
1/10/26

1

Influence of Technology and Software on
Instruction Sets

Prof. Michel A. Kinsy

CSE 520
Computer Architecture II

1

And then there was IBM
§ Users stopped building their own machines
§ IBM 701

§ 30 machines were sold in 1953-54
§ IBM 650

§ A cheaper, drum based machine, more than 120 were sold in 1954
and there were orders for 750 more!

§ Why was IBM late getting into computers?
§ IBM was making too much money!

§ Even without computers, IBM revenues were doubling every 4 to 5 years in
40’s and 50’s

2

Computers in mid 50’s
§ Hardware was expensive
§ Stores were small (1000 words)

§ No resident system-software!

§ Memory access time was 10 to 50 times slower than the
processor cycle
§ Instruction execution time was totally dominated by the memory

reference time

3

1/10/26

2

Computers in mid 50’s
§ The ability to design complex control circuits to execute an

instruction was the central design concern as opposed to the
speed of decoding or an ALU operation

§ Programmer’s view of the machine was inseparable from the
actual hardware implementation

4

Earliest Instruction Sets
§ Burks, Goldstein & von Neumann ~1946
§ Single Accumulator - A carry-over from calculators.
§ Typically, less than 2 dozen instructions!

LOAD x AC ¬ M[x]
STORE x M[x] ¬ (AC)

ADD x AC ¬ (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC ¬ 2 ´ (AC)
SHIFT RIGHT

JUMP x PC ¬ x
JGE x if (AC) ³ 0 then PC ¬ x

LOAD ADR x AC ¬ Extract address field(M[x])
STORE ADR x

5

Single Accumulator Machine
Ci ¬ Ai + Bi, 1 £ i £ n A

B

C

N
ONE

code

-n
1

LOOP LOAD N
 JGE DONE
 ADD ONE
 STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

 JUMP LOOP
DONE HLT

How to modify the addresses A, B and C ?

6

1/10/26

3

Self-Modifying Code
§ Modify the program for the next iteration

LOOP LOAD N
 JGE
 DONE
 ADD ONE
 STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP
 LOOP

DONE HLT

LOAD ADR F1
 ADD ONE

STORE ADR F1
LOAD ADR F2

 ADD ONE
STORE ADR F2
LOAD ADR F3

 ADD ONE
STORE ADR F3

7

Self-Modifying Code
§ Most of the executed instructions are for book keeping!
§ Each iteration involves total book-keeping

§ Instruction fetches 17 14
§ Operand fetches 10 8
§ Stores 5 4

Ci ¬ Ai + Bi, 1 £ i £ n

8

Processor-Memory Bottleneck
§ Early Solutions

§ Fast local storage in the processor
§ 8-16 registers as opposed to one accumulator

§ to save on loads/stores

§ Indexing capability
§ to reduce book keeping instructions

§ Complex instructions
§ to reduce instruction fetches

Memory

Processor

9

1/10/26

4

§ Early Solutions
§ Compact instructions

§ implicit address bits for operands

§ to reduce instruction fetch cost

Processor-Memory Bottleneck

Memory

Processor

10

Processor State
§ The information held in the processor at the end of an instruction

to provide the processing context for the next instruction.
§ Program Counter, Accumulator, . . .

§ Programmer visible state of the processor (and memory) plays a
central role in computer organization for both hardware and
software:
§ Software must make efficient use of it
§ If the processing of an instruction can be interrupted then the

hardware must save and restore the state in a transparent manner
§ Programmer’s machine model is a contract between the hardware

and software

11

Processor State

§ Programmer’s machine model is a contract between the hardware
and software

12

1/10/26

5

Index Registers
§ Tom Kilburn, Manchester University, mid 50’s

§ One or more specialized registers to simplify address calculation
§ Modify existing instructions

§ LOAD x, IX AC ß M[x + (IX)]
§ ADD x, IX AC ß (AC) + M[x + (IX)]
§ …

§ Add new instructions to manipulate index registers
§ JZi x, IX if (IX)=0 then PC <-- x
 else IX <-- (IX) + 1
Index registers have accumulator-like characteristics

13

Using Index Registers
§ Program does not modify itself
§ Efficiency has improved dramatically (ops / iter)

 with index regs without index regs
§ instruction fetch (2) 17 (14)
§ operand fetch 2 10 (8)
§ store 2 5 (4)

