
RISC-V Introduction

STAM Center Staff

Brief Overview of the RISC-V ISA
§ A new, open, free ISA from Berkeley
§ Several variants

• RV32, RV64, RV128 – Different data widths
• ‘I’ – Base Integer instructions
• ‘M’ – Multiply and Divide
• ‘A’ – Atomic memory instructions
• ‘F’ and ‘D’ – Single and Double precision floating point
• ‘V’ – Vector extension
• And many other modular extensions

§ We will focus on the RV32I the base 32-bit variant

RV32I Register State
§ 32 general purpose registers (GPR)

§ x0, x1, …, x31
§ 32-bit wide integer registers
§ x0 is hard-wired to zero

RV32I Register Conventions
NAME Register Number Usage

zero x0 Hardwired to the constant value 0

ra x1 Return address for subroutine calls
sp x2 Stack pointer (stack grows downwards)

gp x3 Global pointer (e.g. to static data area)

tp x4 Thread pointer

t0 – t2 x5 – x7 More temporary registers (caller saves)

s0/fp x8 Frame pointer (to local variables on stack)

s1 x9 Saved register (callee saves)

a0 - a1 x10 – x11 Arguments (parameters) to subroutines / return
values

a2 – a7 x12 – x17 Arguments (parameters) to subroutines

s2 - s11 x18 – x27 Saved registers (callee saves)

t3 – t6 x28 – x31 Temporary registers (caller saves)

RV32I State
§ 32 general purpose registers (GPR)

§ x0, x1, …, x31
§ 32-bit wide integer registers
§ x0 is hard-wired to zero

§ Program counter (PC)
§ 32-bit

§ CSR (Control and Status Registers)
§ User-mode

§ cycle (clock cycles) // read only
§ instret (instruction counts) // read only

§ Machine-mode
§ hartid (hardware thread ID) // read only
§ mepc, mcause etc. used for exception handling

§ Custom
§ mtohost (output to host) // write only – custom extension

Base Instruction Formats
§ The base RISC-V ISA has six instruction formats

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

Base Instruction Formats
§ The base RISC-V ISA has six instruction formats
§ The R,I,S & U are most common

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

RISC-V ISA Features

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

RISC-V ISA Features
§ 7-bit opcode to decode divides instructions into similar types
§ Examples: Different opcodes for loads, stores, and R-type

instructions

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

RISC-V ISA Features
§ Funct3 field further decodes type of instruction
§ Example: For load instructions, funct3 equals 𝑙𝑜𝑔!(𝑁), where N is

number of bytes to load

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

RISC-V ISA Features
§ Funct7 field further decodes type of instruction
• Only used in R-Type instructions

§ Provides support for large number of arithmetic operations

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

RISC-V ISA Features
§ Register operands in same fields for all instructions
§ Supports efficient decoding of instructions

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

RISC-V ISA Features
§ Note the different immediate value encodings in I,S,B,U,J Types
§ Different ways to store data in the instruction
• Loads store address offsets, B & J store address targets

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

§ Register-Register instructions (R-type)
• Read two register values, perform a computation, and store the result back to the

register file

§ Example Instructions (Not complete)

funct7 rs2 funct3rs1 rd opcode
7 5 5 3 5 7

Computational Instructions

Instruction Operation
ADD rd = rs1 + rs2
XOR rd = rs1 ^ rs2
SLL rd = rs1 << rs2
SLT rd = rs1 < rs2

§ Register-immediate instructions (I-type)
• Read one register, perform an operation with rs1 data and immediate value, write result

back to register file

§ Example Instructions (Not complete)

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

Computational Instructions

Instruction Operation
ADDI rd = rs1 + imm
ORI rd = rs1 | imm
SRLI rd = rs1 >> (imm%32)
SLTI rd = rs1 < imm

§ Register-immediate instructions (U-type)
• Load an immediate value into the register file
• May or may not perform operation with immediate data before loading

§ Example Instructions (Not complete)

rd opcode
5 7

imm[31:12]
20

Computational Instructions

Instruction Operation
LUI rd = imm
AUIPC rd = PC + imm

Control Instructions
§ Unconditional jump and link (J-type)
• JAL: Write PC+4 into the register file, set the PC=PC+imm

§ Jump ±1MB range

§ Unconditional jump via register and link (I-type)
• JALR: Write PC+4 into register file, set PC= (rs1 + I-imm) & ~0x01

imm[20] imm[10:1] rdimm[19:12]imm[11] opcode
1 10 1 8 5 7

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

Control Instructions
§ Conditional branches (B-type)

