CSE 520
Computer Architecture |

Intel Pin Introduction®

Prof. Michel A. Kinsy

*Aamer Jaleel et al., Intel® Corporation, All Right Reserved




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

% Ira A.Fulton Schoo!sof
Engmeermg

a State University

Why Instrumentation?

= Inspect the micro-architecture states of the chip without
physically opening it up




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

What is Instrumentation?

= A technique that inserts extra code into a program to collect
runtime information

= |Instrumentation approaches:
= Source instrumentation:

= |nstrument source programs

= Binary instrumentation:

» |nstrument executables directly




%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Example: Instruction Count

sub  $Oxff, %edx

Logically — counter ++
cmp  %esi, Y%edx

Add counter, Ox1 — jcloeunter +<+L1 S
Actually counter ++

mov $0x1, %edi
counter ++

add $0x10, %eax

counter ++




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

How Pin Works — High Level

» What is modified

= New instructions are added at user defined points

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

= Static addresses and references
= Register allocation
* Pin stack

= What is executed

» |nstrumented traces

» Code cache




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

How Pin Works — High Level

» \When does the modification occur

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

= At run time

= Can attach to running process




Example: Instruction Trace

sub POxff, %edx

Print(ip)
cmp  %esi, Y%edx

Plrén (ip) <L1>

brint $0x1, %ed
Print(ip)
add  $0x10, %eax

Print(ip)




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Instrumentation vs. Simulation

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

= Advantages of Simulation:
» Detailed modeling of processors
= Can model non-existing hardware

= Advantages of Instrumentation:
= Easy to prototype

= Fast to run (allowing complete runs)




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Usage in Architecture

= How is Instrumentation used in Computer Architecture?
= Trace Generation
= Branch Predictor and Cache Modeling
* Fault Tolerance Study
= Emulating Speculation
= Emulating New Instructions

= Cache Coherence Protocols




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

What is Pin?

» Fasy-to-use Instrumentation:

= Uses dynamic instrumentation

= Do not need source code, recompilation, post-linking
» Programmable Instrumentation:

= Provides rich APIs to write in C/C++ your own instrumentation tools
(called Pintools)

= Multiplatform:
= Supports |A-32, EM64T, Itanium, Xscale

= Supports Linux, Windows, MacQOS




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

What is Pin?

= Robust:
= |Instruments real-life applications

» Database, search engines, web browsers, ...

= |nstruments multithreaded applications
= Efficient:
= Applies compiler optimizations on instrumentation code




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

How to use Pin?
= Launch and instrument an application

$ pin -t pintool — application

™

Instrumentation engine Instrumentation tool

(provided in kit) (write your own, or use
one provided in kit)

= Attach to and instrument an application
$ pin -t pintool -pid 1234




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Pin Instrumentation APls

= Basic APIs are architecture independent:

* Provide common functionalities like determining:

= Control-flow changes
= Memory accesses

= Architecture-specific APls
= E.g., Info about segmentation registers on IA32

» Call-based APIs:

" |nstrumentation routines

= Analysis routines




%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Instrumentation vs. Analysis

= Concepts borrowed from the ATOM tool:
» |nstrumentation routines define where instrumentation is inserted

= e.g. before instruction
= Occurs first time an instruction is executed

= Analysis routines define what to do when instrumentation is activated

" e.g., increment counter

» Occurs every time an instruction is executed




Pintool 1: Instruction Count

sub  $0xff,

counter ++

%
oeSI
COUTE)eI’

jle <L1>
counter ++

mov  $0x1,
counter ++

add  $0x10,

counter ++

Y%edx
Y%edx

%edi

Y%eax




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Instruction Count Output

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

$ /bin/ls

Makefile atrace.o imageload.out i1itrace proccount Makefile.example
imageload inscountO i1trace.o proccount.o atrace imageload.o
inscount0.o0 itrace.out

$ pin -t inscount0 -- /bin/ls

Makefile atrace.o imageload.out i1itrace proccount Makefile.example

imageload inscountO i1trace.o proccount.o atrace imageload.o
inscount0.o0 itrace.out

Count 422838




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ManualExamples/inscount0.C

#include <iostream>

#include "pin.h"

UINT64 icount = 0O;

