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Why Instrumentation?

= Inspect the micro-architecture states of the chip without
physically opening it up
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What is Instrumentation?

= Atechnique that inserts extra code into a program to collect
runtime information

* Instrumentation approaches:
= Source instrumentation:
® Instrument source programs
= Binary instrumentation:
= Instrument executables directly
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Example: Instruction Count

) sub  $Oxff, %edx
Logically — counter ++
%esi, %edx

cm
—— counter ++
Add counter, 0x1 J|oe <L1>

Actually counter ++ )
mov  $0x1, %edi

add  $0x10, %eax

counter ++

How Pin Works — High Level

= What is modified

= New instructions are added at user defined points

= Static addresses and references
= Register allocation
= Pin stack
= What is executed
= Instrumented traces
= Code cache
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How Pin Works — High Level

= When does the modification occur
= Atruntime
= Can attach to running process
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Example: Instruction Trace

SHrR(ip) $0xff, %edx
cmf()_ )%esi, %edx
ip

ﬂ%n <>

o s0x1,  %edi
Print(ip)

add  $0x10, %eax
Print(ip)

Instrumentation vs. Simulation

= Advantages of Simulation:

= Detailed modeling of processors

= Can model non-existing hardware
= Advantages of Instrumentation:

= Easy to prototype
= Fast to run (allowing complete runs)
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Usage in Architecture

* How is Instrumentation used in Computer Architecture?

Trace Generation
Branch Predictor and Cache Modeling
Fault Tolerance Study

Emulating Speculation

Emulating New Instructions

Cache Coherence Protocols
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What is Pin?

= Easy-to-use Instrumentation:

= Uses dynamic instrumentation
= Do not need source code, recompilation, post-linking
= Programmable Instrumentation:

= Provides rich APIs to write in C/C++ your own instrumentation tools
(called Pintools)

= Multiplatform:
= Supports IA-32, EM64T, Itanium, Xscale
= Supports Linux, Windows, MacOS
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What is Pin?

= Robust:

= Instruments real-life applications
= Database, search engines, web browsers, ...
= Instruments multithreaded applications

= Efficient:

= Applies compiler optimizations on instrumentation code

11

Eng“inﬂeeri‘ng

Arizona State University

How to use Pin?
= Launch and instrument an application

$ pin -t pintool — application

Instrumentation engine Instrumentation tool

(provided in kit) (write your own, or use
one provided in kit)

= Attach to and instrument an application
$ pin -t pintool -pid 1234
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Pin Instrumentation APls

* Basic APls are architecture independent:
= Provide common functionalities like determining:
= Control-flow changes
= Memory accesses
* Architecture-specific APIs
= E.g., Info about segmentation registers on I1A32
= Call-based APIs:
= Instrumentation routines
= Analysis routines
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Instrumentation vs. Analysis
= Concepts borrowed from the ATOM tool:

= Instrumentation routines define where instrumentation is inserted
= e.g. before instruction
= Occurs first time an instruction is executed
= Analysis routines define what to do when instrumentation is activated
= e.g., increment counter
= Occurs every time an instruction is executed
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Pintool 1: Instruction Count

sub  $Oxff, %edx
counter ++

cmp %esi, %edx
cf)u ter ++

Jle <L1>

counter ++ i
mov  $0x1, %edi
counter ++

add  $0x10, %eax

counter ++
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$ /bin/ls

Makefile atrace.o imageload.out itrace proccount Makefile.example

imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

$ pin -t inscountO -- /bin/ls

Makefile atrace.o imageload.out itrace proccount Makefile.example
imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

Count 422838
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ManualExamples/inscount0.C

#include <iostream>

=0

KNOB<string> KnobOutputFile (KNOB_MODE_WRITEONCE, “pintool”, “o
“results.out”, “specify output file”);

void docount() { icounttt; ) Pa—

analysis routine

el (D ey o ) instrumentation routine

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END):

i

void Fini(INT32 code, veid *v)
(

FILE* outfile = fopen (KnobOutputFile.Value().c_str(),"w") ;

£printf (outfile, “Count %d\n”, icount);

int main(int arge, char * argv(])

PIN_ Init(arge, argv);
INS_AddInstrumentFunction(Instruction, 0);
PIN_AddFiniFunction(Fini, 0);

PIN StartProgram() ;

return 0;
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ManualExamples/inscount0.C

= Same source code works on the 4 architectures

* Pin automatically and efficiently saves/restores application state
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enter ]

Pintool 2: Instruction Trace

Print(ip)

sub SOxff, %edx
Print(ip)

cmp %esi, %edx
Print(i

jle (o) <L1>
Print(ip)

mov S0x1, %edi
Print(ip)

add S0x10, %eax

* Need to pass an argument (ip) to the analysis
routine (printip())
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Instruction Trace Output