§ Costs:
§ Complex control
§ Need to operate on index registers (ALU-like circuitry)

§ - 1 to 2 bits longer Instructions

Ci ¬ Ai + Bi, 1 £ i £ n

14

Indexing vs. Index Registers
§ Suppose instead of registers, memory locations are used to

implement index registers.
‣ LOAD x, IX

§ Arithmetic operations on index registers can be performed by
bringing the contents to the accumulator

§ Most bookkeeping instructions will be avoided, but:
§ Each instruction will implicitly cause more fetches and stores
§ Complex control circuitry

15

1/10/26

6

Operations on Index Registers
§ To increment index register by k

§ AC < (IX) new instruction
§ AC < (AC) + k
§ IX < (AC) new instruction

§ Also the AC must be saved and restored
§ It may be better to increment IX directly

§ INCi k, IX IX ß (IX) + k

§ More instructions to manipulate index register
§ STOREi x, IX M[x] ß (IX) (extended to fit a word)

§ IX begins to look like an accumulator

16

Support for Subroutine
§ A special subroutine jump instruction

§ M: JSR F F ß M + 1 and jump to F+1

F:

Subroutine F

return

call F
a1
a2

b1
b2

call F

Main
Program

17

Indirect Addressing
§ Indirect addressing almost eliminates the need to write self-modifying

code (location F still needs to be modified)
§ Indirect addressing

§ LOAD (x) means AC ß M[M[x]]

M JSR F
 arg
 result
 M+3

Caller

F
F+1

S1 LOAD (F)
 inc F

 S2 STORE(F)
 inc F

 S3 JUMP (F)

Subroutine

fetch
arg

store
result

Events:
Execute M
Execute S1
Execute S2
Execute S3

M+1 M+
2M+3

18

1/10/26

7

Recursive Procedure Calls
§ Indirect Addressing through a register

LOAD R1, (R2)

§ Load register R1 with the contents of the word whose address is
contained in register R2

PC

SP

registers
Pure Code

Data

Stack

memory

19

Evolution of Addressing Modes
1. Single accumulator, absolute address

LOAD x
2. Single accumulator, index registers

LOAD x, IX
3. Indirection

LOAD (x)
4. Multiple accumulators, index registers, indirection

LOAD R, IX, x
or LOAD R, IX, (x) The meaning?

 R ¬ M[M[x] + (IX)]
 or R ¬ M[M[x + (IX)]]

5. Indirect through registers
LOAD RI, (RJ)

6. The works
LOAD RI, RJ, (RK) RJ = index, RK = base addr

20

Variety of Instruction Formats
§ Three address formats: One destination and up to two operand

sources per instruction
(Reg x Reg) to Reg RI ß (RJ) + (RK)
(Reg x Mem) to Reg RI ß (RJ) + M[x]

§ x can be specified directly or via a register
§ Effective address calculation for x could include indexing,

indirection, …

§ Two address formats: the destination is same as one of the
operand sources

(Reg x Reg) to Reg RI ß (RI) + (RJ)
(Reg x Mem) to Reg RI ß (RI) + M[x]

21

1/10/26

8

More Instruction Formats
§ One address formats: Accumulator

machines
§ Accumulator is always other implicit

operand

§ Zero address formats: operands on a
stack

§ add M[sp-1] ßM[sp] + M[sp-1]

§ load M[sp] ß M[M[sp]]

§ Stack can be in registers or in memory
§ Usually top of stack cached in registers

C

B

A
SP

Register

Memory

22

0 1 2 3
 3 2 1 0

Data Formats and Addresses
§ Data formats:

§ Bytes, Half words, words and double words
§ Some issues

§ Byte addressing
§ Big Endian vs. Little Endian

§ Word alignment
§ Suppose the memory is organized in 32-bit words

§ Can a word address begin only at 0, 4, 8, ?

0 1 2 3 4 5 6 7

23

Some Problems
§ Should all addressing modes be provided for every operand?

§ Regular vs. irregular instruction formats
§ Separate instructions to manipulate Accumulators, Index

registers, Base registers
§ Large number of instructions

§ Instructions contained implicit memory references -- several
contained more than one
§ Very complex control

24

1/10/26

9

Next Lecture Module
§ Intel Pin introduction

25

