
1/10/26

1

Intel Pin Introduction*

Prof. Michel A. Kinsy

CSE 520
Computer Architecture II

*Aamer Jaleel et al., Intel® Corporation, All Right Reserved

1

Why Instrumentation?
§ Inspect the micro-architecture states of the chip without

physically opening it up

2

What is Instrumentation?
§ A technique that inserts extra code into a program to collect

runtime information

§ Instrumentation approaches:
§ Source instrumentation:

§ Instrument source programs

§ Binary instrumentation:
§ Instrument executables directly

3

1/10/26

2

Example: Instruction Count

sub $0xff, %edx

cmp %esi, %edx
jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter ++
counter ++
counter ++
counter ++

counter ++

Logically

Add counter, 0x1
Actually

4

How Pin Works – High Level
§ What is modified

§ New instructions are added at user defined points
§ Static addresses and references
§ Register allocation
§ Pin stack

§ What is executed
§ Instrumented traces
§ Code cache

5

How Pin Works – High Level
§ When does the modification occur

§ At run time
§ Can attach to running process

6

1/10/26

3

Example: Instruction Trace

sub $0xff, %edx

cmp %esi, %edx
jle <L1>

mov $0x1, %edi

add $0x10, %eax

Print(ip)

Print(ip)

Print(ip)

Print(ip)

Print(ip)

7

Instrumentation vs. Simulation
§ Advantages of Simulation:

§ Detailed modeling of processors
§ Can model non-existing hardware

§ Advantages of Instrumentation:
§ Easy to prototype
§ Fast to run (allowing complete runs)

8

Usage in Architecture
§ How is Instrumentation used in Computer Architecture?

§ Trace Generation
§ Branch Predictor and Cache Modeling
§ Fault Tolerance Study
§ Emulating Speculation
§ Emulating New Instructions
§ Cache Coherence Protocols

9

1/10/26

4

What is Pin?
§ Easy-to-use Instrumentation:

§ Uses dynamic instrumentation
§ Do not need source code, recompilation, post-linking

§ Programmable Instrumentation:
§ Provides rich APIs to write in C/C++ your own instrumentation tools

(called Pintools)

§ Multiplatform:
§ Supports IA-32, EM64T, Itanium, Xscale
§ Supports Linux, Windows, MacOS

10

What is Pin?
§ Robust:

§ Instruments real-life applications
§ Database, search engines, web browsers, …

§ Instruments multithreaded applications

§ Efficient:
§ Applies compiler optimizations on instrumentation code

11

How to use Pin?
§ Launch and instrument an application

 $ pin –t pintool – application

§ Attach to and instrument an application
 $ pin –t pintool -pid 1234

Instrumentation engine
(provided in kit)

Instrumentation tool

(write your own, or use
one provided in kit)

12

1/10/26

5

Pin Instrumentation APIs
§ Basic APIs are architecture independent:

§ Provide common functionalities like determining:
§ Control-flow changes

§ Memory accesses

§ Architecture-specific APIs
§ E.g., Info about segmentation registers on IA32

§ Call-based APIs:
§ Instrumentation routines
§ Analysis routines

13

Instrumentation vs. Analysis
§ Concepts borrowed from the ATOM tool:

§ Instrumentation routines define where instrumentation is inserted
§ e.g. before instruction

§ Occurs first time an instruction is executed

§ Analysis routines define what to do when instrumentation is activated
§ e.g., increment counter
§ Occurs every time an instruction is executed

14

Pintool 1: Instruction Count

sub $0xff, %edx

cmp %esi, %edx
jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter ++
counter ++
counter ++
counter ++

counter ++

15

1/10/26

6

Instruction Count Output
$ /bin/ls
Makefile atrace.o imageload.out itrace proccount Makefile.example
imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

$ pin -t inscount0 -- /bin/ls
Makefile atrace.o imageload.out itrace proccount Makefile.example
imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