$ pin -titrace -- /bin/Is

Makefile atrace.o imageload.out itrace proccount Makefile.example
imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

$ head -4 itrace.out
0x40001e90
0x40001e91
0x40001eed
0x40001ee5
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ManualExamples/itrace.C

#include <stdio.h>
#include "pin.H"
FILE * trace;
void printip(void *{p) { fprintf(trace, "$p\n", ip); }
analysis routine

Argument to analysis routine

void Instruction(INS ins,

INS InsertCall (ins, IBOINT BEFORE, (AFUNPTR)printip,
IARG_INST_FIR, ARG END); instrumentation routine

}
void Fini (INT32 code, void *v) { fclose(trace); }
int main(int arge, char * argv[]) {

trace = fopen("itrace.out", "w");
PIN Init(argc, argv);
INS_AddI: unction (Instructi 0);

PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram() ;
return 0;
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Arguments to Analysis Routine
= |ARG_INST_PTR

= Instruction pointer (program counter) value
= IARG_PTR <pointer>

= A pointer to some data
* |ARG_REG_VALUE <register name>

= Value of the register specified
= |ARG_BRANCH_TARGET_ADDR

= Target address of the branch instrumented

1/10/26
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Arguments to Analysis Routine

= IARG_MEMORY_READ_EA
= Effective address of a memory read
= And many more ...

= Refer to the Pin manual for details
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Instrumentation Points

* Instrument points relative to an instruction:
= Before (IPOINT_BEFORE)
= After:
= Fall-through edge (IPOINT_AFTER)
* Taken edge (IPOINT_TAKEN)

count()

cmp tesi, %edx
count() —>
jle <L>
TP <L1>:
count() —
om0 oy s0x1, teds mov  $0x8,%edi
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Instrumentation Granularity

= Instrumentation with Pin can be done at 3
different granularities:
= |nstruction
= Basic block

= A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

= Single entry, single exit
= Trace

= A sequence of basic blocks terminated at an
unconditional control-flow changing instruction

= Single entry, multiple exits

25
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Instrumentation Granularity

= 1 Trace, 2 basic blocks, 6 instructions

sub $0xff, %edx
Cmp Y%esi, %edx
jle <L1>

mov$ Oxl, %edi

add $0x10, %eax
imp. <L2>
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Instruction Count
= Recap of Pintool 1: Instruction Count

counter ++

sub SOxff, %edx
counter ++

cmp %esi, %edx
counter ++

jle <L1>

counter ++

mov SOx1, %edi
counter ++

add S0x10, %eax

= Straightforward, but the counting can be more efficient
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Faster Instruction Count

= Reduce the number of calls made to analysis routine

counter += 3

sub $0xff, %edx

cmp tesi, vedx \

Jle <L1> basic blocks (bbl)

counter += 2
mov $0x1, %edi

add $0x10, %eax

1/10/26
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ManualExamples/inscount1.C

#include <iostream>

#include "pin.h"

UINT64 icount = 0;

KNOB<string> KnobOutputFile (KNOB_MODE_WRITEONCE, “pintool”, ™
“results.out”, “specify output file’

void docount(INT32 c) {icount += c; } analysis routine

void Trace (TRACE trace, void *v) (
for (BBL bbl = TRACE_BblHead (trace):
BBL Valid(bbl); bbl = BBL Next(bbl)) {
BBL_TnsertCall (Ebl, IPOINT BEFORE, (AFUNPTR)docount,
IARG_UINT32, BBL NunIns(bbl), TARG_END) ;)

instrumentation routine

il
void Fini(INT32 code, void *v)
«

FILE* outfile = fopen (KnobOutputFile.Value().c_str(),"w");
fprintf (outfile, "Count sd\n”, icount);
il
int main(int arge, char * argv(])
«
PIN_Init(arge, argv);
INS_AddInstrumentfunction (Instruction, 0);
PIN AddFiniFunction (Fini, 0);
PIN_Startprogram() ;
return 0;
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Modifying Program Behavior

* Pin allows you not only observing but also changing program
behavior
= Ways to change program behavior:
= Add/delete instructions
= Change register values
= Change memory values
= Change control flow
= Inject errors

30
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Example: Emulation of Loads

sub $0x11c, %esp
mov Oxc (%ebp) , $eax
add $0x128, %eax
mov 0x8 (%ebp) , $edi

xor %eax, %edi

1/10/26
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Multithreading Support

* Notify the pintool when a thread is created or exited
* Provide a “thread id" for pintools to identify a thread

