Eng“inﬂeeri‘ng

Arizona State University

RISC-V Introduction

STAM Center Staff

1/27/26

ering

Arizona State University

Brief Overview of the RISC-V ISA

= A new, open, free ISA from Berkeley
= Several variants
« RV32, RV64, RV128 - Different data widths
« 'I' = Base Integer instructions
*+ ‘M’ = Multiply and Divide
« ‘A’ - Atomic memory instructions
+ 'F"and 'D’ - Single and Double precision floating point
* 'V’ - Vector extension
+ And many other modular extensions

= We will focus on the RV32I the base 32-bit variant

Eng“inﬂeeri‘ng

Arizona State University

RV32l Register State

= 32 general purpose registers (GPR)
= x0, x1, ..., x31
= 32-bit wide integer registers
= x0 is hard-wired to zero

Rv128

S
=
|
‘
!
|
2
1|8
i
|
|
=

er
RV32l Register Conventions
NAME Register Number Usage
zero X0 Hardwired to the constant value 0
sp x2 Stack pointer (stack grows downwards)
ap x3 Global pointer (e.g. to static data area)
0 -t2 X5 = x7 More temporary registers (caller saves)
s0/fp X8 Frame pointer (to local variables on stack)
s1 x9 Saved register (callee saves)
a0 - al x10 - x11 Arguments (parameters) to subroutines / return
a2-a7 x12 - x17 Arguments (parameters) to subroutines
s2 - s11 x18 - x27 Saved registers (callee saves)
t3-1t6 x28 - x31 Temporary registers (caller saves)

na State University

1/27/26

= 32 general purpose registers (GPR)
= x0, x1, ..., X
= 32-bit wide integer registers
= x0 is hard-wired to zero
Program counter (PC)
= 32-bit
CSR (Control and Status Registers)
= User-mode
= cycle (dlock cydles) // read only
= instret (instruction counts) // read only
= Machine-mode
= hartid (hardware thread ID) // read only

= Custom

+ mepe, meause etc. used for exception handling

RV32| State

= mtohost (output to host) // write only - custom extension

er

Base Instruction Formats

= The base RISC-V ISA has six instruction formats

5w T v wu_ wu s 7 o 0
[Tanct? T) [ol [funct3 | T Topeode] R-type
[110 [ot] funes | X [opeode] I-type
TS) [l [funct3 [0] [opeode] S-type
[l T2 o [1055] | 52 [w1 functs [fma[1] | fmm[11] | opcode | B-type
[TR T T Topcade] U-type
) TR T[] | o T Topcode | J-type

na State University

er

Base Instruction Formats

= The base RISC-V ISA has six instruction formats
= The R,I,S & U are most common

Arizona State University

1/27/26

5w ma _ m w ® Bu_ en s 7 6 0

Tanct? 2 [el [funcs | rd Topcode] R-type
[110 [ot] funcs | & [opeode] I-type
IS) [l [funct3 [0] [opeode] S-type
[l T2 | o [1055] | 52 [w1 | functs [fmm[4:1] | fmm[11] | opcode | B-type
[TR T T Topcode] U-type
0 R Ty N T L R T e m Topcode] J-type

RISC-V ISA Features

Arizona State University

W T wm W w B B s 7 60
[Tanci? T 2 T oot [fones | v Topcode | R-type
[(110 [ol [funeis | rd Topcode] type
T | 7 [w1 [funcd | fmm[@0] T opoode] S-type
(12 o [105] |) [w1 [funct3 [imum[41] [mm[I1] [opeode | B-type
I [IMGIEE) I i Topeade] U-type
(mmPo] mm (101 Timm [T | 0] [Topcode] J-type

er

RISC-V ISA Features

= 7-bit opcode to decode divides instructions into similar types

= Examples: Different opcodes for loads, stores, and R-type

instructions

5w mu_w w w Bu_ wmu s 7 o o
[Tanct? T) [o[faneis | T Topeode |[R-type
[T 110 o fanet | i Topeode |[-type
ST) [vl | funeis | imm[@0]_ [T opeode |[s-type
(T2 | o105 |) [T Funet3 [fowm[] [T 1T] opeode | [B-type
[[EEE) T i Topeode |U-type
T 03 T S T T Topeode]fr-ype

er

eering

Arizona State University

RISC-V ISA Features

= Funct3 field further decodes type of instruction

= Example: For load instructions, funct3 equals log,(N), where N is
number of bytes to load

