Eng“inﬂeeri‘ng

Arizona State University

CSE 520
Computer Architecture I

Intel Pin Introduction*

Prof. Michel A. Kinsy

*Aamer Jaleel et al., Intel® Corporation, All Right Reserved

1/10/26

Why Instrumentation?

= Inspect the micro-architecture states of the chip without
physically opening it up

Eng“inﬂeeri‘ng

Arizona State University

What is Instrumentation?

= Atechnique that inserts extra code into a program to collect
runtime information

* Instrumentation approaches:
= Source instrumentation:
® Instrument source programs
= Binary instrumentation:
= Instrument executables directly

Arizona State University

Example: Instruction Count

) sub $Oxff, %edx
Logically — counter ++
%esi, %edx

cm
—— counter ++
Add counter, 0x1 J|oe <L1>

Actually counter ++)
mov $0x1, %edi

add $0x10, %eax

counter ++

How Pin Works — High Level

= What is modified

= New instructions are added at user defined points

= Static addresses and references
= Register allocation
= Pin stack
= What is executed
= Instrumented traces
= Code cache

Arizona State University

How Pin Works — High Level

= When does the modification occur
= Atruntime
= Can attach to running process

1/10/26

1/10/26

Arizona State University

Example: Instruction Trace

SHrR(ip) $0xff, %edx
cmf()_)%esi, %edx
ip

ﬂ%n <>

o s0x1, %edi
Print(ip)

add $0x10, %eax
Print(ip)

Instrumentation vs. Simulation

= Advantages of Simulation:

= Detailed modeling of processors

= Can model non-existing hardware
= Advantages of Instrumentation:

= Easy to prototype
= Fast to run (allowing complete runs)

Arizona State University

Usage in Architecture

* How is Instrumentation used in Computer Architecture?

Trace Generation
Branch Predictor and Cache Modeling
Fault Tolerance Study

Emulating Speculation

Emulating New Instructions

Cache Coherence Protocols

Eng“inﬂeeri‘ng

Arizona State University

What is Pin?

= Easy-to-use Instrumentation:

= Uses dynamic instrumentation
= Do not need source code, recompilation, post-linking
= Programmable Instrumentation:

= Provides rich APIs to write in C/C++ your own instrumentation tools
(called Pintools)

= Multiplatform:
= Supports IA-32, EM64T, Itanium, Xscale
= Supports Linux, Windows, MacOS

1/10/26

10

ering

ficcurs, usten, o assurto mickortecTRowcs Arizona State University

What is Pin?

= Robust:

= Instruments real-life applications
= Database, search engines, web browsers, ...
= Instruments multithreaded applications

= Efficient:

= Applies compiler optimizations on instrumentation code

11

Eng“inﬂeeri‘ng

Arizona State University

How to use Pin?
= Launch and instrument an application

$ pin -t pintool — application

Instrumentation engine Instrumentation tool

(provided in kit) (write your own, or use
one provided in kit)

= Attach to and instrument an application
$ pin -t pintool -pid 1234

12

Eng“inﬂeeri‘ng

Arizona State University

Pin Instrumentation APls

* Basic APls are architecture independent:
= Provide common functionalities like determining:
= Control-flow changes
= Memory accesses
* Architecture-specific APIs
= E.g., Info about segmentation registers on I1A32
= Call-based APIs:
= Instrumentation routines
= Analysis routines

1/10/26

13

Instrumentation vs. Analysis
= Concepts borrowed from the ATOM tool:

= Instrumentation routines define where instrumentation is inserted
= e.g. before instruction
= Occurs first time an instruction is executed
= Analysis routines define what to do when instrumentation is activated
= e.g., increment counter
= Occurs every time an instruction is executed

14

Eng“inﬂeeri‘ng

Arizona State University

Pintool 1: Instruction Count

sub $Oxff, %edx
counter ++

cmp %esi, %edx
cf)u ter ++

Jle <L1>

counter ++ i
mov $0x1, %edi
counter ++

add $0x10, %eax

counter ++

15

er E

Instruction Count Output

Arizona State University

$ /bin/ls

Makefile atrace.o imageload.out itrace proccount Makefile.example

imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

$ pin -t inscountO -- /bin/ls

Makefile atrace.o imageload.out itrace proccount Makefile.example
imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