Count 422838

16

ManualExamples/inscount0.C

instrumentation routine
analysis routine

#include <iostream>
#include "pin.h"
UINT64 icount = 0;
KNOB<string> KnobOutputFile(KNOB_MODE_WRITEONCE, “pintool”, “o”,
 “results.out”, “specify output file”);
void docount() { icount++; }

void Instruction(INS ins, void *v)
{
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);
}
void Fini(INT32 code, void *v)
{
 FILE* outfile = fopen(KnobOutputFile.Value().c_str(),”w”);
 fprintf(outfile, “Count %d\n”, icount);
}

int main(int argc, char * argv[])
{
 PIN_Init(argc, argv);
 INS_AddInstrumentFunction(Instruction, 0);
 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram();
 return 0;
}

17

ManualExamples/inscount0.C
§ Same source code works on the 4 architectures

§ Pin automatically and efficiently saves/restores application state

18

1/10/26

7

Pintool 2: Instruction Trace

§ Need to pass an argument (ip) to the analysis
routine (printip())

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

Print(ip)

Print(ip)

Print(ip)

Print(ip)

Print(ip)

19

Instruction Trace Output
$ pin -t itrace -- /bin/ls
Makefile atrace.o imageload.out itrace proccount Makefile.example
imageload inscount0 itrace.o proccount.o atrace imageload.o
inscount0.o itrace.out

$ head -4 itrace.out
0x40001e90

0x40001e91
0x40001ee4
0x40001ee5

20

instrumentation routine

analysis routine

ManualExamples/itrace.C
#include <stdio.h>
#include "pin.H"
FILE * trace;
void printip(void *ip) { fprintf(trace, "%p\n", ip); }

void Instruction(INS ins, void *v) {
 INS_InsertCall(ins, IPOINT_BEFORE,(AFUNPTR)printip,

IARG_INST_PTR, IARG_END);
}

void Fini(INT32 code, void *v) { fclose(trace); }
int main(int argc, char * argv[]) {
 trace = fopen("itrace.out", "w");
 PIN_Init(argc, argv);
 INS_AddInstrumentFunction(Instruction, 0);

 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram();
 return 0;
}

Argument to analysis routine

21

1/10/26

8

Arguments to Analysis Routine
§ IARG_INST_PTR

§ Instruction pointer (program counter) value
§ IARG_PTR <pointer>

§ A pointer to some data

§ IARG_REG_VALUE <register name>
§ Value of the register specified

§ IARG_BRANCH_TARGET_ADDR
§ Target address of the branch instrumented

22

Arguments to Analysis Routine
§ IARG_MEMORY_READ_EA

§ Effective address of a memory read
§ And many more …

§ Refer to the Pin manual for details

23

Instrumentation Points
§ Instrument points relative to an instruction:

§ Before (IPOINT_BEFORE)
§ After:

§ Fall-through edge (IPOINT_AFTER)

§ Taken edge (IPOINT_TAKEN)

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

<L1>:
 mov $0x8,%edi

count()

count()

count()

24

1/10/26

9

Instrumentation Granularity
§ Instrumentation with Pin can be done at 3

different granularities:
§ Instruction
§ Basic block

§ A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

§ Single entry, single exit

§ Trace
§ A sequence of basic blocks terminated at an

unconditional control-flow changing instruction

§ Single entry, multiple exits

25

Instrumentation Granularity
§ 1 Trace, 2 basic blocks, 6 instructions

sub $0xff, %edx
Cmp %esi, %edx
jle <L1>

mov $ 0x1, %edi
add $0x10, %eax
jmp <L2>

26

Instruction Count
§ Recap of Pintool 1: Instruction Count

§ Straightforward, but the counting can be more efficient

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter ++

counter ++

counter ++

counter ++

counter ++

27

1/10/26

10

Faster Instruction Count
§ Reduce the number of calls made to analysis routine

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter += 3

counter += 2
basic blocks (bbl)