KNOB<string> KnobOutputFile (KNOB MODE WRITEONCE, “pintool”, “o”,

“results.out”, “specify output file”);
void docount () { icount++; }

%‘ IraA. Ful_ton Schoo!s of
Engineering

Arizona State University

analysis routine
void Instruction (INS ins, void *v)

{ instrumentation routine

INS InsertCall (ins, IPOINT BEFORE, (AFUNPTR)docount, IARG END) ;
}

void Fini (INT32 code, void *v)

{
FILE* outfile = fopen (KnobOutputFile.Value().c str(),”"w”);
fprintf (outfile, “Count %d\n”, icount);

}

int main(int argc, char * argv[])

{

PIN Init(argc, argv);

INS AddInstrumentFunction(Instruction, 0);
PIN AddFiniFunction(Fini, 0);

PIN StartProgram() ;

return O;




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

% Ira A.Fulton Schoo!sof
Engmeermg

a State University

ManualExamples/inscount0.C

= Same source code works on the 4 architectures

= Pin automatically and efficiently saves/restores application state




% Ira A.Fulton Schoo!sof
Engmeermg

a State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Pintool 2: Instruction Trace

Print(ip)

sub SOxff,  %edx
Print(ip)

cmp %esi, %edx
famtier s
Print(ip)

mov SOx1, %edi
Print(ip)

add SO0x10, %eax

* Need to pass an argument (ip) to the analysis
routine (printip()



STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Instruction Trace Output

$ pin -t itrace -- /bin/Is

Makefile atrace.o imageload.out i1itrace proccount Makefile.example
imageload inscountO i1trace.o proccount.o atrace imageload.o
inscount0.o0 1trace.out

$ head -4 itrace.out
0x40001e90
0x40001e91
0x40001eecd
0x40001leeb




“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ManualExamples/itrace.C

#include <stdio.h>
#include "pin.H"
FILE * trace;

void printip(void *ip) { fprjZntf (trace, "%p\n", ip); }
analysis routine

Argument to analysis routine

void Instruction (INS ins, Ffoid *v) {

INS InsertCall (ins, IBOINT BEFORE, (AFUNPTR)printip,

IARG_INST_ PTR, IARG_END) ; instrumentation routine

}

void Fini (INT32 code, void *v) { fclose(trace); }
int main(int argc, char * argv[]) {

trace = fopen("itrace.out", "w");

PIN Init(argc, argv);

INS AddInstrumentFunction (Instruction, 0);

PIN AddFiniFunction(Fini, 0);
PIN StartProgram() ;
return 0;




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Ira A.Fulton Schoo!sof
% Engmeermg

a State University

Arguments to Analysis Routine
= IARG_INST_PTR

= |nstruction pointer (program counter) value

» IARG_PTR <pointer>

= A pointer to some data

» |ARG_REG_VALUE <register name>

= Value of the register specified

» |ARG_BRANCH_TARGET_ADDR

= Target address of the branch instrumented




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Arguments to Analysis Routine

Ira A.Fulton Schoo!sof
% Engmeermg

a State University

= |JARG_MEMORY_READ_EA

= Effective address of a memory read

= And many more ...

= Refer to the Pin manual for details




%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Instrumentation Points

= Instrument points relative to an instruction:
= Before (IPOINT_BEFORE)

= After:
» Fall-through edge (IPOINT_AFTER)
= Taken edge (IPOINT_TAKEN)

cmp %esi, %edx ount()
count() =——p
jle <L1>

count() =——p» — <hl>:

mov $0x1, %edi mov $0x8, $edi




“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Instrumentation Granularity

» |nstrumentation with Pin can be done at 3
different granularities:

= |nstruction

» Basic block

= A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

= Single entry, single exit
= Trace

= A sequence of basic blocks terminated at an
unconditional control-flow changing instruction

= Single entry, multiple exits




%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Instrumentation Granularity

» 1 Trace, 2 basic blocks, 6 instructions

sub $0xff, %edx
Cmp %esi, %edx
jle <L1>

mov$ Oxl, %oedi
add $0x10, %eax
jmp <L2>




%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Instruction Count

= Recap of Pintool 1: Instruction Count

counter ++

sub SOxff, %edx
counter ++

cmp %esi, %edx
counter ++

jle <L1>

counter ++

mov SOx1, %edi
counter ++

add S0x10, %eax

= Straightforward, but the counting can be more efficient




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Faster Instruction Count

» Reduce the number of calls made to analysis routine

counter += 3
sub $0xff, %edx

cmp $esi, %edx \

basic blocks (bbl)

jle <L1>

counter += 2
mov $0x1, %edi

add $0x10, %eax




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ManualExamples/inscount1.C

#include <iostream>

#include "pin.h"