5w ma _wm w W s 7 5 o

[Tanct? T 2 [i | fuos rd Topcode] R-type
[110 [ol [o & [opeode] I-type
IS) | T [0 [opeode | S-type
[l T2 | o [1055] | T2 [w1 Funct3_[[imm[4:1] | imm[11] | opcode | B-type
[TR T Topcade] U-type
) TSR I T B T Topcode | J-type

10

ficcurs, usten, o assurto mickortecTRowcs Arizona State University

RISC-V ISA Features

* Funct? field further decodes type of instruction
* Only used in R-Type instructions

* Provides support for large number of arithmetic operations

W T wm w w B Bn s 7 60

[Tanci? i - T oot [fones | v Topcode | R-type
[110 [ol [funeis | rd Topcode] type
T | 7 [w1 [funcd | fmm[@0] T opoode] S-type
(12 o [105] |) [w1 [funct3 [imum[41] [mm[I1] [opeode | B-type
I [IMGIEE) I i Topeade] U-type
(mmPo] mm (101 T[T] 0] [Topcode] J-type

11

er

RISC-V ISA Features

= Register operands in same fields for all instructions
= Supports efficient decoding of instructions

5w E TR TR) [T s 7 o o
[Tanct?) 1| funcs rd Topcode | R-type
[T [| IS v Topcode] -ype
| T) 1| funcs [0 |[opeode | S-type
| e) Y +S1 [Tunetd || @] [[T1]] opeode] B-type
[TR [Topcode] U-type
) TR TTmm[T1] | [10:17] T Topcode | J-type

12

1/27/26

er

Eng eeri‘ng

Arizona State University

RISC-V ISA Features

* Note the different immediate value encodings in I,S,B,U,J Types
= Different ways to store data in the instruction
* Loads store address offsets, B & J store address targets

% mu_w w w Bu_ Bu s 7 5 o

[Tanct? T 2 [st [functs | vd Topcode] R-type
[Tm[110] | ST v Topcode] -ype
[(]) [ool [fnefp | fmm[@0]_fpeode] S-type
[l 2] e 0] w2 | ot [funels [0 w1 fpcode] Btype
[T 3112] i xd Topcode] U-type
20 1 T il T Topeode] J-type

1/27/26

13

Computational Instructions
= Register-Register instructions (R-type)

* Read two register values, perform a computation, and store the result back to the
register file

7 5 5 3 5 7
[fner [w2 [st |3 |

opeoie |

= Example Instructions (Not complete)

[instruction __| Operation __|

ADD rd =rs1 +rs2
XOR rd =rs1 A~ rs2
SLL rd =rs1 << rs2
SLT rd =rs1<rs2

14

er

Eng“inﬂeeri‘ng

Arizona State University

Computational Instructions

= Register-immediate instructions (I-type)

« Read one register, perform an operation with rs1 data and immediate value, write result
back to register file

12 5 5 7

\ o] [o T [w0 | owoie]

= Example Instructions (Not complete)

[instruction __|operation __|

ADDI rd = rs1+imm
ORI rd=rsl | imm
SRLI rd = rs1>> (imm%32)
SLTI rd =rsl<imm

15

er

Eng“inﬂeering

Arizona State University

Computational Instructions

= Register-immediate instructions (U-type)
* Load an immediate value into the register file
+ May or may not perform operation with immediate data before loading

20 5 7
‘ imm[31:12] ‘ rd ‘ opcode ‘

= Example Instructions (Not complete)

[instruction ___|operation _

LUl rd =imm
AUIPC rd = PC+imm

16

ficcurs, usten, o assurto mickortecTRowcs Arizona State University

Control Instructions

= Unconditional jump and link (J-type)
+ JAL: Write PC+4 into the register file, set the PC=PC+imm
1 10 1 8 5 7
[immio) | immi10a) [immiiy) | immi1s:12] | rd | opcode |

» Jump +1MB range
= Unconditional jump via register and link (I-type)
+ JALR: Write PC+4 into register file, set PC= (rs1 + I-imm) & ~0x01
12 5 3