Count 422838

1/10/26

16

ManualExamples/inscount0.C

#include <iostream>

=0

KNOB<string> KnobOutputFile (KNOB_MODE_WRITEONCE, “pintool”, “o
“results.out”, “specify output file”);

void docount() { icounttt;) Pa—

analysis routine

el (D ey o) instrumentation routine

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END):

i

void Fini(INT32 code, veid *v)
(

FILE* outfile = fopen (KnobOutputFile.Value().c_str(),"w") ;

£printf (outfile, “Count %d\n”, icount);

int main(int arge, char * argv(])

PIN_ Init(arge, argv);
INS_AddInstrumentFunction(Instruction, 0);
PIN_AddFiniFunction(Fini, 0);

PIN StartProgram() ;

return 0;

17

er

ManualExamples/inscount0.C

= Same source code works on the 4 architectures

* Pin automatically and efficiently saves/restores application state

18

eeri

rizona State University

enter]

Pintool 2: Instruction Trace

Print(ip)

sub SOxff, %edx
Print(ip)

cmp %esi, %edx
Print(i

jle (o) <L1>
Print(ip)

mov S0x1, %edi
Print(ip)

add S0x10, %eax

* Need to pass an argument (ip) to the analysis
routine (printip())

19

Instruction Trace Output

$ pin -titrace -- /bin/Is

Makefile atrace.o imageload.out itrace proccount Makefile.example
imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

$ head -4 itrace.out
0x40001e90
0x40001e91
0x40001eed
0x40001ee5

20

neering

Arizona State University

er

ManualExamples/itrace.C

#include <stdio.h>
#include "pin.H"
FILE * trace;
void printip(void *{p) { fprintf(trace, "$p\n", ip); }
analysis routine

Argument to analysis routine

void Instruction(INS ins,

INS InsertCall (ins, IBOINT BEFORE, (AFUNPTR)printip,
IARG_INST_FIR, ARG END); instrumentation routine

}
void Fini (INT32 code, void *v) { fclose(trace); }
int main(int arge, char * argv[]) {

trace = fopen("itrace.out", "w");
PIN Init(argc, argv);
INS_AddI: unction (Instructi 0);

PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram() ;
return 0;

1/10/26

21

Eng“inﬂeeri‘ng

Arizona State University

Arguments to Analysis Routine
= |ARG_INST_PTR

= Instruction pointer (program counter) value
= IARG_PTR <pointer>

= A pointer to some data
* |ARG_REG_VALUE <register name>

= Value of the register specified
= |ARG_BRANCH_TARGET_ADDR

= Target address of the branch instrumented

1/10/26

22

neering
iccurs, eusten, avo assomeo mcrostscrranics Avizona State University

Arguments to Analysis Routine

= IARG_MEMORY_READ_EA
= Effective address of a memory read
= And many more ...

= Refer to the Pin manual for details

23

Eng“inﬂeeri‘ng

Arizona State University

Instrumentation Points

* Instrument points relative to an instruction:
= Before (IPOINT_BEFORE)
= After:
= Fall-through edge (IPOINT_AFTER)
* Taken edge (IPOINT_TAKEN)

count()

cmp tesi, %edx
count() —>
jle <L>
TP <L1>:
count() —
om0 oy s0x1, teds mov $0x8,%edi

24

1/10/26

Eng“in"eeri‘ng

Arizona State University

Instrumentation Granularity

= Instrumentation with Pin can be done at 3
different granularities:
= |nstruction
= Basic block

= A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

= Single entry, single exit
= Trace

= A sequence of basic blocks terminated at an
unconditional control-flow changing instruction

= Single entry, multiple exits

25

ering

ficcurs, usten, o assurto mickortecTRowcs Arizona State University

Instrumentation Granularity

= 1 Trace, 2 basic blocks, 6 instructions

sub $0xff, %edx
Cmp Y%esi, %edx
jle <L1>

mov$ Oxl, %edi

add $0x10, %eax
imp. <L2>

26

Eng“in"eeri‘ng

Arizona State University

Instruction Count
= Recap of Pintool 1: Instruction Count

counter ++

sub SOxff, %edx
counter ++

cmp %esi, %edx
counter ++

jle <L1>

counter ++

mov SOx1, %edi
counter ++

add S0x10, %eax

= Straightforward, but the counting can be more efficient

27

er

bccu, austen, awo assuro micrortscraomcs Arizona State University

Faster Instruction Count

= Reduce the number of calls made to analysis routine

counter += 3

sub $0xff, %edx

cmp tesi, vedx \

Jle <L1> basic blocks (bbl)

counter += 2
mov $0x1, %edi

add $0x10, %eax

1/10/26

28

ManualExamples/inscount1.C

#include <iostream>

#include "pin.h"