UINT64 icount = 0O;

KNOB<string> KnobOutputFile (KNOB MODE WRITEONCE, “pintool”, “o”,
“results.out”, “specify output file”) ;

void docount (INT32 c) {icount += c; } analysis routine

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

void Trace (TRACE trace, void *v) {
for (BBL bbl = TRACE BblHead(trace);
BBL Valid(bbl); bbl = BBL Next(bbl)) ({
BBL InsertCall (bbl, IPOINT BEFORE, (AFUNPTR)docount,
IARG UINT32, BBL NumIns (bbl), IARG END) ;}

instrumentation routine

}

void Fini (INT32 code, void *v)

{
FILE* outfile = fopen (KnobOutputFile.Value().c _str(),”"w”);
fprintf (outfile, “Count %d\n”, icount);

}

int main(int argc, char * argv([])

{

PIN Init(argc, argv);

INS AddInstrumentFunction(Instruction, 0);
PIN AddFiniFunction(Fini, 0);

PIN StartProgram() ;

return O;




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Moditying Program Behavior

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

= Pin allows you not only observing but also changing program
behavior
= Ways to change program behavior:
= Add/delete instructions
= Change register values
= Change memory values

= Change control flow

* |nject errors




%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Example: Emulation of Loads

sub $0xl1llc, $esp
mov Oxc (%ebp) , seax
add $0x128, %eax

mov 0x8 (%ebp) , 3ed1i

Xor Teax, %edi




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Ira A.Fulton Schoo!sof
% Engmeermg

a State University

Multithreading Support

= Notify the pintool when a thread is created or exited

= Provide a “thread id"” for pintools to identify a thread

= Provide locks for pintools to access shared data structures




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Multithreaded Programs

$ pin —-mt -t mtest -- thread

Creating thread

Creating thread

Joined O

Jolned 1

S cat mtest.out

0x400109%a8: 0

thread begin 1 sp 0x80acc00 flags f00
0x40001d38: 1

thread begin 3 sp 0x43305bd8 flags f21
0x40011220: 3

thread begin 2 sp 0x42302bd8 flags f21
0x40010elb5: 2

0x40005cdc: 2

thread end 3 code 0

0x40005e90: O

0x40005e90: 0

thread end 2 code 0

thread end 1 code 0




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Debugging Pintools

= Invoke gdb with your pintool (but don't use “run”)

$ gdb inscount0
(gdb)

= On another window, start your pintool with “-pause_tool”

$ pin -pause tool 5 -t inscount0 -- /bin/ls
Pausing to attach to pid 32017

» Go back to gdb:
= Attach to the process

= Use “cont” to continue execution; can set breakpoints as usual

(gdb) attach 32017
(gdb) break main
(gdb) cont




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Performance Models

= Branch Predictor Models
= PC of conditional instructions
= Direction Predictor: Taken/not-taken information
= Target Predictor: PC of target instruction if taken

» Cache Models
= Thread ID (if multi-threaded workload)
= Memory address
= Size of memory operation

= Type of memory operation (Read/Write)




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Branch Predictor Model

API data Branch instr in‘o
Pin BPSim BP
— Pln TOOI M |
API() ode
Instrumentation Tool Instrumentation Routines Analysis Routines
BPSim Pin Tool

= |nstruments all branches

= Uses API to set up call backs to analysis routines

Branch Predictor Model:

= Detailed branch predictor simulator

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Branch Predictor Implementation

BranchPredictor myBPU;

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

VOID ProcessBranch (ADDRINT PC, ADDRINT targetPC, bool BrTaken) {
BP Info pred = myBPU.GetPrediction( PC ) ;
if? pred.Taken != BrTaken ) ({
// Direction Mispredicted

