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CSE 520
Computer Architecture Il

CPU Performance Evaluation

Prof. Michel A. Kinsy

Performance Measurement

= Processor performance:

= Execution time

= Area
= Logic complexity
= Power
Time = Instructions Cycles Time
Program Program * Instruction * Cycle

= |n this class we will focus on Execution time

Datapath for Memory Instructions

= Should program and data memory be separate?

= Harvard style: separate (Aiken and Mark 1 influence)
= read-only program memory

= read/write data memory

= Princeton style: the same (von Neumann'’s influence)

= single read/write memory for program and data
= Executing a Load or Store instruction requires accessing the memory more
than once
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Hardwired Control
* Hardwired Control is pure Combinational Logic
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Hardwired Control Table

Opcode | ImmSel | Op2Sel | Funcsel | MemWr | RFWen | WBSel | WASel | PCSel
ALU * Reg | Func | no es ALU rd pctd
ALUI IType, Imm| Op no yes ALU rd pc+d
w IType,,| Imm + no yes Mem rd pc+d
sw SType,| Imm|  + yes no * * pc+d
BEQ,,. [SBType,. * * no no * * br
BEQuse |sBType,,| * * no no * * pe+d
J * * * no no * * jabs
JAL - * * no es | pC x1 jabs
JALR * * * no es PC rd rind
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Single-Cycle Hardwired Control

= Harvard architecture: we will assume that
= clock period is sufficiently long for all of and the following steps to be
"completed”:
= 1.instruction fetch
= 2. decode and register fetch
= 3. ALU operation
= 4. data fetch if required
= 5. register write-back setup time

" C > tiFetch + tRFetch + tALU+ tDMem+ tRWB
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Princeton Microarchitecture
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Two-State Controller
* In the Princeton Microarchitecture, a flipflop can be used to

remember the phase

fetch phase

execute phase
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Hardwired Controller
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Clock Period

= Princeton architecture
® {tC-Princeton > max {tm , trRF+ talu+ tm + tws}
® {C-Princeton > tRF+ taLU+ tM + twB

= while in the hardwired Harvard architecture
® tCHarvard > t™M + trRF + tALU+ tM+ twB

= which will execute instructions faster?
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Clock Rate vs CPI

* Suppose ty >> tge+ tay + twe

= tCPrinceton = 0.5 * tC-Harvard

®  CPlerinceton = 2
*  CPlhavars =1

= No difference in performance!
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Princeton Microarchitecture

= Can we overlap instruction fetch and execute?

execute phase
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Princeton Microarchitecture
= Only one of the phases is active in any cycle
= A lot of datapath is not in use at any given time

The same

(mux not shown)
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fetch
“ phase

execute phase
= When stall condition is indicated

* Do not fetch a new instruction and do not change the PC

* Inserta nop in the IR

* Set the Memory Address mux to ALU (not shown)
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Pipelined Princeton Architecture
= Clock:  tcprinceton > tret tawu+ tw
= CPl: (1-1) + 2f cycles per instruction

where f is the fraction of
instructions that cause a stall
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Compiler Effects on Performance
= CPU time = Instruction count x CPI / Clock rate
= A machine running at 100 MHz has these instruction classes

Instruction class  CPI

B 2
[ 3

= For a given program, two compilers produced the following
instruction counts

Instruction counts (in millions)
for each instruction class
[

Code from:
Compiler 1 50 10 10
Compiler 2 100 10 10
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Compiler Effects on Performance

= CPU time = Instruction count x CPI / Clock rate
= For compiler 1:
. 1C|Z\é:(5x1 +1x2+1x3)/65+1+1)=10/7=

= CPU timer = ((50 + 10 + 10) x 10¢x 1.43) / (100 x

109 = 1 second

= For compiler 2:

= CP2=(10x1+1x2+1x3)/(10+1+1)=15/12
=1.25

= CPU timez = ((100 + 10 + 10) x 10¢ x 1.25) / (100 x
10% = 1.5 seconds
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Processor Performance