[imm(11:0] [1 Jama3] rd | opeode

17

Eng l;eering

Arizona State University

er

Control Instructions

= Conditional branches (B-type)
* Read two registers, perform comparison, jump to PC+imm if comparison is true, else
execute PC+4 next
* Jump +4KB range
1 6 5 s 3 4 1 7
[immp2) | immi0:s) [rs2 [rst [functs | immiact) | imm(11) | opcode |

= Example Instructions (Not complete

e
BLT next PC = (rs1 <rs2) ? pc+imm : pc+4
BEQ next PC = (rs1 ==rs2) ? pc +imm : pc + 4

18

1/27/26

er

bccu, austen, awo assuro micrortscraomcs Arizona State University

Load & Store Instructions

Load (I-type)
3 7
I imm(11:0] T

= opcode = LOAD: rd € mem[rs1 + I-imm]
= |-imm = signExtend(inst[31:20])

= funct3 = LW/LB/LBU/LH/LHU
Store (S-type)

7 5

5
‘ imm[11:5] ‘ rs2 ‘ rs1 ‘ funct3 ‘ imm([4:0] opcode

= opcode = STORE: mem[rs1 + S-imm] € rs2
= S-imm = signExtend({inst[31:25], inst[11:7]})
= funct3 = SW/SB/SH

1/27/26

19

Assembly Programming

= Function call

1. Caller places parameters in a place where the procedure can access
them

2. Transfer control to the procedure

3. Acquire storage resources required by the procedure

4. Execute the statements in the procedure

5. Called function places the result in a place where the caller can
access it

6.

Return control to the statement next to the procedure call

20

er

Assembly Programming

= Function call

= Argument Passing
= Arguments to a function passed through a0-a7
= Functions with more than 8 arguments
= First eight arguments are put in a0-a7
= Remaining arguments are put on stack by the caller
= Return Values
= Return values from a function passed through a0-al
= Functions with more than 2 return values

21

1/27/26

er

Arizona State University

Assembly Programming

= Function call

= Argument Passing
= Arguments to a function passed through a0-a7
= Functions with more than 8 arguments

= Return Values

= Return values from a function passed through a0-al
= Functions with more than 2 return values

= First two return values put in a0-al
= Remaining return values put on stack by the function
= The remaining return values are popped from the stack by the caller

22

If then Else Assembly

if (a0 < 0) then bgez a0,
(# if (a0 = zero) branch to
t0 = 0 - a0; clee
1 = oa s sub t0, zero
t0 gets the negative of a0
b addi t1, ti,
else increment t1 by 1
i 3 next
t0 = a0; # branch around the else code
t2 = t2 + 1; else:
} ori t0, a0, 0

t0 gets a copy of a0
addi t2, t2, 1
4 increment t2 by 1
next:

23

er

Arizona State University

e i 0, 1 ¥ Load c0 & sero 4
While (al < a2) HOED
do
{
tl = mem([al];
t2 = mem[a2];
if (t1 != t2)
go to break;
al = al +1;
a2 - a2 -1; b loop # Branch to loop
) break
break: t0 = 0 i t0, 0 ¥ Load t0 with the value 0

24

1/27/26

er E
For loop Assembly
a0 = 07 1i a0, 0 # a0 =0
For (t0 =10; 1i t0, 10
t0 > 0; # Initialize loop counter to 10
t0 = t0 -1) :
do { d a0, a0, t0
a0 = a0 + to0 addi t0, t0, -1
) # Decrement loop counter
bgtz t0, loop
if (t0 >0) Branch to loop

25

Assembly

= Case study

= Assume that A is an array of 64 words and the
compiler has associated registers a1 and a2 with the
variables x and y. Also assume that the starting
address, or base address is contained in register a0.
Determine the RISC-V instructions associated with
the following C statement:

* x =y + A[4]; //adds 4th element in array A to y and stores result in x

26

er

Assembly

= Case study

= Assume that A is an array of 64 words and the compiler
has associated registers a1 and a2 with the variables x
and y. Also assume that the starting address, or base
address is contained in register a0.

= x=y+A[]; // adds 4th element in array A to y and stores result in x
= Solution:
= lw t0, 16(a0) # a0 contains the base address of array and

16 is the offset address of the 4th element
= add al, a2, t0 # performs addition

27

