CSE 520
Computer Architecture Il

CPU: Hazard Resolution

Prof. Michel A. Kinsy

Instruction Interactions

= An instruction in the pipeline may need a resource being used by
another instruction in the pipeline
= Structural hazard
= An instruction may depend on something produced by an earlier
instruction
= Dependence may be for a data calculation
= Data hazard

= Dependence may be for calculating the next address
= Control hazard (branches, interrupts)

1/17/26

enter

Structural Hazard

add x5,x6,x7 swox3, 24(x4) 1w x1, 8(x2)

Control f
Unit

1/17/26

Stalled Stages and Pipeline

H 2 8 # 6 % .
0 €0 +10 IF ID1 EXi_ MA—WBi—,

(2)rd € (1) + 17 IFz i Dz Dz Dz BX2 MAz
2] Fs Fs P IR Dy EXa
I stalled stages P
time
© v e’ 8 w5 6 U
F I kB B B b B i
Resource D Kook Rk kW
Usage EX I nop nop nop kbl
MA I nop nop nop k
we I rop nop nop

Resolving Data Hazards

= Strategy 1: Wait for the result to be available by freezing earlier
pipeline stages
= Interlocks
= Strategy 2: Route data as soon as possible after it is calculated to
the earlier pipeline stage
= Bypass

Two cases:

Resolving Data Hazards
= Strategy 3: Speculate on the dependence

Guessed correctly
Do nothing

Guessed incorrectly
Kill and restart

1/17/26

AU rd € (rs1) [func3,func7] (rs2)
AU rd € (rs1) [func3] Hmm

Source and Destination Registers

; s
Raype [o [o
vawe [T T
sype [moinsl [|
seype [mmma] mmios] w2 | ot
e | ey

Uype [0 [im0 [t [mmis o]

T oo

source(s) destination
rs1, rs2 rd
rsl rd
rs1

rd € (rs1) [funct3, inst{30]] I-imm[4:0] rd

Source and Destination Registers

Lw rd € M{[(rs1) + imm] rsl rd
SW M [(rs1) + imm] € (rs2) rs1, rs2

Ll rd € U-imm rd
AUIPC rd € pc + U-imm rd

P
L T —

s

v [iz T

suype [5 = [=]
so.type [| mmios | | =

warpe [i

U tye [0 o | it Lo ia]

source(s) destination

Source and Destination Registers

source(s) destination

ALU rd € (rs1) [func3,func7] (rs2) rs1, rs2 rd

ALUi rd € (rs1) [func3] l-imm rs1 rd
rd € (rs1) [funct3, inst[30]] I-imm[4:0] rs1 rd

Lw rd € M [(rs1) + imm] rsl rd

SW M [(rs1) + imm] € (rs2) rs1, rs2

Ll rd € U-imm rd

AUIPC rd € pc + U-imm rd

JAL rd€pc+d rd
pc € pc + J-imm

JAIR rd € pc+4 rsl rd
pc € (rs1 + l-imm) & ~0x01

BR pc €compare(funct3, rs1, rs2) ? rs1, rs2

pc + B-imm: pc+ 4

1/17/26

10

er

Types of Data Hazards
= Consider executing a sequence of
€ (r) op (r) type of instructions

Data-dependence
rs & (r) op (r2) Read-after-Write
s &) op (1) (RAW) hazard

Anti-dependence

rs € () op () Write-after-Read
rwe)(m) op (rs) (WAR) hazard

Output-dependence
rs €& (n) op (r2) Write-after-Write
Cors € () op () (WAW) hazard

11

STA

Data Hazards: An Example

I. ADD X6, x6, x4

I LW X2\ 44(x3)
I; SUB X
I» AND x8,
Is SUB x10

Is ADD X6, X8, x2
RAW Hazards

12

Data Hazards: An Example

I: ADD X6, X6, X4

I LW X2

44(x3)
Is SUB X,
I+ AND X8, X2
Is SUB x10 X6

Is ADD X6, X8, X2

RAW Hazards
WAR Hazards

13

Data Hazards: An Example

I: ADD X6, X6, X4

L W X2\ 44(x3)

