Eng“inﬂeeri‘ng

Arizona State University

CSE 520
Computer Architecture I

Influence of Technology and Software on
Instruction Sets

Prof. Michel A. Kinsy

1/10/26

neering
ity

‘Arizona State Universi

And then there was IBM

Users stopped building their own machines
IBM 701

= 30 machines were sold in 1953-54
IBM 650

= A cheaper, drum based machine, more than 120 were sold in 1954
and there were orders for 750 more!

Why was IBM late getting into computers?

= IBM was making too much money!

= Even without computers, IBM revenues were doubling every 4 to 5 years in
40's and 50's

Eng“inﬂeeri‘ng

Computers in mid 50’ s

Hardware was expensive
Stores were small (1000 words)
= No resident system-software!
Memory access time was 10 to 50 times slower than the
processor cycle

= Instruction execution time was totally dominated by the memory
reference time

Computers in mid 50’ s

Eng“inﬂeeri‘ng

Arizona State University

* The ability to design complex control circuits to execute an
instruction was the central design concern as opposed to the
speed of decoding or an ALU operation

= Programmer’s view of the machine was inseparable from the
actual hardware implementation

1/10/26

Earliest Instruction Sets

= Burks, Goldstein & von Neumann ~1946
= Single Accumulator - A carry-over from calculators.
= Typically, less than 2 dozen instructions!

LOAD
STORE
888

MUL
DIV

SHIFF KBl

JumpP
JGE

E76Re KR

X
X
x
X

X
X

x %

AC MEX]

M[x] « (AC)

AC « (AC) + M[x]

Involved a quotient register
AC « 2 x (AC)

PC « x
if (AC) 2 0 then PC « x
AC « Extract address field(M[x])

Single Accumulator Machine

G« A+B, 1<i<n | A
LOOP LOAD N 8
JGE DONE
ADD ONE c
STORE N
F1 LOAD A N
F2 ADD B ONE
F3 STORE ¢
JUMP LOOP
DONE HLT code

How to modify the addresses A, B and C ?

Eng“inﬂeeri‘ng

Arizona State University

Eng“inﬂeeri‘ng

Arizona State University

Self-Modifying Code

= Modify the program for the next iteration

LOOP LOAD N LOAD ADR F1
JGE ADD ONE
DONE STORE ADR F1
ADD ONE |LOAD ADR F2
STORE N ADD ONE

F1 LOAD A STORE ADR F2

F2 ADD B LOAD ADR F3

ADD ONE

F3 STORE C
JUMP STORE _ ADR F3
LOOP

DONE HLT

1/10/26

Self-Modifying Code

* Most of the executed instructions are for book keeping!

= Each iteration involves total book-keeping
= Instruction fetches 17 14
= Operand fetches 10 8
= Stores 5 4

I« A+B, 1<i<n

Eng“inﬂeeri‘ng

Arizona State University

Processor-Memory Bottleneck

= Early Solutions

= Fast local storage in the processor

= 8-16 registers as opposed to one accumulator

= to savegon \oads/stF::F:es -
= Indexing capability

= to reduce book keeping instructions
= Complex instructions

= to reduce instruction fetches

Eng“in"eeri‘ng

Arizona State University

Processor-Memory Bottleneck
= Early Solutions

= Compact instructions
= implicit address bits for operands
= to reduce instruction fetch cost

Processor

1/10/26

10

Processor State

= The information held in the processor at the end of an instruction
to provide the processing context for the next instruction.
= Program Counter, Accumulator, . . .
= Programmer visible state of the processor (and memory) plays a
central role in computer organization for both hardware and
software:
= Software must make efficient use of it

= If the processing of an instruction can be interrupted then the
hardware must save and restore the state in a transparent manner
= Programmer’s machine model is a contract between the hardware
and software

11

Eng“in"eeri‘ng

Arizona State University

Processor State

= Programmer’s machine model is a contract between the hardware
and software

12

Eng“inﬂeeri‘ng

Arizona State University

Index Registers
= Tom Kilburn, Manchester University, mid 50's

= One or more specialized registers to simplify address calculation
= Modify existing instructions
= LOAD x, IX AC € M[x + (IX)]
= ADD x,IX AC € (AC) + M[x + (IX)]
= Add new instructions to manipulate index registers
= JZi x, IX if (IX)=0 then PC <--x
else IX<—-(IX)+1
Index registers have accumulator-like characteristics

1/10/26

13

Using Index Registers

= Program does not modify itself

= Efficiency has improved dramatically (ops / iter)
with index regs without index regs

