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And then there was IBM 
§ Users stopped building their own machines
§ IBM 701 

§ 30 machines were sold in 1953-54
§ IBM 650  

§ A cheaper, drum based machine, more than 120  were sold in 1954 
and there were orders for 750 more!

§ Why was IBM late getting into computers?
§ IBM was making too much money!

§ Even without computers, IBM revenues were doubling every 4 to 5 years in 
40’s and 50’s
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Computers in mid 50’s
§ Hardware was expensive
§ Stores were small (1000 words)

§ No resident system-software!  

§ Memory access time was 10 to 50 times slower than the 
processor cycle
§ Instruction execution time was totally dominated by the memory 

reference time
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Computers in mid 50’s
§ The ability to design complex control circuits to execute an 

instruction was the central design concern as opposed to the 
speed of decoding or an ALU operation 

§ Programmer’s view of the machine was inseparable from the 
actual hardware implementation 
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Earliest Instruction Sets
§ Burks, Goldstein & von Neumann  ~1946
§ Single Accumulator  - A carry-over from calculators.
§ Typically, less than 2 dozen instructions!

LOAD   x  AC ¬ M[x]
STORE   x  M[x] ¬ (AC)

ADD    x  AC ¬ (AC) + M[x]
SUB    x

MUL    x  Involved a quotient register
DIV    x

SHIFT LEFT    AC ¬ 2 ´ (AC)
SHIFT RIGHT

JUMP   x  PC ¬ x
JGE    x  if (AC) ³ 0 then PC ¬ x

LOAD ADR  x  AC ¬ Extract address field(M[x])
STORE ADR  x
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Single Accumulator Machine
Ci ¬ Ai + Bi,   1 £ i £ n A

B

C

N
ONE

code

-n
1

LOOP  LOAD   N
 JGE   DONE
 ADD   ONE
 STORE  N

F1   LOAD   A
F2   ADD   B
F3      STORE   C

 JUMP   LOOP
DONE HLT

How to modify the addresses A, B and C ?
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Self-Modifying Code
§ Modify the program for the next iteration

LOOP  LOAD   N
 JGE  
 DONE
 ADD   ONE
 STORE  N

F1   LOAD   A
F2   ADD   B
F3      STORE   C

JUMP  
 LOOP

DONE HLT

LOAD  ADR  F1
 ADD  ONE

STORE  ADR  F1
LOAD  ADR  F2

 ADD  ONE
STORE  ADR  F2
LOAD  ADR  F3

 ADD  ONE
STORE  ADR  F3
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Self-Modifying Code
§ Most of the executed instructions are for book keeping!
§ Each iteration involves      total       book-keeping

§ Instruction fetches   17    14
§ Operand fetches   10    8
§ Stores       5    4

Ci ¬ Ai + Bi,   1 £ i £ n
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Processor-Memory Bottleneck
§ Early Solutions

§ Fast local storage in the processor
§ 8-16 registers as opposed to one accumulator

§ to save on loads/stores

§ Indexing capability 
§ to reduce book keeping instructions

§ Complex instructions
§  to reduce instruction fetches

Memory

Processor
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§ Early Solutions
§ Compact instructions

§ implicit address bits for operands

§ to reduce instruction fetch cost

Processor-Memory Bottleneck

Memory

Processor
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Processor State
§ The information held in the processor at the end of an instruction 

to provide the processing context for the next instruction. 
§ Program Counter, Accumulator, . . .

§ Programmer visible state of the processor (and memory) plays a 
central role in computer organization for both hardware and 
software:
§ Software must make efficient use of it
§ If the processing of an instruction can be interrupted then the 

hardware must save and restore the state in a transparent manner
§ Programmer’s machine model is a contract between the hardware 

and software
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Processor State

§ Programmer’s machine model is a contract between the hardware 
and software
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Index Registers
§ Tom Kilburn, Manchester University, mid 50’s

§ One or more specialized registers to simplify address calculation
§ Modify existing instructions

§ LOAD x, IX  AC ß M[x + (IX)]
§ ADD x, IX  AC ß (AC) + M[x + (IX)]
§ …

§ Add new instructions to manipulate index registers
§ JZi  x, IX  if (IX)=0 then  PC <-- x
                                                   else   IX <-- (IX) + 1
Index registers have accumulator-like characteristics
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Using Index Registers
§ Program does not modify itself
§  Efficiency has improved dramatically (ops / iter)

