STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

% IE?\gmeermg

a State Uni

RISC-V Introduction

STAM Center Staft

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Brietf Overview of the RISC-V ISA

= A new, open, free ISA from Berkeley

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

= Several variants
« RV32, RVé4, RV128 — Different data widths
* '|"— Base Integer instructions
* 'M" — Multiply and Divide
* 'A’ — Atomic memory instructions
« 'F"and ‘D’ - Single and Double precision floating point
* V' — Vector extension

* And many other modular extensions
= We will focus on the RV32| the base 32-bit variant

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

RV32| Register State

= 32 general purpose registers (GPR)
= x0, x1, ..., x31
= 32-bit wide integer registers
= x0 is hard-wired to zero

B RV128 - RV128
RV64 RV64
- RV32 RV32
[[[x07zero | A [I [x16]
[I [x1] [I [x17]
I I [] [| [xi8]
| | L | | | [e |
| | [a] | | 2]
| T x5] | | []
| | [x6 || = I | [<2 |
| | [xz < | | [<=]
| [[x8 | | [[2 |
| | [1| m I | [x>]
| | [xi0 | | | [x%]
| | [m] | | [=7]
| | [x2] I | [s]
| | [x3] I | [x> | |
| | [&] | | [30 |
| | [x5 1Y | | [31 |
127 63 31 (0}

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

RV32| Register Conventions

NAME Register Number Usage
zero x0 Hardwired to the constant value 0
ra x1 Return address for subroutine calls
sp X2 Stack pointer (stack grows downwards)
ap X3 Global pointer (e.g. to static data area)
tp x4 Thread pointer
t0 —t2 x5 — x7 More temporary registers (caller saves)
sO/fp x8 Frame pointer (to local variables on stack)
sl X9 Saved register (callee saves)
a0 - al x10 - x11 Arguments (parameters) to subroutines / return
values
a2 —a7/ x12 = x17 Arguments (parameters) to subroutines
s2 - sll x18 — x27 Saved registers (callee saves)
t3-16 x28 — x31 Temporary registers (caller saves)

“Ira A.Ful_ton Schoo!sof
%‘ Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

RV32| State

= 32 general purpose registers (GPR)
= X0, x1, ..., x31
= 32-bit wide integer registers
= X0 is hard-wired to zero

= Program counter (PC)
= 32-bit
= CSR (Control and Status Regjisters)

= User-mode
= cycle (clock cycles) // read only
= instret (instruction counts) // read only
» Machine-mode
= hartid (hardware thread ID) // read only
= mepc, mcause etc. used for exception handling

= Custom

= mtohost (output to host) // write only — custom extension

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

FSi

Base Instruction Formats

» The base RISC-V ISA has six instruction formats

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct7 | rs2 | rsl | funct3 | rd | opcode | R-type
| imm[11:0] | 1s1 | funct3 | rd | opcode | I-type
| imm|11:5] | rs2 | 1s1 | funct3 | imm|4:0] | opcode | S-type
[fmm[12] | imm[10:5] |) [51 | funct3 |imm[4:] | imm[11] | opcode | B-type
| mm[31:12] | rd [opcode | U-type
[Tmm[20] | fmm[10:1] [fom[11] | imm[19:12] | rd [opcode | J-type

Ira A.Fulton Schools of

Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Base Instruction Formats

» The base RISC-V ISA has six instruction formats
» The R,I,S & U are most common

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct7 | rs2 | rsl | funct3 | rd | opcode | R-type
| imm[11:0] | 1s1 | funct3 | rd | opcode | I-type
| imm|11:5] | rs2 | 1s1 | funct3 | imm|4:0] | opcode | S-type
[fmm[12] | imm[10:5] |) [51 | funct3 |imm[4:] | imm[11] | opcode | B-type
| mm[31:12] | rd [opcode | U-type
[Tmm[20] | fmm[10:1] [fom[11] | imm[19:12] | rd [opcode | J-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

FSi

RISC-V ISA Features

31 25 24 21 20 19 15 14 12 11 8 7 6 0
| | rs2 | rsl | funct3 | rd | opcode | R-type
| imm[11:0] | 1s1 | funct3 | rd | opcode | I-type
| imm[11:5] | rs2 | 1s1 | funct3 | imm|4:0] | opcode | S-type
[fmm[12] | imm[10:5] |) [51 | funct3 |imm[4:] | imm[11] | opcode | B-type
| mm[31:12] | rd [opcode | U-type
[Tmm[20] | fmm[10:1] [fom[11] | imm[19:12] | rd [opcode | J-type