}
if ( pred.predTarget != targetPC ) ({

// Target Mispredicted
}

ANALYSIS

}

VOID Instruction(INS ins, VOID *v)
{
if ( INS_IsDirectBranchOrCall (ins) || INS_HasFallThrough(ins) )
INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) ProcessBranch,
ADDRINT, INS Address(ins),
IARG_UINT32,_INS_DirectBranchOrCallTargetAddress(ins),
IARG_BRANCH TAKEN, IARG_END) ;

INSTRUMENT

int main() {
PIN Init();
INS AddInstrumentationFunction(Instruction, 0);
PIN StartProgram() ;

}

MAIN




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Branch Predictor Implementation

BranchPredictor myBPU;

“Ira A.Ful_ton Schoo!sof
%l Engineering

Arizona State University

VOID ProcessBranch (ADDRINT PC, ADDRINT targetPC, bool BrTaken) {
BP Info pred = myBPU.GetPrediction( PC ) ;
if? pred.Taken != BrTaken ) ({
// Direction Mispredicted

}

if ( pred.predTarget != targetPC ) ({
// Target Mispredicted

}

ANALYSIS

}

VOID Instruction(INS ins, VOID *v)
{
if ( INS_IsDirectBranchOrCall(ins) || INS_HasFallThrough(ins) )
INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) ProcessBranch,
ADDRINT, INS Address(ins),
IARG_UINT32,_INS_DirectBranchOrCallTargetAddress(ins),
IARG_BRANCH TAKEN, IARG_END) ;

INSTRUMENT

int main() {
PIN Init();
INS AddInstrumentationFunction(Instruction, 0);
PIN StartProgram() ;

}

MAIN




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Branch Predictor Implementation

BranchPredictor myBPU;

“Ira A.Ful_ton Schoo!sof
%‘ Engineering

Arizona State University

VOID ProcessBranch (ADDRINT PC, ADDRINT targetPC, bool BrTaken) {
BP Info pred = myBPU.GetPrediction( PC ) ;
if? pred.Taken != BrTaken ) ({
// Direction Mispredicted

}

if ( pred.predTarget != targetPC ) ({
// Target Mispredicted

}

ANALYSIS

}

VOID Instruction(INS ins, VOID *v)
{
if ( INS_IsDirectBranchOrCall(ins) || INS_HasFallThrough(ins) )
INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) ProcessBranch,
ADDRINT, INS Address(ins),
IARG_UINT32,_INS_DirectBranchOrCallTargetAddress(ins),
IARG_BRANCH TAKEN, IARG_END) ;

INSTRUMENT

int main() {
PIN Init();
INS AddInstrumentationFunction(Instruction, 0);
PIN StartProgram() ;

}

MAIN




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Performance Models

» Branch Predictor Models

» Cache Models
= Thread ID (if multi-threaded workload)
= Memory address
= Size of memory operation

= Type of memory operation (Read/Write)




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Cache Simulators

API data Memory Addr inIo
P. — Cache Cache
In .
—— | Pin TooOl Model
API()
Instrumentation Tool Instrumentation Routines Analysis Routines

= Cache Pin Tool

* Instruments all instructions that reference memory
« Use API to set up call backs to analysis routines

» Cache Model:

e Detailed cache simulator




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Cache Implementation

CACHE_t CacheHierarchy[MAX NUM THREADS] [MAX NUM LEVELS];

VOID MemRef (int tid, ADDRINT addrStart, int size, int type) {
for (addr=addrStart; addr<(addrStart+size); addr+=LINE_ SIZE)

2 LookupHierarchy( tid, FIRST LEVEL CACHE, addr, type);
2! }
5 VOID LookupHierarchy (int tid, int level, ADDRINT addr, int accessType) {
<« result = cacheHier[tid] [cacheLevel]->Lookup (addr, accessType ),
4 if ( result == CACHE_MISS ) {
< if( level == LAST LEVEL CACHE ) return;
LookupHierarchy (tid, level+l, addr, accessType) ;
}

}

VOID Instruction (INS ins, VOID *v)
i {
Z if ( INS IsMemoryRead(ins) )
; INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) MemRef,
=) IARG_THREAD_ ID, IARG_MEMORYREAD EA, IARG_MEMORYREAD SIZE,
& IARG_UINT32, ACCESS_TYPE LOAD, IARG_END) ;
5‘; if ( INS IsMemoryWrite(ins) )
Z. INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) MemRef,
- IARG_THREAD_ ID, IARG_MEMORYWRITE EA, IARG_MEMORYWRITE SIZE,