* Provide locks for pintools to access shared data structures

32
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Multithreaded Programs

$ pin -mt -t mtest -- thread

Creating thread

Creating thread

Joined 0

Joined 1

$ cat mtest.out

0x400109a8: 0

thread begin 1 sp 0x80acc00 flags £00
0x40001d38: 1

thread begin 3 sp 0x43305bd8 flags f£21
0x40011220: 3

thread begin 2 sp 0x42302bd8 flags f21
0x40010e15: 2

0x40005cde: 2

thread end 3 code 0

0x40005€90: 0

0x40005€90: 0

thread end 2 code 0

thread end 1 code

o

33
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Debugging Pintools

= Invoke gdb with your pintool (but don’t use “run”)

$ gdb inscount0
(gdb)

= On another window, start your pintool with “-pause_tool”
1

$ pin -pause_tool 5 -t inscount0 -- /bin/ls
Pausing to attach to pid 32017

= Go back to gdb:
= Attach to the process
= Use “cont” to continue execution; can set breakpoints as usual

(gdb) attach 32017
(gdb) break main
(gdb) cont

34
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Performance Models

= Branch Predictor Models

= PC of conditional instructions

= Direction Predictor: Taken/not-taken information

= Target Predictor: PC of target instruction if taken
= Cache Models

= Thread ID (if multi-threaded workload)

= Memory address

= Size of memory operation

= Type of memory operation (Read/Write)

1/10/26
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Branch Predictor Model

APl data - Branch instr info
R GRTEN  rsim |
Pin 1
— i
API() in Too
Tool ion Routines Analysis Routines

= BPSim Pin Tool

= Instruments all branches

= Uses API to set up call backs to analysis routines
= Branch Predictor Model:

= Detailed branch predictor simulator

36
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BranchPredictor mysPU;

Branch Predictor Implementation

VOID ProcessBranch (ADDRINT C,
BP_Info

1£( pred.Taken !

RINT targetrc, bool BeTaken) (
myBPU_ GetPrediction( BC ) ;
Brraken ) (
// Direction Mispredicted

if( pred.prodiazget

1= targetec ) (
arget Mispredicted
)
)
VOID Instruction(INS ins, VOID *v)
i£( s 1(ins) || INS_HasFallThrough
INS InsertCall (ins, TPOINT BEFORE,
ADDRINT, INS_Address (ins],
IARG_UTNT32,
TARCBRANC

)

int main() {
PIN Init();
NS

PIN StartProgram() ;
)

) )
(AFUNPTR) ProcessBranch
INS DirectBranchorCallTargetAddress (ins)
1 G_END)

InstrunentationFunction (Instruction,

0);

37
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BranchPredictor myBPU;

BE_In:

Branch Predictor Implementation

VOID ProcessBranch (ADDRINT FC, ADDRINT targeteC, bool BrTaken) {
myBPU. GetPradiction ( B
1£( prad Taken != BrTaken )

7,

t
/ Direction Mispredicted
if( pre

¢ 1= targetec )
§ /P Taroet Mispredicred
)

«
)

VOID Instruction(INS ins, VOID *v)
i€ ( NS 1(ins) || INS
INS InsertCall(ins, IPOINT BEFORE

. INS_Addfess (insT,
ARG_BRAN

sBranch,
IARG_UINT32, INS DirectBranchOrCallTargethddress (ins),
"BRANCH TAKEN, IARG_END) ;
¥

int main()
BIN Init();
NS

S“AddInstrumentationFunction (Instruction,
PIN Startprogram() ;
)

FallTh

(AFUNPTR) Proc

)

0);

)

ok w0
] =

PIN Init();

PIN StartProgram() ;
)

Branch Predictor Implementation

)

VOID Instruction(INS ins, VOID *v)
i£( NS

neer
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BranchPredictor mysPU;

VOID ProcessBranch (ADDRINT FC, ADDRINT targetPC, bool BrTaken) {
> ; = myBPU. GetPrediction ( Xt
m pred.Taken = BrTaken ) {
// Direction Mispredicted
)

if( pred.prodrazget
arget Mis
)

targeteC )
predicted

0

1(ins) || INS_HasFallThrough(ins) )
NS Insertcald (ine, IZGINT BEFORE, (AFUNPTR) Processsranch
INS_Address (insT,
i o P e g
TARGTBRANCE TAKEN, IARG_END)

TnstrunentationFunction (Instruction,

0);

13
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Performance Models

= Branch Predictor Models

= Cache Models
= Thread ID (if multi-threaded workload)
= Memory address

Size of memory operation

= Type of memory operation (Read/Write)

40

Cache Simulators

emory Aderifo
Cache -

Apldata_
Pin Tool

API()

Tool Routines. Analysis Routines

= Cache Pin Tool
* Instruments all instructions that reference memory
+ Use API to set up call backs to analysis routines

= Cache Model:

+ Detailed cache simulator

41
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Cache Implementation

CACHE,_t CacheRierarchy (MAX NUM THREADS] (X NUM_LEVELS] ;

