00 00 06 00
#E - 0x45 0x0000010¢ : 00 00 00 00
#L - Ox4C HEAP SEGMENT
since this is a little-endian architecture, we xT:esgflﬂs'f"
write HELL in reverse - LEHH
.word 0x4C4C4548 dcdc 4548 // <-- .hello
now we write the second part 0!00 TEXT SEGMENT £
word 0x0000214F 060 60 60 13 // addi zero,zera
this section is parsed when you loa . o L flapaces ek
2 not when the instructicn R 0x00000018 00 00 00 13 // add} zero,zerg
as soon as you 1 e program, you should see 00 00 00 13 i adgl selubin
this st he memory pane's data section, 96790 90, ¢ /" ja‘r ra,e(ra)
ere close to the bottom of it. 90790 90 .97 /S MUPCRR TS, K0
1 080 60 00 13 // addi zero, zerq
now we can go back to a text section that has code Exgooueeed o Lot bt /" add% e o
_text)x000000e0 : 00 00 00 13 // addi zero,zerg
print the string "HELLO!\n® 0x000000dc : 00 00 00 13 // addi zero,zerg
addi te, zero, 3 # this is the string printing syscall Hr 0060 x :: :: g; //ir r?l
lui 2@, %hi(.HELLO) # this loads the top 20 bits X // eca
of .HELLO address into a@ % Al /" add! L g
addi a0, a0, %lo(.HELLO) # this loads the bottom 12 bits 0x006060 s Sttt B il B
addi al, zero, 7 # length of the string 9x0000 €0 60 60 73 /" aca’
ecall)x000000c4 : ff 00 65 13 /7 addi a@, zero,
print characters *1v, "\n*, 05)x000000c0 00 70 082 93 /" addi te, zero,
sl ek i 2 lovoonaaah-. AR AR AR 73 [/ er i
Instruction breakdown
31 20 19 15 14 12 11 7 6 0
imm rsl funct3 rd opcode

000000000000 00000 000 00000 0010011

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

System Calls

= We also provide some simple system calls

= System calls are used for functionalities provided by the operating
system
 Think file systems, IO, etc.

* |n RISC-V, system calls look something like:

* Put the type of system call you want in register t0
* More about that on the next slide

« Put any arguments you may have in a0 and a

 Call instruction ECALL

e If the system call has return values, they will be in a0

= To really get familiar with syscalls, try running the example syscall file
in the simulator

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Supported Syscalls

Syscall Syscall ID Description
(put this in t0)

Print integer
Print char

Print string

Read integer
Read char

Read string

SBRK

1
2
3

4

6

Print integer value in a0 to console
Print ascii value in a0 to console

Print string with address in a0 and length in al to console

Read integer from console into a0
Read character from console into a0 as an ascii value

Read string of length given in al from console and store it
at address in a0

Dynamically allocate the amount of bytes specified in a0.
The pointer to the beginning of the newly allocated
memory will be stored in a0. The value in a0 can be
negative, if you want to deallocate some memory!

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

BRISC-V Home BRISC-V Simulator Manual & Examples

((BIASCS| tonrmne sverras
Slesc-V Simulator DASCH ISR

Adaptive and Secure Computing Systems Lab « Boston University

C source RISC-V Assembly Registers = Memory
Register Value Register Value
1 int fib(int n) { 2} addi zero,zero,@ e 0 o = m 73
2 if (n<=1) { kernel:
3 return n; addi sp,zero,15 sp [2] 1456 ap Bl O
4 } else { call i
5 return fib(n-1)+fib(n- zero, tp 4 o to [51 0
6 } L
7) L\ 1 12 [71 0
8 / ERE o 1536 s1 © o
9 int return_function (int resul - —
10 return result; 4 a0 0] al [11] 48
u) Mo y o
12 addi zero,zero,@ a2 [12] © a3 [13] ©
13 int main(){ .file "gcd.c”
14 int n = 9; .option nopic &3 4] 2 & 15 3
15 int result = return_function (fib(n)); Jtext a6 [16] 0 a7 17 0
16 return result; .align 2 [
17} .glol ged [0 s3 191 O
tjife cd, @Tuncilon
4 It 0 s5 211 0
ad| P,5P,
sw ra,44(sp) s [22] l) 7/ | O
sw_$@,40(sp) s8 24 © s9 251 ©
o s0,sp,48
s10 [26] O s11 [271 0
Wl I e t 28] 0 t4 [291 O
24,25, .12 t5 ' [30] O t6 [311 0
1w a5,-36(se)
sw a5,-20(se)
j .3 ° I
a (s8)
as)\ (se) .
PP ‘a
Console Instruction breakdown
Fo°***"* Parser Output sssssssssss * |81 20 19 15 14 12 11 7 6 0
Parsing successful!
imm rs1 funct3 rd opcode

000000110000 00010 000 01000 0010011