IARG_UINT32, ACCESS_TYPE STORE, IARG_END) ;

}

int main() {
Z. PIN Init();
2 INS_AddInstrumentationFunction(Instruction, 0);
> PIN StartProgram();

}



STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Cache Implementation

CACHE_t CacheHierarchy[MAX NUM THREADS] [MAX NUM LEVELS];

VOID MemRef (int tid, ADDRINT addrStart, int size, int type) {
for (addr=addrStart; addr<(addrStart+size); addr+=LINE_ SIZE)

E LookupHierarchy( tid, FIRST LEVEL CACHE, addr, type);
2! }
5 VOID LookupHierarchy (int tid, int level, ADDRINT addr, int accessType) {
<« result = cacheHier[tid] [cacheLevel]->Lookup (addr, accessType ),
4 if ( result == CACHE_MISS ) {
< if( level == LAST LEVEL CACHE ) return;
LookupHierarchy (tid, level+l, addr, accessType) ;
}

}

VOID Instruction (INS ins, VOID *v)
i {
Z if ( INS_IsMemoryRead(ins) )
; INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) MemRef,
=) IARG_THREAD ID, IARG_MEMORYREAD EA, IARG_MEMORYREAD SIZE,
& IARG_UINT32, ACCESS_TYPE LOAD, IARG_END) ;
5 if ( INS_IsMemoryWrite(ins) )
Z INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) MemRef,
- IARG_THREAD_ ID, IARG _MEMORYWRITE EA, IARG_MEMORYWRITE SIZE,

IARG_UINT32, ACCESS_TYPE STORE, IARG_END) ;

}

int main() {
Z. PIN Init();
2 INS_AddInstrumentationFunction(Instruction, 0);
> PIN StartProgram();

}



STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ANALYSIS

INSTRUMENT

MAIN

Cache Implementation

CACHE_t CacheHierarchy[MAX NUM THREADS] [MAX NUM LEVELS];

VOID MemRef (int tid, ADDRINT addrStart, int size, int type) {
for (addr=addrStart; addr<(addrStart+size); addr+=LINE SIZE)

LookupHierarchy( tid, FIRST LEVEL CACHE, addr, type);

}

VOID LookupHierarchy (int tid, int level, ADDRINT addr, int accessType) {
result = cacheHier|[tid] [cacheLevel]->Lookup (addr, accessType ) ;
if ( result == CACHE_MISS ) ({

if( level == LAST LEVEL CACHE ) return;

LookupHierarchy (tid, level+l, addr, accessType) ;

}

}

VOID Instruction (INS ins, VOID *v)

{
if ( INS IsMemoryRead(ins) )

INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) MemRef,
IARG_THREAD ID, IARG_MEMORYREAD EA, IARG_MEMORYREAD SIZE,
IARG_UINT32, ACCESS_TYPE LOAD, IARG_END) ;

if ( INS IsMemoryWrite(ins) )

INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) MemRef,
IARG_THREAD ID, IARG _MEMORYWRITE EA, IARG_MEMORYWRITE SIZE,
IARG_UINT32, ACCESS_TYPE STORE, IARG_END) ;

}

int main() {
PIN Init();
INS_AddInstrumentationFunction (Instruction, 0);
PIN StartProgram() ;

}

“Ira A.Ful_ton Schoo!sof
%‘ Engineering

Arizona State University




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Reducing Pintool’'s Overheaa
Pintoo%head

/ . . . .
Instrumentation Routines Overhead +dnalysis Routines Overhea

A
- N

@ncy of calling an Analysis@ Work required in the Analysis Routine

“Ira A.Ful_ton Schoo!sof
% Engineering

Arizona State University

@equired for transiting to Analysis Routin@k @de Analysis@




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Optimization

= Reducing Frequency of Calling Analysis Routines
= Key:

= |Instrument at the largest granularity whenever possible:
= Trace > Basic Block > Instruction




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Conclusions

= Pin
= Build your own architectural tools with ease

= Run on multiple platforms:

» |A-32, EM64T, Itanium, and XScale
= | inux, Windows, MacOS

= Work on real-life applications

» Efficient instrumentation




STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Next Lecture Module

» Single-cycle & Multi-cycle Architectures