UINT64 icount = 0;

KNOB<string> KnobOutputFile (KNOB_MODE_WRITEONCE, “pintool”, ™
“results.out”, “specify output file’

void docount(INT32 c) {icount += c; } analysis routine

void Trace (TRACE trace, void *v) (
for (BBL bbl = TRACE_BblHead (trace):
BBL Valid(bbl); bbl = BBL Next(bbl)) {
BBL_TnsertCall (Ebl, IPOINT BEFORE, (AFUNPTR)docount,
IARG_UINT32, BBL NunIns(bbl), TARG_END) ;)

instrumentation routine

il
void Fini(INT32 code, void *v)
«

FILE* outfile = fopen (KnobOutputFile.Value().c_str(),"w");
fprintf (outfile, "Count sd\n”, icount);
il
int main(int arge, char * argv(])
«
PIN_Init(arge, argv);
INS_AddInstrumentfunction (Instruction, 0);
PIN AddFiniFunction (Fini, 0);
PIN_Startprogram() ;
return 0;

29

er

Modifying Program Behavior

* Pin allows you not only observing but also changing program
behavior
= Ways to change program behavior:
= Add/delete instructions
= Change register values
= Change memory values
= Change control flow
= Inject errors

30

10

Eng“inﬂeeri‘ng

Arizona State University

Example: Emulation of Loads

sub $0x11c, %esp
mov Oxc (%ebp) , $eax
add $0x128, %eax
mov 0x8 (%ebp) , $edi

xor %eax, %edi

1/10/26

31

ering
iccurs, eusten, avo assomeo mcrostscrranics Avizona State University

Multithreading Support

* Notify the pintool when a thread is created or exited
* Provide a “thread id" for pintools to identify a thread

* Provide locks for pintools to access shared data structures

32

Eng“inﬂeeri‘ng

Arizona State University

Multithreaded Programs

$ pin -mt -t mtest -- thread

Creating thread

Creating thread

Joined 0

Joined 1

$ cat mtest.out

0x400109a8: 0

thread begin 1 sp 0x80acc00 flags £00
0x40001d38: 1

thread begin 3 sp 0x43305bd8 flags f£21
0x40011220: 3

thread begin 2 sp 0x42302bd8 flags f21
0x40010e15: 2

0x40005cde: 2

thread end 3 code 0

0x40005€90: 0

0x40005€90: 0

thread end 2 code 0

thread end 1 code

o

33

11

er Eng“inﬂeeri‘ng
o ccure, eusren, auo assomeo mcasecraamcs Avizona State Uriversity

Debugging Pintools

= Invoke gdb with your pintool (but don’t use “run”)

$ gdb inscount0
(gdb)

= On another window, start your pintool with “-pause_tool”
1

$ pin -pause_tool 5 -t inscount0 -- /bin/ls
Pausing to attach to pid 32017

= Go back to gdb:
= Attach to the process
= Use “cont” to continue execution; can set breakpoints as usual

(gdb) attach 32017
(gdb) break main
(gdb) cont

34

Arizona State University

Performance Models

= Branch Predictor Models

= PC of conditional instructions

= Direction Predictor: Taken/not-taken information

= Target Predictor: PC of target instruction if taken
= Cache Models

= Thread ID (if multi-threaded workload)

= Memory address

= Size of memory operation

= Type of memory operation (Read/Write)

1/10/26

35

er Eng“inﬂeeri‘ng
o ccure, eusren, auo assomeo mcosuecraamics Avizona State Uriversity

Branch Predictor Model

APl data - Branch instr info
R GRTEN rsim |
Pin 1
— i
API() in Too
Tool ion Routines Analysis Routines

= BPSim Pin Tool

= Instruments all branches

= Uses API to set up call backs to analysis routines
= Branch Predictor Model:

= Detailed branch predictor simulator

36

12

39

38

BranchPredictor mysPU;

Branch Predictor Implementation

VOID ProcessBranch (ADDRINT C,
BP_Info

1£(pred.Taken !