28

ManualExamples/inscount1.C

instrumentation routine

analysis routine

#include <iostream>
#include "pin.h"
UINT64 icount = 0;
KNOB<string> KnobOutputFile(KNOB_MODE_WRITEONCE, “pintool”, “o”,
 “results.out”, “specify output file”);
void docount(INT32 c) {icount += c; }

void Trace(TRACE trace, void *v) {
 for (BBL bbl = TRACE_BblHead(trace);
 BBL_Valid(bbl); bbl = BBL_Next(bbl)) {
 BBL_InsertCall(bbl, IPOINT_BEFORE, (AFUNPTR)docount,
 IARG_UINT32, BBL_NumIns(bbl), IARG_END);}
}
void Fini(INT32 code, void *v)
{
 FILE* outfile = fopen(KnobOutputFile.Value().c_str(),”w”);
 fprintf(outfile, “Count %d\n”, icount);
}
int main(int argc, char * argv[])
{
 PIN_Init(argc, argv);
 INS_AddInstrumentFunction(Instruction, 0);
 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram();
 return 0;
}

29

Modifying Program Behavior
§ Pin allows you not only observing but also changing program

behavior
§ Ways to change program behavior:

§ Add/delete instructions
§ Change register values
§ Change memory values
§ Change control flow
§ Inject errors

30

1/10/26

11

Example: Emulation of Loads

sub $0x11c,%esp

mov 0xc(%ebp),%eax

add $0x128, %eax

mov 0x8(%ebp),%edi

xor %eax, %edi

31

Multithreading Support
§ Notify the pintool when a thread is created or exited

§ Provide a “thread id” for pintools to identify a thread

§ Provide locks for pintools to access shared data structures

32

Multithreaded Programs
$ pin –mt -t mtest –- thread
Creating thread
Creating thread
Joined 0
Joined 1
$ cat mtest.out
0x400109a8: 0
thread begin 1 sp 0x80acc00 flags f00
0x40001d38: 1
thread begin 3 sp 0x43305bd8 flags f21
0x40011220: 3
thread begin 2 sp 0x42302bd8 flags f21
0x40010e15: 2

0x40005cdc: 2
thread end 3 code 0
0x40005e90: 0
0x40005e90: 0
thread end 2 code 0
thread end 1 code 0

33

1/10/26

12

Debugging Pintools
§ Invoke gdb with your pintool (but don’t use “run”)

§ On another window, start your pintool with “-pause_tool”

§ Go back to gdb:
§ Attach to the process

§ Use “cont” to continue execution; can set breakpoints as usual

(gdb) attach 32017
(gdb) break main
(gdb) cont

$ pin –pause_tool 5 –t inscount0 -- /bin/ls
Pausing to attach to pid 32017

$ gdb inscount0
(gdb)

34

Performance Models
§ Branch Predictor Models

§ PC of conditional instructions
§ Direction Predictor: Taken/not-taken information
§ Target Predictor: PC of target instruction if taken

§ Cache Models
§ Thread ID (if multi-threaded workload)
§ Memory address
§ Size of memory operation
§ Type of memory operation (Read/Write)

35

Branch Predictor Model

§ BPSim Pin Tool
§ Instruments all branches
§ Uses API to set up call backs to analysis routines

§ Branch Predictor Model:
§ Detailed branch predictor simulator

BP

Model
BPSim

Pin Tool
Pin

Instrumentation Routines Analysis RoutinesInstrumentation Tool

API()

Branch instr infoAPI data

36

1/10/26

13

Branch Predictor Implementation
BranchPredictor myBPU;

VOID ProcessBranch(ADDRINT PC, ADDRINT targetPC, bool BrTaken) {
 BP_Info pred = myBPU.GetPrediction(PC);
 if(pred.Taken != BrTaken) {
 // Direction Mispredicted
 }
 if(pred.predTarget != targetPC) {
 // Target Mispredicted
 }
}

VOID Instruction(INS ins, VOID *v)
{
 if(INS_IsDirectBranchOrCall(ins) || INS_HasFallThrough(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) ProcessBranch,
 ADDRINT, INS_Address(ins),
 IARG_UINT32, INS_DirectBranchOrCallTargetAddress(ins),
 IARG_BRANCH_TAKEN, IARG_END);
}

int main() {
 PIN_Init();
 INS_AddInstrumentationFunction(Instruction, 0);
 PIN_StartProgram();
}