Ira A.Fulton Schools of

Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
%l Engineering

Arizona State University

RISC-V ISA Features

= /-bit opcode to decode divides instructions into similar types

= Examples: Different opcodes for loads, stores, and R-type
Instructions

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct7 | rs2 | rsl | funct3 | rd | opcode |[R-type
| imm[11:0] | 1s1 | funct3 | rd | opcode |[I-type
| imm|11:5] | rs2 | 1s1 | funct3 | imm|4:0] | opcode |[S-type
[fmm[12] | imm[10:5] |) [51 | funct3 |imm[4:] [imm[11]] opcode |B-type
| mm[31:12] | rd [opcode ||U-type
[fmm[20] | fmm[10:1] [fmm[11] | mm[19:12] | rd [opcode |p-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
%l Engineering

Arizona State University

RISC-V ISA Features

= Funct3 field further decodes type of instruction

= Example: For load instructions, funct3 equals log,(N), where N is
number of bytes to load

31 30 25 24 21 20 19 114 12t 8 7 6 0
| funct7 | rs2 | rsl | funct3 | rd | opcode | R-type
| imm[11:0] | sl | funct3 | rd | opcode | I-type
| imm|11:5] | rs2 | sl || funct3 | imm|4:0] | opcode | S-type
[imm[12] | imm[10:5] | rs2 [sl || funct3 [[imm[4:1] [imm[11] [opcode | B-type
| imm(31:12] | rd [opcode | U-type
[imm[20] | fmm[10:1] Gmm[11]] om[]9:12] | rd [opcode | J-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

RISC-V ISA Features

= Funct/ field further decodes type of instruction

* Only used in R-Type instructions
= Provides support for large number of arithmetic operations

31 30 25 2‘4 21 20 19 15 14 12 11 8 7 6 0
| funct7 R rs2 | rsl | funct3 | rd | opcode | R-type
| imm[ll::)] | 1s1 | funct3 | rd | opcode | I-type
| imm|11:5] | rs2 | 1s1 | funct3 | imm|4:0] | opcode | S-type
[fmm[12] | imm[10:5] |) [51 | funct3 |imm[4:] | imm[11] | opcode | B-type
| mm[31:12] | rd [opcode | U-type
[fmm[20] | fmm[10:1] [fmm[11] | mm[19:12] | rd [opcode | J-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

RISC-V ISA Features

= Register operands in same fields for all instructions

= Supports efficient decoding of instructions

31 30 2i 24 21 20 19 b 14 1. 11 8 7 6 0
| funct7 rs2 rsl1 || funct3 rd | opcode | R-type
| imm [1J1:0] rs1 || funct3 rd | opcode | I-type
| imm|11:5] rs2 rs1 || funct3 imm|4:0] | opcode | S-type
[imm[12] | imm[10:5] 152 rsl || funct3 | imm[4:1] [imm[11]] opcode | B-type
| imm[31:12] rd | opcode | U-type
[imm[20] | imm[10:1] [imm[11] | imm[19:12] rd | opcode | J-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

RISC-V ISA Features

= Note the different immediate value encodings in I,S,B,U,J Types

= Different ways to store data in the instruction
 Loads store address offsets, B & J store address targets

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct7 | rs2 | rsl | funct3 | rd | opcode | R-type
| imm[11:0] |i rsl | funct3 | rd | opcode | I-type
| imm|11:5] d rs2 | 1s1 | functp | imm|4:0] | i}pcode | S-type
] s [| 152 [ol [| | el] i}pcode [Eriac
| mm[31:12] | rd [opcode | U-type
[fmm[20] | fmm[10:1] [fmm[11] | mm[19:12] | rd [opcode | J-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Computational Instructions
= Register-Register instructions (R-type)

* Read two register values, perform a computation, and store the result back to the
register file

funct?7 rs2 rsl funct3 rd opcode

= Example Instructions (Not complete)

instruction | Operation

ADD rd =rsl +rs2
XOR rd=rsl *rs2
SLL rd =rsl <<rs2

SLT rd =rsl<rs2

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Computational Instructions

= Register-immediate instructions (I-type)

* Read one register, perform an operation with rs1 data and immediate value, write result
back to register file

12 5 3 5 7
imm[11:0] rsl funct3 rd opcode

= Example Instructions (Not complete)

I T

ADDI rd =rsl+imm
ORI rd=rsl | imm
SRLI rd = rs1 >> (imm%32)

SLTI rd=rsl<imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Computational Instructions

= Register-immediate instructions (U-type)
* Load an immediate value into the register file
* May or may not perform operation with immediate data before loading

20 5 7
imm[31:12] rd opcode

= Example Instructions (Not complete)

insruction | operation

LUI rd =imm

AUIPC rd = PC+imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Control Instructions

= Unconditional jump and link (J-type)

« JAL: Write PC+4 into the register file, set the PC=PC+imm
1 10 1 8 5 7

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

= Jump =1MB range

= Unconditional jump via register and link (I-type)