• Read two registers, perform comparison, jump to PC+imm if comparison is true, else
execute PC+4 next

• Jump ±4KB range

§ Example Instructions (Not complete

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode
1 6 5 5 3 4 1 7

Instruction Operation
BLT next PC = (rs1 < rs2) ? pc + imm : pc + 4
BEQ next PC = (rs1 == rs2) ? pc + imm : pc + 4

§ Load (I-type)

§ opcode = LOAD: rd ß mem[rs1 + I-imm]
§ I-imm = signExtend(inst[31:20])
§ funct3 = LW/LB/LBU/LH/LHU

§ Store (S-type)

§ opcode = STORE: mem[rs1 + S-imm] ß rs2
§ S-imm = signExtend({inst[31:25], inst[11:7]})
§ funct3 = SW/SB/SH

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

imm[11:5] rs2 funct3rs1 imm[4:0] opcode
7 5 5 3 5 7

Load & Store Instructions

Assembly Programming
§ Function call

1. Caller places parameters in a place where the procedure can access
them

2. Transfer control to the procedure
3. Acquire storage resources required by the procedure
4. Execute the statements in the procedure
5. Called function places the result in a place where the caller can

access it
6. Return control to the statement next to the procedure call

Assembly Programming
§ Function call

§ Argument Passing
§ Arguments to a function passed through a0-a7
§ Functions with more than 8 arguments

§ First eight arguments are put in a0-a7
§ Remaining arguments are put on stack by the caller

§ Return Values
§ Return values from a function passed through a0-a1
§ Functions with more than 2 return values

Assembly Programming
§ Function call

§ Argument Passing
§ Arguments to a function passed through a0-a7
§ Functions with more than 8 arguments

§ Return Values
§ Return values from a function passed through a0-a1
§ Functions with more than 2 return values

§ First two return values put in a0-a1
§ Remaining return values put on stack by the function
§ The remaining return values are popped from the stack by the caller

If then Else Assembly

if (a0 < 0) then
{
 t0 = 0 - a0;
 t1 = t1 +1;
}
else
{
 t0 = a0;
 t2 = t2 + 1;
}

bgez a0, else
 # if (a0 is > or = zero) branch to
else
 sub t0, zero, a0
 # t0 gets the negative of a0
 addi t1, t1, 1
 # increment t1 by 1
 j next
 # branch around the else code
else:
 ori t0, a0, 0
 # t0 gets a copy of a0
 addi t2, t2, 1
 # increment t2 by 1
next:

While Do Assembly

t0 = 1
While (a1 < a2)
 do
 {
 t1 = mem[a1];
 t2 = mem[a2];
 if (t1 != t2)
 go to break;
 a1 = a1 +1;
 a2 = a2 –1;
 }
break: t0 = 0

li t0, 1 # Load t0 with the value 1
loop:
 bgeu a1, a2, done
 # if(a1 >= a2) Branch to done
 lw t1, 0(a1)
 # Load a Byte: t1 = mem[a1 + 0]
 lw t2, 0(a2)
 # Load a Byte: t2 = mem[a2 + 0]
 bne t1, t2, break
 # if (t1 != t2) Branch to break
 addi a1, a1, 1 # a1 = a1 + 1
 addi a2, a2, -1 # a2 = a2 - 1
 b loop # Branch to loop
break:
 li t0, 0 # Load t0 with the value 0
done:

For loop Assembly

a0 = 0;
For (t0 =10;

t0 > 0;
t0 = t0 -1)

do {
a0 = a0 + t0

}

li a0, 0 # a0 = 0
 li t0, 10
 # Initialize loop counter to 10
loop:
 add a0, a0, t0
 addi t0, t0, -1
 # Decrement loop counter
 bgtz t0, loop
 # if (t0 >0) Branch to loop

Assembly
§ Case study

§ Assume that A is an array of 64 words and the
compiler has associated registers a1 and a2 with the
variables x and y. Also assume that the starting
address, or base address is contained in register a0.
Determine the RISC-V instructions associated with
the following C statement:
§ x = y + A[4]; // adds 4th element in array A to y and stores result in x

Assembly
§ Case study

§ Assume that A is an array of 64 words and the compiler
has associated registers a1 and a2 with the variables x
and y. Also assume that the starting address, or base
address is contained in register a0.
§ x = y + A[4]; // adds 4th element in array A to y and stores result in x

§ Solution:
§ lw t0, 16(a0) # a0 contains the base address of array and

 # 16 is the offset address of the 4th element

§ add a1, a2, t0 # performs addition