IN
ST
R
U
M
E
N
T

A
N
A
L
Y
SI
S

M
A
IN

37

Branch Predictor Implementation
BranchPredictor myBPU;

VOID ProcessBranch(ADDRINT PC, ADDRINT targetPC, bool BrTaken) {
 BP_Info pred = myBPU.GetPrediction(PC);
 if(pred.Taken != BrTaken) {
 // Direction Mispredicted
 }
 if(pred.predTarget != targetPC) {
 // Target Mispredicted
 }
}

VOID Instruction(INS ins, VOID *v)
{
 if(INS_IsDirectBranchOrCall(ins) || INS_HasFallThrough(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) ProcessBranch,
 ADDRINT, INS_Address(ins),
 IARG_UINT32, INS_DirectBranchOrCallTargetAddress(ins),
 IARG_BRANCH_TAKEN, IARG_END);
}

int main() {
 PIN_Init();
 INS_AddInstrumentationFunction(Instruction, 0);
 PIN_StartProgram();
}

IN
ST
R
U
M
E
N
T

A
N
A
L
Y
SI
S

M
A
IN

38

Branch Predictor Implementation
BranchPredictor myBPU;

VOID ProcessBranch(ADDRINT PC, ADDRINT targetPC, bool BrTaken) {
 BP_Info pred = myBPU.GetPrediction(PC);
 if(pred.Taken != BrTaken) {
 // Direction Mispredicted
 }
 if(pred.predTarget != targetPC) {
 // Target Mispredicted
 }
}

VOID Instruction(INS ins, VOID *v)
{
 if(INS_IsDirectBranchOrCall(ins) || INS_HasFallThrough(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) ProcessBranch,
 ADDRINT, INS_Address(ins),
 IARG_UINT32, INS_DirectBranchOrCallTargetAddress(ins),
 IARG_BRANCH_TAKEN, IARG_END);
}

int main() {
 PIN_Init();
 INS_AddInstrumentationFunction(Instruction, 0);
 PIN_StartProgram();
}

IN
ST
R
U
M
E
N
T

A
N
A
L
Y
SI
S

M
A
IN

39

1/10/26

14

Performance Models
§ Branch Predictor Models

§ PC of conditional instructions
§ Direction Predictor: Taken/not-taken information
§ Target Predictor: PC of target instruction if taken

§ Cache Models
§ Thread ID (if multi-threaded workload)
§ Memory address
§ Size of memory operation
§ Type of memory operation (Read/Write)

40

Cache Simulators

§ Cache Pin Tool
• Instruments all instructions that reference memory
• Use API to set up call backs to analysis routines

§ Cache Model:
• Detailed cache simulator

Cache

Model
Cache

Pin Tool
Pin

Instrumentation Routines Analysis RoutinesInstrumentation Tool

API()

Memory Addr infoAPI data

41

CACHE_t CacheHierarchy[MAX_NUM_THREADS][MAX_NUM_LEVELS];

VOID MemRef(int tid, ADDRINT addrStart, int size, int type) {
 for(addr=addrStart; addr<(addrStart+size); addr+=LINE_SIZE)
 LookupHierarchy(tid, FIRST_LEVEL_CACHE, addr, type);
}
VOID LookupHierarchy(int tid, int level, ADDRINT addr, int accessType){
 result = cacheHier[tid][cacheLevel]->Lookup(addr, accessType);
 if(result == CACHE_MISS) {
 if(level == LAST_LEVEL_CACHE) return;
 LookupHierarchy(tid, level+1, addr, accessType);
 }
}
VOID Instruction(INS ins, VOID *v)
{
 if(INS_IsMemoryRead(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) MemRef,
 IARG_THREAD_ID, IARG_MEMORYREAD_EA, IARG_MEMORYREAD_SIZE,
 IARG_UINT32, ACCESS_TYPE_LOAD, IARG_END);
 if(INS_IsMemoryWrite(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) MemRef,
 IARG_THREAD_ID, IARG_MEMORYWRITE_EA, IARG_MEMORYWRITE_SIZE,
 IARG_UINT32, ACCESS_TYPE_STORE, IARG_END);
}
int main() {
 PIN_Init();
 INS_AddInstrumentationFunction(Instruction, 0);
 PIN_StartProgram();
}

