CSE 520
Computer Architecture Il

CPU: Hazard Resolution

Prof. Michel A. Kinsy

Instruction Interactions

= An instruction in the pipeline may need a resource being used by
another instruction in the pipeline
= Structural hazard
= An instruction may depend on something produced by an earlier
instruction
= Dependence may be for a data calculation
= Data hazard

= Dependence may be for calculating the next address
= Control hazard (branches, interrupts)
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Stalled Stages and Pipeline
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Resolving Data Hazards

= Strategy 1: Wait for the result to be available by freezing earlier
pipeline stages
= Interlocks
= Strategy 2: Route data as soon as possible after it is calculated to
the earlier pipeline stage
= Bypass




Two cases:

Resolving Data Hazards
= Strategy 3: Speculate on the dependence

Guessed correctly
Do nothing

Guessed incorrectly
Kill and restart

1/17/26

AU rd € (rs1) [func3,func7] (rs2)
AU rd € (rs1) [func3] Hmm

Source and Destination Registers
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source(s) destination
rs1, rs2 rd
rsl rd
rs1

rd € (rs1) [funct3, inst{30]] I-imm[4:0] rd

Source and Destination Registers

Lw rd € M{[(rs1) + imm] rsl rd
SW M [(rs1) + imm] € (rs2) rs1, rs2

Ll rd € U-imm rd
AUIPC rd € pc + U-imm rd
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Source and Destination Registers

source(s) destination

ALU  rd € (rs1) [func3,func7] (rs2) rs1, rs2 rd

ALUi  rd € (rs1) [func3] l-imm rs1 rd
rd € (rs1) [funct3, inst[30]] I-imm[4:0] rs1 rd

Lw rd € M [(rs1) + imm] rsl rd

SW M [(rs1) + imm] € (rs2) rs1, rs2

Ll rd € U-imm rd

AUIPC rd € pc + U-imm rd

JAL  rd€pc+d rd
pc € pc + J-imm

JAIR  rd € pc+4 rsl rd
pc € (rs1 + l-imm) & ~0x01

BR pc €compare(funct3, rs1, rs2) ? rs1, rs2

pc + B-imm: pc+ 4
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Types of Data Hazards
= Consider executing a sequence of
€ (r) op (r) type of instructions

Data-dependence
rs & (r) op (r2) Read-after-Write
s &) op (1) (RAW) hazard

Anti-dependence

rs € () op () Write-after-Read
rwe)(m) op (rs) (WAR) hazard

Output-dependence
rs €& (n) op (r2) Write-after-Write
Cors € () op () (WAW) hazard

11

STA

Data Hazards: An Example

I. ADD X6, x6, x4

I LW X2\ 44(x3)
I; SUB X
I» AND x8,
Is SUB x10

Is ADD X6, X8, x2
RAW Hazards
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Data Hazards: An Example

I: ADD X6, X6, X4

I LW X2

44(x3)
Is SUB X,
I+ AND X8, X2
Is SUB x10 X6

Is ADD X6, X8, X2

RAW Hazards
WAR Hazards
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Data Hazards: An Example

I: ADD X6, X6, X4

L W X2\ 44(x3)

Is SUB X
I AND x8, X2
Is SUB x10 X6

Is ADD X6, X8, X2

RAW Hazards
WAR Hazards
WAW Hazards
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Data Hazards: An Example
ADD X6, X6, x4
LW
suB
AND
suB

ADD

RAW Hazards
WAR Hazards
WAW Hazards

15

1/17/26




Resolving Data Hazards

= Strategy 1: Wait for the result to be available by freezing earlier
pipeline stages
= Interlocks
= Strategy 2: Route data as soon as possible after it is calculated to
the earlier pipeline stage
= Bypass
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Interlocks to resolve Data Hazards

stall Condition
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Interlock Control Logic
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Deriving the Stall Signal
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Cdest

ws = Case opcode
ALU, ALUI >rd
Lw, LI >rd
JAL, JALR, AUIPC > rd

we = Case opcode
ALU, ALU, LW, LUI > (ws I= 0)
JAL, JALR, AUIPC > on
> off

Cre
rel = Case opcode
ALU, ALU;,
LW, SW, BR,
JALR > on
LUI, JAL, AUIPC > off

re2 = Case opcode
ALU, SW,BR > on
. > off

Cstall= ((rs1D =wsE).weE +
(rs1D =ws).wewm +
(rs1D=wsw).wew) . re10
((rs20 =wse). wee +
(rs2D =ws).wew +
(rs2 =wsw).wew) . re20
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Interlock Control Logic

stall
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Resolving Data Hazards

rlier pipeline stage

= Bypass

= Strategy 1: Wait for the result to be available by freezing earlier
pipeline stages

= Interlocks
= Strategy 2: Route data as soon as possible after it is calculated to
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Feedback to Resolve Hazards

= Later stages provide dependence information to earlier stages which
can stall (or kill) instructions

= Controlling a pipeline in this manner works provided the instruction at
stage i+1 can complete without any interference from instructions in
stages 1to i

= Otherwise deadlocks may occur
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Bypassing

time.
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= Each stall or kill introduces a bubble in the pipeline > CPI > 1

time.
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Adding a Bypass

stall Condition

x1 € x2 + 10
x4 € x1 + 17
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Fully Bypassed Datapath

stall Condition
T PCforJAL ...
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Why a program may have CP| >1

= Why an Instruction may not be dispatched every cycle (CPI>1)?
= Full bypassing may be too expensive to implement
= Typically all frequently used paths are provided
= Some infrequently used bypass paths may increase cycle time and counteract
the benefit of reducing CPI
= Loads have two cycle latency
= Instruction after load cannot use load result
= Some ISA define load delay slots, a software-visible pipeline hazard (compiler
schedules independent instruction or inserts NOP to avoid hazard)
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Next Learning Module

= CPU performance evaluation
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