« JALR: Write PC+4 into register file, set PC= (rs1 + I-imm) & ~0x01
12 5 3 5 7

imm[11:0] rsl funct3 rd opcode

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Control Instructions

= Conditional branches (B-type)

* Read two registers, perform comparison, jump to PC+imm if comparison is true, else
execute PC+4 next
* Jump +4KB range
1 6 5 5 3 4 1 7
imm[12] imm[10:5] rs2 rsl funct3 imm[4:1] imm[11] opcode

= Example Instructions (Not complete

m

next PC=(rs1<rs2)?pc+imm:pc+4

BEQ next PC=(rsl==rs2)? pc+imm:pc+4

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

|l oad & Store Instructions

* Load (I-type)
12 5 3 5 7
imm[11:0] rsl funct3 rd opcode

= opcode = LOAD: rd € mem][rs1 + I-imm]

= |-imm = signExtend(inst[31:20])

» funct3 = LW/LB/LBU/LH/LHU
= Store (S-type)

7 5 5 3 5 7
imm[11:5] rs2 rsl funct3 imm[4:0] opcode

= opcode = STORE: mem|[rs1 + S-imm] € rs2
= S-imm = signExtend({inst[31:25], inst[11:7]})
» funct3 = SW/SB/SH

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly Programming

= Function call

1. Caller places parameters in a place where the procedure can access
them

. Transfer control to the procedure
. Acquire storage resources required by the procedure
. Execute the statements in the procedure

o B~ W DN

. Called function places the result in a place where the caller can
access It

O~

. Return control to the statement next to the procedure call

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Assembly Programming

» Function call

= Argument Passing

= Arguments to a function passed through a0-a7
» Functions with more than 8 arguments

= First eight arguments are put in a0-a7
= Remaining arguments are put on stack by the caller

= Return Values

= Return values from a function passed through a0-a'
= Functions with more than 2 return values

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Assembly Programming

» Function call

= Argument Passing

= Arguments to a function passed through a0-a7
» Functions with more than 8 arguments

= Return Values

= Return values from a function passed through a0-a'
» Functions with more than 2 return values

= First two return values put in a0-a'

= Remaining return values put on stack by the function

= The remaining return values are popped from the stack by the caller

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ IraA. Ful_ton Schoo!s of
Engineering

Arizona State University

It then Else Assembly

if (a0 < 0) then bgez a0, else
{ # 1f (a0 is > or = zero) branch to

t0 = 0 - a0; else
sub t0, zero, a0

tl = tl1 +1; # t0 gets the negative of a0
} addi t1, t1, 1
else # increment tl by 1
{] next
t0 = ao0; # branch around the else code
t2 = t2 + 1; else:
} ori t0, a0, O

t0 gets a copy of a0l

addi t2, t2, 1

increment t2 by 1
next:

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ IraA. Ful_ton Schoo!s of
Engineering

Arizona State University

While Do Assembly

t0 = 1 11 t0, 1 # Load t0 with the value 1
While (al < a2) Loop:
bgeu al, a2, done
do # 1f(al >= a2) Branch to done
{ lw tl1, 0(al)
tl = mem[al]; # Load a Byte: tl = mem[al + 0]

1w t2, 0(a2)
) # Load a Byte: t2 = mem[a2 + 0]
1f (1 '= t2) bne tl, t2, break
go to break; # 1f (tl != t2) Branch to break
addi al, al, 1 # al = al + 1
—_— _I_ . 14 4
al al 1; addi a2, a2, -1 # a2 = a2 -1

t2 = mem[aZz2];

az = az -1; b loop # Branch to loop
} break:
break: t0 = 0 1i t0, O # Load t0 with the value 0

done:

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

For loop Assembly

a0 = 0; 1i a0, O # a0 =0
For (t0O =10; 1i t0, 10
t0 > 0; # Initialize loop counter to 10
t0 = t0 -1) loop:
do { add a0, a0, toO
a0 = a0 + toO0 addi t0, tO0, -1
1 # Decrement loop counter
bgtz t0, loop
1if (t0 >0) Branch to loop

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly

= Case study

= Assume that A is an array of 64 words and the
compiler has associated registers al and a2 with the
variables x and y. Also assume that the starting
address, or base address is contained in register a0.
Determine the RISC-V instructions associated with
the following C statement:

" X=y+ A[4]; // adds 4th element in array A to y and stores result in x

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Assembly

» Case study

= Assume that A is an array of 64 words and the compiler
has associated registers al and a2 with the variables x
and y. Also assume that the starting address, or base
address is contained in register a0.

" X=y+ Al4]; // adds 4th element in array A to y and stores result in x
= Solution:
= jw t0, 16(a0) # a0 contains the base address of array and

16 is the offset address of the 4th element
= add al, a2, t0 # performs addition