IN
ST
R
U
M
E
N
T

Cache Implementation

A
N
A
L
Y
SI
S

M
A
IN

42

1/10/26

15

CACHE_t CacheHierarchy[MAX_NUM_THREADS][MAX_NUM_LEVELS];

VOID MemRef(int tid, ADDRINT addrStart, int size, int type) {
 for(addr=addrStart; addr<(addrStart+size); addr+=LINE_SIZE)
 LookupHierarchy(tid, FIRST_LEVEL_CACHE, addr, type);
}
VOID LookupHierarchy(int tid, int level, ADDRINT addr, int accessType){
 result = cacheHier[tid][cacheLevel]->Lookup(addr, accessType);
 if(result == CACHE_MISS) {
 if(level == LAST_LEVEL_CACHE) return;
 LookupHierarchy(tid, level+1, addr, accessType);
 }
}
VOID Instruction(INS ins, VOID *v)
{
 if(INS_IsMemoryRead(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) MemRef,
 IARG_THREAD_ID, IARG_MEMORYREAD_EA, IARG_MEMORYREAD_SIZE,
 IARG_UINT32, ACCESS_TYPE_LOAD, IARG_END);
 if(INS_IsMemoryWrite(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) MemRef,
 IARG_THREAD_ID, IARG_MEMORYWRITE_EA, IARG_MEMORYWRITE_SIZE,
 IARG_UINT32, ACCESS_TYPE_STORE, IARG_END);
}
int main() {
 PIN_Init();
 INS_AddInstrumentationFunction(Instruction, 0);
 PIN_StartProgram();
}

IN
ST
R
U
M
E
N
T

Cache Implementation
A
N
A
L
Y
SI
S

M
A
IN

43

CACHE_t CacheHierarchy[MAX_NUM_THREADS][MAX_NUM_LEVELS];

VOID MemRef(int tid, ADDRINT addrStart, int size, int type) {
 for(addr=addrStart; addr<(addrStart+size); addr+=LINE_SIZE)
 LookupHierarchy(tid, FIRST_LEVEL_CACHE, addr, type);
}
VOID LookupHierarchy(int tid, int level, ADDRINT addr, int accessType){
 result = cacheHier[tid][cacheLevel]->Lookup(addr, accessType);
 if(result == CACHE_MISS) {
 if(level == LAST_LEVEL_CACHE) return;
 LookupHierarchy(tid, level+1, addr, accessType);
 }
}
VOID Instruction(INS ins, VOID *v)
{
 if(INS_IsMemoryRead(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) MemRef,
 IARG_THREAD_ID, IARG_MEMORYREAD_EA, IARG_MEMORYREAD_SIZE,
 IARG_UINT32, ACCESS_TYPE_LOAD, IARG_END);
 if(INS_IsMemoryWrite(ins))
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) MemRef,
 IARG_THREAD_ID, IARG_MEMORYWRITE_EA, IARG_MEMORYWRITE_SIZE,
 IARG_UINT32, ACCESS_TYPE_STORE, IARG_END);
}
int main() {
 PIN_Init();
 INS_AddInstrumentationFunction(Instruction, 0);
 PIN_StartProgram();
}

IN
ST
R
U
M
E
N
T

Cache Implementation

A
N
A
L
Y
SI
S

M
A
IN

44

Reducing Pintool’s Overhead

Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

Work required for transiting to Analysis Routine + Work done inside Analysis Routine

45

1/10/26

16

Optimization
§ Reducing Frequency of Calling Analysis Routines

§ Key:
§ Instrument at the largest granularity whenever possible:

§ Trace > Basic Block > Instruction

46

Conclusions
§ Pin

§ Build your own architectural tools with ease
§ Run on multiple platforms:

§ IA-32, EM64T, Itanium, and XScale

§ Linux, Windows, MacOS

§ Work on real-life applications
§ Efficient instrumentation

47

Next Lecture Module
§ Single-cycle & Multi-cycle Architectures

48