RINT targetrc, bool BeTaken) (
myBPU_ GetPrediction(BC) ;
Brraken) (
// Direction Mispredicted

if(pred.prodiazget

1= targetec) (
arget Mispredicted
)
)
VOID Instruction(INS ins, VOID *v)
i£(s 1(ins) || INS_HasFallThrough
INS InsertCall (ins, TPOINT BEFORE,
ADDRINT, INS_Address (ins],
IARG_UTNT32,
TARCBRANC

)

int main() {
PIN Init();
NS

PIN StartProgram() ;
)

))
(AFUNPTR) ProcessBranch
INS DirectBranchorCallTargetAddress (ins)
1 G_END)

InstrunentationFunction (Instruction,

0);

37

Arizona State University

neer

BranchPredictor myBPU;

BE_In:

Branch Predictor Implementation

VOID ProcessBranch (ADDRINT FC, ADDRINT targeteC, bool BrTaken) {
myBPU. GetPradiction (B
1£(prad Taken != BrTaken)

7,

t
/ Direction Mispredicted
if(pre

¢ 1= targetec)
§ /P Taroet Mispredicred
)

«
)

VOID Instruction(INS ins, VOID *v)
i€ (NS 1(ins) || INS
INS InsertCall(ins, IPOINT BEFORE

. INS_Addfess (insT,
ARG_BRAN

sBranch,
IARG_UINT32, INS DirectBranchOrCallTargethddress (ins),
"BRANCH TAKEN, IARG_END) ;
¥

int main()
BIN Init();
NS

S“AddInstrumentationFunction (Instruction,
PIN Startprogram() ;
)

FallTh

(AFUNPTR) Proc

)

0);

)

ok w0
] =

PIN Init();

PIN StartProgram() ;
)

Branch Predictor Implementation

)

VOID Instruction(INS ins, VOID *v)
i£(NS

neer
Arizona State University
BranchPredictor mysPU;

VOID ProcessBranch (ADDRINT FC, ADDRINT targetPC, bool BrTaken) {
> ; = myBPU. GetPrediction (Xt
m pred.Taken = BrTaken) {
// Direction Mispredicted
)

if(pred.prodrazget
arget Mis
)

targeteC)
predicted

0

1(ins) || INS_HasFallThrough(ins))
NS Insertcald (ine, IZGINT BEFORE, (AFUNPTR) Processsranch
INS_Address (insT,
i o P e g
TARGTBRANCE TAKEN, IARG_END)

TnstrunentationFunction (Instruction,

0);

13

1/10/26

1/10/26

er

bccu, austen, awo assuro micrortscraomcs Arizona State University

Performance Models

= Branch Predictor Models

= Cache Models
= Thread ID (if multi-threaded workload)
= Memory address

Size of memory operation

= Type of memory operation (Read/Write)

40

Cache Simulators

emory Aderifo
Cache -

Apldata_
Pin Tool

API()

Tool Routines. Analysis Routines

= Cache Pin Tool
* Instruments all instructions that reference memory
+ Use API to set up call backs to analysis routines

= Cache Model:

+ Detailed cache simulator

41

er eering

TRUSTED, AND ASSURED WICROELECTROWICS Arizona State University

Cache Implementation

CACHE,_t CacheRierarchy (MAX NUM THREADS] (X NUM_LEVELS] ;

VOID MenRet (int tid, adars int size, int type
for (adaradirStart aalr< (addrStartroise) adMELINE STZE)
Lookupfiierarchy (tid, FIRST_LEVEL CACHE, afddx type) ;

)

VOID Lookupierarchy (int tid, int level, ADDRINT addr, int accessType) {
Fomult = cacheliier eld] [cachalevel] >Lockup (add, accessType)
L Tevel = AT LEVEL CACRE) retumn;

Lookupfiierarchy (t1d, level+l, addr, accessType) ;

ERRVEEIEY

)

)
VOID Instruction(INS ins, VOID *v)