Is SUB X
I AND x8, X2
Is SUB x10 X6

Is ADD X6, X8, X2

RAW Hazards
WAR Hazards
WAW Hazards

14

Data Hazards: An Example
ADD X6, X6, x4
LW
suB
AND
suB

ADD

RAW Hazards
WAR Hazards
WAW Hazards

15

1/17/26

Resolving Data Hazards

= Strategy 1: Wait for the result to be available by freezing earlier
pipeline stages
= Interlocks
= Strategy 2: Route data as soon as possible after it is calculated to
the earlier pipeline stage
= Bypass

1/17/26

16

Interlocks to resolve Data Hazards

stall Condition

nop Sy [[|
B A S I A — a1
& i
L e eIl
%2 AN
X1 €x2 + 10 o1
x4 €x1 +17
17
enter

Interlock Control Logic

stall /Y

| Con [t
el —]
~E el ws wel | ws
—reif trez [Cast

e Sl A
=0

18

Deriving the Stall Signal

1/17/26

Cdest

ws = Case opcode
ALU, ALUI >rd
Lw, LI >rd
JAL, JALR, AUIPC > rd

we = Case opcode
ALU, ALU, LW, LUI > (ws I= 0)
JAL, JALR, AUIPC > on
> off

Cre
rel = Case opcode
ALU, ALU;,
LW, SW, BR,
JALR > on
LUI, JAL, AUIPC > off

re2 = Case opcode
ALU, SW,BR > on
. > off

Cstall= ((rs1D =wsE).weE +
(rs1D =ws).wewm +
(rs1D=wsw).wew) . re10
((rs20 =wse). wee +
(rs2D =ws).wew +
(rs2 =wsw).wew) . re20

19

Interlock Control Logic

stall

20

the eal

Resolving Data Hazards

rlier pipeline stage

= Bypass

= Strategy 1: Wait for the result to be available by freezing earlier
pipeline stages

= Interlocks
= Strategy 2: Route data as soon as possible after it is calculated to

21

Feedback to Resolve Hazards

= Later stages provide dependence information to earlier stages which
can stall (or kill) instructions

= Controlling a pipeline in this manner works provided the instruction at
stage i+1 can complete without any interference from instructions in
stages 1to i

= Otherwise deadlocks may occur

1/17/26

22

er Engi I;eerir:g

Bypassing

time.
0 0 2 8 W 5 6 ..
A€ +10 Fi D1 EX1 MA—WBr—

()2 € 1) + 17 Fz Iz D2 D2 ID: EX: MAz
[} Fr B I IFi D EXs
(0] stalled stages IFs

= Each stall or kill introduces a bubble in the pipeline > CPI > 1

time.

10 Ll 3 “ t5 % 17..
A €o+10 IFy D1 EX1 MAs ,gzl
)rd €01 +17 IFz Dz ‘WBz
(1) IFa IDs. EXs MA: WBa
(W) IFs D5 EXs
ISTAM Center En

ECURE, TRUSTED, AND ASSORED MICROSLECTROMICS ‘Arizona State University

Adding a Bypass

stall Condition

x1 € x2 + 10
x4 € x1 + 17

24

Fully Bypassed Datapath

stall Condition
T PCforJAL ...

25

Why a program may have CP| >1

= Why an Instruction may not be dispatched every cycle (CPI>1)?
= Full bypassing may be too expensive to implement
= Typically all frequently used paths are provided
= Some infrequently used bypass paths may increase cycle time and counteract
the benefit of reducing CPI
= Loads have two cycle latency
= Instruction after load cannot use load result
= Some ISA define load delay slots, a software-visible pipeline hazard (compiler
schedules independent instruction or inserts NOP to avoid hazard)

26

Next Learning Module

= CPU performance evaluation

1/17/26

27

