
CPU: Hazard Resolution

Prof. Michel A. Kinsy

CSE 520 
Computer Architecture II



Instruction Interactions 
§ An instruction in the pipeline may need a resource being used by 

another instruction in the pipeline 
§ Structural hazard

§ An instruction may depend on something produced by an earlier 
instruction
§ Dependence may be for a data calculation

§ Data hazard

§ Dependence may be for calculating the next address
§  Control hazard (branches, interrupts)



Structural Hazard
sub x8, x6, x7 lw x1, 8(x2)add x5,x6,x7 sw x3, 24(x4)

Address

Inst[31-0]

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register File

Read
 Data 1

Read
 Data 2

ALU

Overflow

zero

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend

MemtoReg

ALUSrc

Shift
left 1

ADD

PCSrc

ALU
Control

1

1

0
0

0

1

ALUOp

Control
Unit

Branch

Memory

RegWrite

RegWrite

Instr[30, 14-12]

Instr[19-15]

Instr[24-20]

Instr[11-7]

Instr[31-21]

ADD

4

0

12 | 20 32



Multi-Stage RISC-V CPU  

Address

Inst[31-0]

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register File

Read
 Data 1

Read
 Data 2

ALU

Overflow

zero

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend

12 | 20 32

MemtoReg

ALUSrc

Shift
left 1

ADD

PCSrc

ALU
Control

1

1

0
0

0

1

ALUOp

Control
Unit

Branch

Memory

RegWrite

RegWrite

Instr[30, 14-12]

Instr[19-15]

Instr[24-20]

Instr[11-7]

Instr[31-21]

ADD

4

0



time
t0 t1 t2 t3 t4 t5 t6 t7 . . .

IF I1 I2 I3 I3 I3 I3 I4 I5 
ID  I1 I2 I2 I2 I2 I3 I4  
EX         I1 nop nop nop I2 I3  

MA        I1 nop nop nop I2  
WB         I1 nop nop nop 

Stalled Stages and Pipeline

time
t0 t1 t2 t3 t4 t5 t6 t7 . .

(I1) r1 ß (r0) + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4 ß (r1) + 17  IF2 ID2 ID2 ID2 ID2 EX2 MA2 

(I3)     IF3 IF3 IF3 IF3 ID3 EX3

(I4)                       IF4 ID4 
(I5)                             IF5 stalled stages

Resource 
Usage



Resolving Data Hazards
§ Strategy 1: Wait for the result to be available by freezing earlier 

pipeline stages 
§ Interlocks

§ Strategy 2: Route data as soon as possible after it is calculated to 
the earlier pipeline stage 
§ Bypass



Resolving Data Hazards
§ Strategy 3: Speculate on the dependence 

§    Two cases:
§  Guessed correctly 

§  Do nothing

§  Guessed incorrectly 
§  Kill and restart



Source and Destination Registers
funct7 rs2 funct3rs1 rd opcode

7 5 5 3 5 7

imm[11:0] funct3rs1 rd opcode

imm[11:5] rs2 funct3rs1 imm[4:0] opcode

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1-11] opcode

rd opcodeimm[31:12]

imm[20] imm[10:1] rdimm[19:12]imm[11] opcode

R-type

I-type

S-type

SB-type

U-type

UJ-type

               source(s)   destination
ALU rd ß (rs1) [func3,func7] (rs2)     rs1, rs2   rd
ALUi rd ß (rs1) [func3] I-imm      rs1         rd
  rd ß (rs1) [funct3, inst[30]] I-imm[4:0]  rs1         rd



Source and Destination Registers
funct7 rs2 funct3rs1 rd opcode

7 5 5 3 5 7

imm[11:0] funct3rs1 rd opcode

imm[11:5] rs2 funct3rs1 imm[4:0] opcode

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1-11] opcode

rd opcodeimm[31:12]

imm[20] imm[10:1] rdimm[19:12]imm[11] opcode

R-type

I-type

S-type

SB-type

U-type

UJ-type

               source(s)   destination
ALU rd ß (rs1) [func3,func7] (rs2)     rs1, rs2   rd
ALUi rd ß (rs1) [func3] I-imm      rs1         rd
  rd ß (rs1) [funct3, inst[30]] I-imm[4:0]  rs1         rd
LW  rd ß M [(rs1) + imm]       rs1          rd
SW        M [(rs1) + imm] ß (rs2)           rs1, rs2
LUI        rd ß U-imm           rd
AUIPC   rd ß pc + U-imm          rd



Source and Destination Registers
               source(s)   destination

ALU rd ß (rs1) [func3,func7] (rs2)     rs1, rs2   rd
ALUi rd ß (rs1) [func3] I-imm      rs1         rd
  rd ß (rs1) [funct3, inst[30]] I-imm[4:0]  rs1         rd
LW  rd ß M [(rs1) + imm]       rs1          rd
SW        M [(rs1) + imm] ß (rs2)           rs1, rs2
LUI        rd ß U-imm           rd
AUIPC   rd ß pc + U-imm          rd
JAL  rd ß pc + 4           rd
             pc ß pc + J-imm
JALR     rd ß pc + 4           rs1    rd
             pc ß (rs1 + I-imm) & ~0x01 
BR         pc ßcompare(funct3, rs1, rs2) ?     rs1, rs2
             pc + B-imm : pc + 4



Types of Data Hazards 
§ Consider executing a sequence of 

             rk ß (ri)  op  (rj)  type of instructions

Output-dependence
r3 ß  (r1)  op  (r2)  Write-after-Write 
r3 ß  (r6)  op  (r7)   (WAW) hazard