= Speed Up Equations for Pipelining
CPlp‘pempd = Ideal CPI + Average Stall cycle per Instruction

Ideal CPI X Pipeline Depth Clock Cycleunpipelined
Speedup = X

Ideal CPI + Pipeline stall CPI Clock Cyclepipelined
= IfIdeal CPI =1
= Speed Up <= Pipeline Depth

Pipeline Depth Clock Cycleunpipelined
Speedup = ipeline Dept X

1 + Pipeline stall CPI Clock Cycleripelined
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lllustrative Example

* We want to compare the performance of two machines. Which
machine is faster?
= Machine A: Dual ported memory - so there are no memory stalls
= Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate
= Assumptions
= |deal CPI = 1 for both
= Loads are 40% of instructions executed
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lllustrative Example

= We want to compare the performance of two machines. Which machine is faster?
* Machine A: Dual ported memory - so there are no memory stalls

= Machine B: Single ported memory, but its pipelined implementation has a 1.05 times faster
clock rate

= Assumptions
= Ideal CPI = 1 for both
= Loads are 40% of instructions executed

Machine A speed = Pipeline Depth/(1 + 0) x (clockungipeline/clockpipeine)
= Pipeline Depth

Machine B speed = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipeine/clockpipeine)
(Pipeline Depth/1.4) x (clockunpipeiine/(1.05 *clockungipeline)
0.68 x Pipeline Depth

A Speed/ B Speed = Pipeline Depth / (0.68 x Pipeline Depth) = 1.47

1/17/26

22

er

Amdahl's Law

= By Gene Amdahl

= This law answers the critical question:
= How much of a speedup one can get for a given architectural
improvement/enhancement?
= The performance enhancement possible due to a given design improvement
is limited by the amount that the improved feature is used

= Performance improvement or speedup due to enhancement E
Execution Time without £ Performance with E

Execution Time with E Performance without E
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Amdahl's Law

= By Gene Amdahl
= This law answers the critical question:
= How much of a speedup one can get for a given architectural
improvement/enhancement?
= Suppose that enhancement E accelerates a fraction F of the execution
time by a factor S and the remainder of the time is unaffected then:
= Execution Time with E = ((1-F) + F/S) x Execution Time without E
= Hence speedup is given by:

Execution Time without E 1
Speedup(E) = =
((1-F) + F/S) x Execution Time without E (1-F) + F/s
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Amdahl's Law

= For the RISC machine with the following instruction composition:

= Op Freq Cycles CPI(i) % Time
= ALU 50% 1 5 23%
= Load 20% 5 1.0 45%
= Store 10% 3 3 14%
= Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement

1/17/26
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Amdahl's Law

= For the RISC machine with the following instruction composition:

= Op Freq Cycles  CPI() % Time
= AU 50% 1 5 3%

* load  20% 5 1.0 45%

* Store 0% 3 3 14%

= Branch 20% 2 4 18%

= Ifa CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the
resulting performance improvement from this enhancement

Fraction enhanced = F= 45% or .45
Unaffected fraction =100% - 45% = 55% or .55
Factor of enhancement = 5/2= 2.5
;
Speedup®) == = - 137
(1-F) + F/S 55 + .45/2.5
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Amdahl's Law

= For the RISC machine with the following instruction composition:

= Op Freq Cycles CPI(i) % Time
= ALU 50% 1 5 23%
= Load 20% 5 1.0 45%
= Store 10% 3 3 14%
= Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement
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Amdahl's Law

For the RISC machine with the following instruction composition

= Op Freq  Cycles CPIi) % Time
= AlU 50% 1 5 23%
= load  20% 5 1.0 45%
= Store  10% 3 3 14%
= Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the
resulting performance improvement from this enhancement

Old CPI =22

NewCPl= 5x1+.2x2+ .1x3+.2x2 = 16

Original Execution Time Instruction count x _old CPl_x clock cycle

Speedup(E) =

New Execution Time

Instruction count x new CPl x clock cycle
—ldce 22

= =137
new CPI 16
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Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the loa
operation be improved to make the program four times faster?
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Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations responsible for
80 seconds of this time. Blf how much must the load operation be improved to make the
program four times faster?