«
4£(IS IsMenoryRead (ins))
INS_frsertCall (ins, TPOTNT_BEFORE, (AFUNPTR) Menkef
E ARG THRERD ERYRERD,

ARG » ARG MENORYRERD STZE,
UNTa2, ACCESS TYPE_LORD, TARG END)7
4£(NS TeMemoryWricte (ins))
0 SrseriCall e 1i0Dre purors, (rUET) ke,

IARG MEMORYWRITE EA, IARG MEMORYWRITE STZE,
ARGUTNTS?, ACCESS TYPE, STORE, TARG D)7

)

int main() (

42

14

er En
Cache Implementation

CACHE,_t CacheRierarchy (MAX NUM THREADS] [MOX_NUM_LEVELS] ;

(zona State University

VOID MemRef (int tid, ADDRINT addrStact, int size, int type) (

for (addr=addrStart; addr<(addzStarttsize) ; addr+=LINE SIZE)
LookupHierarchy (tid, FIRST LEVEL CACHE, addr, type);

)

VOID Lookupfiierarchy (int tid, int level, ADDRINT addr, int accessType) {
result = cacheiier [tid] [cachelevel] ->Lookup (addr, accessType)
3£ (result — CACKE MISS) (

if(level — LAST LEVEL CACHE) return;
Lookupiierarchy (£5d, level+l, addr, accessType);
)

ERRVEEIEY

)
VOID Instruction(INS ins, VOID *v)

«
4£(INS_TaMenoryRead (ins))
INS TnsertCall (ins, TPOINT BEFORE, (AFUNPIR) MemRef,
z ARG THREAD ID, IARG MEMORYREAD EA, TARG MEMORYRERD SIZE,
TARG_UINT32, ACCESS_TYPE_LOAD, TARG_END)7
se(TN Tomenoritrite i5e))

INS_ThsertCall (ins, TPOINT_BEFORE, (AFUNPTR) MemRef,
ARG THREAD_ID, IARG MEMORYWRITE ;2
TARGTUTNT32, ACCESS_ TYPE_ STORE, TARG END)7

)

1/10/26

43

Cache Implementation

CACHE,_¢ CacheHierarchy [MAX NUM THREADS] [MAX NUM_LEVELS] ;

VOID MenRef (int tid, ADDRINT addrStart, int size, int type) (
for (addr=adarStart; addr<(addrStart+size) ; addr+=LINE SIZE)

Lookupitierarchy (tid, FIRST_LEVEL CACHE, addr, type) ;

VOID Lookupitierarchy (int tid, int level, ADDRINT addr, int accessType) {
cacheliier tid) [cacheLevel] ->Lookup (addr, accessTyps
CACHE MISS) (

aNALYSIS
]
ik

V7
if(level — LAST LAVEL CACHE) return;
Lookupiiierarchy (t1d, leveltl, addr, accessType) ;

)

)
VOID Instruction(INS ins, VOID *v)

2 £ (INS_TsMemoryRead (ins))
1INS_InsertCall (ins, IPOINT BEFORE, (AFUNPTR) MemRef,
2 vy MEMORYREAD

e,
S THREAD_ID, IARG MEMORYWRITE FA, TARG MEMORYWRITE SIZE,

TARG_UINT32, ACCESS_TYPE_STORE, TARG_END);

)

int main() (

PIN Init() ;
INS AddIns trunentationFunction (Instruction, 0) ;
PIN_StartProgran() ;

)

44

er En:

Reducing Pintool’s Overhead

(zona State University

Pintool’s Qverhead

Instrumentation Routines Overhead +Analysis Routines Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

45

15

Eng“inﬂeeri‘ng

Arizona State University

Optimization

* Reducing Frequency of Calling Analysis Routines

= Key:
= Instrument at the largest granularity whenever possible:
= Trace > Basic Block > Instruction

46

Conclusions

= Pin

Build your own architectural tools with ease

Run on multiple platforms:

= |IA-32, EM64T, ltanium, and XScale
= Linux, Windows, MacOS

Work on real-life applications
Efficient instrumentation

1/10/26

47

Eng“inﬂeeri‘ng

Arizona State University

Next Lecture Module

= Single-cycle & Multi-cycle Architectures

48

16