Data-dependence
r3 ß  (r1)  op  (r2) Read-after-Write  
r5 ß  (r3)  op  (r4) (RAW) hazard

Anti-dependence
r3 ß  (r1)  op  (r2) Write-after-Read 
r1 ß  (r4)  op  (r5) (WAR) hazard



Data Hazards: An Example
I1 ADD   x6, x6,  x4

I2 LW    x2,  44(x3)

I3 SUB   x5,  x2,  x4

I4 AND   x8,  x6,  x2

I5 SUB   x10, x5,  x6

I6 ADD   x6,  x8,  x2

RAW Hazards



Data Hazards: An Example

RAW Hazards
WAR Hazards

I1 ADD   x6, x6,  x4

I2 LW    x2,  44(x3)

I3 SUB   x5,  x2,  x4

I4 AND   x8,  x6,  x2

I5 SUB   x10, x5,  x6

I6 ADD   x6,  x8,  x2



Data Hazards: An Example

RAW Hazards
WAR Hazards
WAW Hazards

I1 ADD   x6, x6,  x4

I2 LW    x2,  44(x3)

I3 SUB   x5,  x2,  x4

I4 AND   x8,  x6,  x2

I5 SUB   x10, x5,  x6

I6 ADD   x6,  x8,  x2



Data Hazards: An Example

RAW Hazards
WAR Hazards
WAW Hazards

I6

I2

I4

I1

I5

I3

I1 ADD   x6, x6,  x4

I2 LW    x2,  44(x3)

I3 SUB   x5,  x2,  x4

I4 AND   x8,  x6,  x2

I5 SUB   x10, x5,  x6

I6 ADD   x6,  x8,  x2



Resolving Data Hazards
§ Strategy 1: Wait for the result to be available by freezing earlier 

pipeline stages 
§ Interlocks

§ Strategy 2: Route data as soon as possible after it is calculated to 
the earlier pipeline stage 
§ Bypass



Interlocks to resolve Data Hazards

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

nop

...
x1 ß x2 + 10
x4 ß x1 + 17
...

Stall Condition



ws

rs2

Cstall
rs1

Cdest

we

re1 re2

Cre

ws we ws
Cdest Cdest

we

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

Interlock Control Logic

nop

stall



Deriving the Stall Signal
Cdest

ws = Case opcode
ALU , ALUi   à rd
LW,  LUI    à rd
JAL, JALR, AUIPC  à rd

we = Case opcode
ALU, ALUi, LW, LUI à (ws != 0) 

 JAL, JALR, AUIPC   à on
...                   à off

Cre

re1 = Case opcode
ALU, ALUi, 
LW, SW, BR, 
JALR               à  on
LUI, JAL, AUIPC à  off

re2 = Case opcode
  ALU, SW, BR     à on
…                         à off

Cstall= ((rs1D =wsE).weE + 
   (rs1D =wsM).weM + 
   (rs1D =wsW).weW) . re1D +
  ((rs2D =wsE).weE + 
   (rs2D =wsM).weM + 
   (rs2D =wsW).weW) . re2D



Cdest

re1 re2

Cre

ws we ws
Cdest Cdest

we

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

Interlock Control Logic

nop

stall ws

rs2

Cstall
rs1

we



Resolving Data Hazards
§ Strategy 1: Wait for the result to be available by freezing earlier 

pipeline stages 
§ Interlocks

§ Strategy 2: Route data as soon as possible after it is calculated to 
the earlier pipeline stage 
§ Bypass



Feedback to Resolve Hazards
§ Later stages provide dependence information to earlier stages which 

can stall (or kill) instructions 
§ Controlling a pipeline in this manner works provided the instruction at 

stage i+1 can complete without any interference from instructions in 
stages 1 to i
§ Otherwise deadlocks may occur

FB1

stage
1

stage
2

stage
3

stage
4

FB2 FB3 FB4



Bypassing

§ Each stall or kill introduces a bubble in the pipeline  à CPI  >  1  

time
t0 t1 t2 t3 t4 t5 t6 t7 . .

(I1) r1 ß r0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4 ß r1 + 17  IF2 ID2 EX2 MA2 WB2

(I3)     IF3 ID3 EX3 MA3 WB3
(I4)                    IF4 ID4 EX4 MA4

(I5)                          IF5 ID5 EX5

time
t0 t1 t2 t3 t4 t5 t6 t7 . .

(I1) r1 ß (r0) + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4 ß (r1) + 17  IF2 ID2 ID2 ID2 ID2 EX2 MA2 

(I3)     IF3 IF3 IF3 IF3 ID3 EX3

(I4)                       IF4 ID4 
(I5)                             IF5 stalled stages



Adding a Bypass

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

ALU
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

nop

...
x1 ß x2 + 10
x4 ß x1 + 17
...

ASrc

Stall Condition



Fully Bypassed Datapath

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wdrd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

31

nop

D

E M W

PC for JAL, ...

BSrc

Stall Condition



Why a program may have CPI >1
§ Why an Instruction may not be dispatched every cycle (CPI>1)?

§ Full bypassing may be too expensive to implement
§ Typically all frequently used paths are provided
§ Some infrequently used bypass paths may increase cycle time and counteract 

the benefit of reducing CPI
§ Loads have two cycle latency

§ Instruction after load cannot use load result
§ Some ISA define load delay slots, a software-visible pipeline hazard (compiler 

schedules independent instruction or inserts NOP to avoid hazard)



Next Learning Module
§ CPU performance evaluation