VOID MenRet (int tid, adars int size, int type
for (adaradirStart  aalr< (addrStartroise)  adMELINE STZE)
Lookupfiierarchy ( tid, FIRST_LEVEL CACHE, afddx type) ;

)

VOID Lookupierarchy (int tid, int level, ADDRINT addr, int accessType) {
Fomult = cacheliier eld] [cachalevel] >Lockup (add, accessType )
L Tevel = AT LEVEL CACRE ) retumn;

Lookupfiierarchy (t1d, level+l, addr, accessType) ;

ERRVEEIEY

)

)
VOID Instruction(INS ins, VOID *v)

«
4£( IS IsMenoryRead (ins) )
INS_frsertCall (ins, TPOTNT_BEFORE, (AFUNPTR) Menkef
E ARG THRERD ERYRERD,

ARG » ARG MENORYRERD STZE,
UNTa2, ACCESS TYPE_LORD, TARG END)7
4£( NS TeMemoryWricte (ins) )
0 SrseriCall e 1i0Dre purors, (rUET) ke,

IARG MEMORYWRITE EA, IARG MEMORYWRITE STZE,
ARGUTNTS?, ACCESS TYPE, STORE, TARG D)7

)

int main() (

42
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CACHE,_t CacheRierarchy (MAX NUM THREADS] [MOX_NUM_LEVELS] ;
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VOID MemRef (int tid, ADDRINT addrStact, int size, int type) (

for (addr=addrStart; addr<(addzStarttsize) ; addr+=LINE SIZE)
LookupHierarchy ( tid, FIRST LEVEL CACHE, addr, type);

)

VOID Lookupfiierarchy (int tid, int level, ADDRINT addr, int accessType) {
result = cacheiier [tid] [cachelevel] ->Lookup (addr, accessType )
3£ ( result — CACKE MISS ) (

if( level — LAST LEVEL CACHE ) return;
Lookupiierarchy (£5d, level+l, addr, accessType);
)

ERRVEEIEY

)
VOID Instruction(INS ins, VOID *v)

«
4£( INS_TaMenoryRead (ins) )
INS TnsertCall (ins, TPOINT BEFORE, (AFUNPIR) MemRef,
z ARG THREAD ID, IARG MEMORYREAD EA, TARG MEMORYRERD SIZE,
TARG_UINT32, ACCESS_TYPE_LOAD, TARG_END)7
se( TN Tomenoritrite i5e) )

INS_ThsertCall (ins, TPOINT_BEFORE, (AFUNPTR) MemRef,
ARG THREAD_ID, IARG MEMORYWRITE ;2
TARGTUTNT32, ACCESS_ TYPE_ STORE, TARG END)7

)

1/10/26
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Cache Implementation

CACHE,_¢ CacheHierarchy [MAX NUM THREADS] [MAX NUM_LEVELS] ;

VOID MenRef (int tid, ADDRINT addrStart, int size, int type) (
for (addr=adarStart; addr<(addrStart+size) ; addr+=LINE SIZE)

Lookupitierarchy ( tid, FIRST_LEVEL CACHE, addr, type) ;

VOID Lookupitierarchy (int tid, int level, ADDRINT addr, int accessType) {
cacheliier tid) [cacheLevel] ->Lookup (addr, accessTyps
CACHE MISS ) (

aNALYSIS
]
ik

V7
if( level — LAST LAVEL CACHE ) return;
Lookupiiierarchy (t1d, leveltl, addr, accessType) ;

)

)
VOID Instruction(INS ins, VOID *v)

2 £ ( INS_TsMemoryRead (ins) )
1INS_InsertCall (ins, IPOINT BEFORE, (AFUNPTR) MemRef,
2 vy MEMORYREAD

e,
S THREAD_ID, IARG MEMORYWRITE FA, TARG MEMORYWRITE SIZE,

TARG_UINT32, ACCESS_TYPE_STORE, TARG_END);

)

int main() (

PIN Init() ;
INS AddIns trunentationFunction (Instruction, 0) ;
PIN_StartProgran() ;

)
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Reducing Pintool’s Overhead
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Pintool’s Qverhead

Instrumentation Routines Overhead +Analysis Routines Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

45
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Optimization

* Reducing Frequency of Calling Analysis Routines

= Key:
= Instrument at the largest granularity whenever possible:
= Trace > Basic Block > Instruction

46

Conclusions

= Pin

Build your own architectural tools with ease

Run on multiple platforms:

= |IA-32, EM64T, ltanium, and XScale
= Linux, Windows, MacOS

Work on real-life applications
Efficient instrumentation

1/10/26
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Next Lecture Module

= Single-cycle & Multi-cycle Architectures
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