= instruction fetch 2 17 (14)
= operand fetch 2 10 (8)
= store 2 5(4)
= Costs: ‘Ci(—Ai+Bi, 1<i<n

= Complex control
= Need to operate on index registers (ALU-like circuitry)

= -1 to 2 bits longer Instructions

14

Eng“inﬂeeri‘ng

Arizona State University

Indexing vs. Index Registers

= Suppose instead of registers, memory locations are used to
implement index registers.
- LOAD x, IX
= Arithmetic operations on index registers can be performed by
bringing the contents to the accumulator
* Most bookkeeping instructions will be avoided, but:
= Each instruction will implicitly cause more fetches and stores
= Complex control circuitry

15

Eng“inﬂeeri‘ng

Arizona State University

Operations on Index Registers

= To increment index register by k

= AC<(IX) new instruction
= AC<(AQ) +k
= X <(AQ) new instruction

= Also the AC must be saved and restored
= |t may be better to increment IX directly
* INGi KIX X € (%) +k

* More instructions to manipulate index register
* STOREix, X M € (IX) (extended to fit a word)
= X begins to look like an accumulator

1/10/26

16

Support for Subroutine

= A special subroutine jump instruction
= M: JSR F F < M+ 1and jump to F+1

cllF | —*F: i
al
Przlg:gm 22 Subroutine F
call F
hi return
b2 /

17

Eng“inﬂeeri‘ng

Arizona State University

Indirect Addressing

= Indirect addressing almost eliminates the need to write self-modifying
code (location F still needs to be modified)

= Indirect addressing Subroutine P
= LOAD (x) means AC ¢ M[M[x]] o s
e
s1 [L0AD () | feten
Caller e o
i
Events: —
" Ji’; - Execute M s2[storem 1
result Execute S1 incF fe‘;:;[
" Execute S2 L
Execute S3
- - %

18

Eng“inﬂeeri‘ng

Arizona State University

Recursive Procedure Calls

= Indirect Addressing through a register
LOAD Ri, (R2)
= Load register Ry with the contents of the word whose address is
contained in register Ry

memory

registers
Pure Code

Data

1/10/26

19

Evolution of Addressing Modes

1. Single accumulator, absolute address

LOAD x

2. Single accumulator, index registers
LOAD X, IX

3. Indirection
LOAD (x)

4. Multiple accumulators, index registers, indirection
LOAD R, IX, x
or LOAD R,IX,(x) The meaning?
R« M[M[x] + (IX)]
orR « M[M[x + (IX)]]
5. Indirect through registers
LOAD Ry, (R3)
6. The works
LOAD Ri, Ry, (RK) Ry = index, Rk = base addr

20

Eng“inﬂeeri‘ng

Arizona State University

Variety of Instruction Formats

* Three address formats: One destination and up to two operand
sources per instruction
(Reg x Reg) to Reg Rl € (R)) + (RK)
(Reg x Mem) to Reg Rl € R) +Mix]
= x can be specified directly or via a register
= Effective address calculation for x could include indexing,
indirection, ...
= Two address formats: the destination is same as one of the
operand sources
(Reg x Reg) to Reg RIE€R) +R)
(Reg x Mem) to Reg Rl € (R) +Mx]

21

Eng“inﬂeeri‘ng

Arizona State University

More Instruction Formats

= One address formats: Accumulator

machines
= Accumulator is always other implicit
operand Register x
= Zero address formats: operands on a 5
stack &
» add M[sp-1] €M[sp] + Mlsp-1]
= load M[sp] € M[MIsp]] Memory

= Stack can be in registers or in memory
= Usually top of stack cached in registers

1/10/26

22

Data Formats and Addresses

= Data formats:
= Bytes, Half words, words and double words
= Some issues
= Byte addressing
= Big Endian vs. Little Endian ol 3]
= Word alignment 3 2[1] 0]
= Suppose the memory is organized in 32-bit words

= Can a word address begin only at 0, 4,8, ?

23

Eng“inﬂeeri‘ng

Arizona State University

Some Problems

* Should all addressing modes be provided for every operand?
= Regular vs. irregular instruction formats
* Separate instructions to manipulate Accumulators, Index
registers, Base regjisters
= Large number of instructions
* Instructions contained implicit memory references -- several
contained more than one

= Very complex control

24

Eng“in"eeri‘ng

Next Lecture Module

= Intel Pin introduction

1/10/26

25