100
Desired speedup = 4 =

Execution Time with enhancement

Execution time with enhancement = 100 * (1/4) = 25 seconds
=> 25 seconds = (100 - 80 seconds) + 80 seconds / n
= 25seconds = 20 seconds + 80 seconds /n
25 = 80seconds /n

2n = 80/5=16

Load operation should be 16 times faster to get a speedup of 4!

30
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Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the load
operation be improved to make the program five times faster?
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Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the load operation be
improved to make the program five times faster?
100

Desired speedup = 5 =
Execution Time with enhancement

Execution time with enhancement = 100 * (1/5) = 20 seconds
= 20 seconds = (100 - 80 seconds) + 80 seconds/n
2 20 seconds = 20 seconds + 80 seconds /n
2 0 = 80seconds /n

= No amount of load operation improvement will be able achieve this speed

32
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Multiple Enhancements

= Suppose that enhancement E; accelerates a fraction F, of the
execution time by a factor S; and the remainder of the time is
unaffected then:

Original Execution Time

((I_EyF')+2,%) X' Original Execution Time

Speedup =

1

By
(- P25

Speedup =

33
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Multiple Enhancements
- . .
Three, CPU Rgrﬁormance enhancemel etseireecgtri%osed w]gfh the following

speedups and percentage of the co time affected:

Speedupt =S1= 10 Percentage1 = F1 = 20%

Speedupz=S2= 15 Percentage1 = F2 = 15%

Speedups =S3= 30 Percentage1 =Fs = 10%

= While all three enhancements are in place in the new design, each
enhancement affects a different portion of the code and only one
enhancement can be used at a time.

= What is the resulting overall speedup?

5 ey F
(BWID S{)

Speedup =
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Multiple Enhancements

Three CPU performance enhancements a#e groci)osed with the following speedups and
percentage of the code execution time affected:

Speedupr =S1 = 10 Percentager = F1 = 20%
Speedupz=S2= 15 Percentage1 =F2 = 15%
Speedups = S3 = 30 Percentager = F3 = 10%

W&ile all three enh{ancements are in place in the new design, each enhancement affects a
different portion of the code and only one enhancement can be used at a time.

What is the resulting overall speedup?

Speedup =

v
(B0

* Speedup=1/[(1-.2-.15-.1) + .2/10 + .15/15 + .1/30)] S
=1/ .55 + .0333 ]
=1/.5833 = 171
35
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Amdahl's Law
= Key Insights

= The performance of any system is constrained by the speed or capacity of
the slowest point

= The impact of an effort to improve the performance of a program is
primarily constrained by the amount of time that the program spends in
parts of the program NOT TARGETED by the effort

= Amdahl's Law is a statement of the maximum theoretical speed-up you
can ever hope to achieve

= The actual speed-ups are always less than the speed-up predicted by
Amdahl's Law
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Amdahl's Law

* For software and hardware engineers MUST have a very deep
understanding of Amdahl's Law if they are to avoid having
unrealistic performance expectations

1. For systems folks: this law allows you to estimate the net
performance benefit a new hardware feature will add to program
executions

2. For software folks: this law allows you to estimate the amount of
parallelism your program/algorithm can achieve before you start
writing your parallel code
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CPU Performance

= CPU performance factors
Instruction count

Determined by ISA and compiler
CPIl and Cycle time

Determined by CPU hardware

Longest delay determines clock period
= Critical path: load instruction
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CPU Performance

= Longest delay determines clock period
= Critical path: load instruction

Instruction memory

Register file read

ALU operation

N =

Data memory access
Register file writeback

= Performance can be improved by pipelining

o
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Next Learning Module
= Branch Prediction
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