                                 with index regs without index regs      
§ instruction fetch  (2)                     17 (14)
§ operand fetch          2                       10 (8)
§ store      2                        5 (4)

§ Costs: 
§ Complex control
§ Need to operate on index registers (ALU-like circuitry)

§  - 1 to 2 bits longer Instructions

Ci ¬ Ai + Bi,   1 £ i £ n
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Indexing vs. Index Registers
§ Suppose instead of registers, memory locations are used to 

implement index registers.
‣     LOAD x, IX

§ Arithmetic operations on index registers can be performed by 
bringing the contents to the accumulator

§ Most bookkeeping instructions will be avoided, but: 
§ Each instruction will implicitly cause more fetches and stores
§  Complex control circuitry 
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Operations on Index Registers
§ To increment index register by k

§ AC < (IX)        new instruction
§ AC < (AC) + k
§ IX  < (AC)        new instruction

§ Also the AC must be saved and restored
§ It may be better to increment IX directly 

§ INCi  k, IX  IX ß (IX) + k

§ More instructions to manipulate index register
§ STOREi x, IX  M[x] ß (IX) (extended to fit a word)

§ IX begins to look like an accumulator
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Support for Subroutine 
§ A special subroutine jump instruction

§ M:  JSR F  F ß M + 1 and jump to F+1

F:

Subroutine F

return

call F
a1
a2

b1
b2

call F

Main
Program
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Indirect Addressing
§ Indirect addressing almost eliminates the need to write self-modifying 

code (location F still needs to be modified)
§ Indirect addressing

§ LOAD (x) means AC ß M[M[x]]

M       JSR     F
              arg
              result
 M+3 
                            

Caller

F
F+1

S1     LOAD (F)
       inc F 

  S2  STORE(F)
     inc F

                                   
  S3  JUMP (F)

Subroutine

fetch 
arg

store
result

Events:
Execute M
Execute S1
Execute S2
Execute S3

M+1 M+
2M+3
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Recursive Procedure Calls
§ Indirect Addressing through a register

LOAD  R1, (R2)

§ Load register R1 with the contents of the word whose address is 
contained in register R2

PC

SP

registers
Pure Code

Data 

Stack

memory
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Evolution of Addressing Modes
1. Single accumulator, absolute address

LOAD x
2. Single accumulator, index registers

LOAD x, IX
3. Indirection

LOAD (x)
4. Multiple accumulators, index registers, indirection

LOAD R, IX, x      
or LOAD R, IX, (x)  The meaning?

   R ¬ M[M[x] + (IX)]  
        or R ¬  M[M[x + (IX)]] 

5. Indirect through registers
LOAD RI, (RJ)

6. The works
LOAD RI, RJ, (RK)         RJ = index, RK = base addr
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Variety of Instruction Formats
§ Three address formats: One destination and up to two operand 

sources per instruction
(Reg x Reg)  to Reg  RI  ß  (RJ)  + (RK)
(Reg x Mem) to Reg  RI  ß  (RJ)  + M[x]

§ x can be specified directly or via a register
§ Effective address calculation for x could include    indexing, 

indirection, …

§ Two address formats: the destination is same as one of the 
operand sources

(Reg x Reg)  to Reg  RI  ß (RI)  + (RJ)
(Reg x Mem) to Reg  RI   ß (RI)  + M[x]
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More Instruction Formats
§ One address formats: Accumulator 

machines
§ Accumulator is always other implicit 

operand

§ Zero address formats: operands on a 
stack

§ add M[sp-1] ßM[sp] + M[sp-1] 

§ load M[sp]    ß   M[M[sp]]

§ Stack can be in registers or in memory 
§ Usually top of stack cached in registers

C

B

A
SP

Register

Memory
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0         1          2           3
 3          2         1           0 

Data Formats and Addresses
§ Data formats:      

§ Bytes, Half words, words and double words
§ Some issues

§  Byte addressing
§  Big Endian vs. Little Endian  

§  Word alignment 
§ Suppose the memory is organized in 32-bit words

§ Can a word address begin only at 0, 4, 8, .... ?

0         1           2          3          4           5           6          7 
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Some Problems
§ Should all addressing modes be provided for every operand?

§ Regular vs. irregular instruction formats
§ Separate instructions to manipulate Accumulators, Index 

registers, Base registers 
§ Large number of instructions

§ Instructions contained implicit memory references -- several 
contained more than one
§ Very complex control
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Next Lecture Module
§ Intel Pin introduction
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