1/17/26

CSE 520
Computer Architecture Il

CPU Performance Evaluation

Prof. Michel A. Kinsy

Performance Measurement

= Processor performance:

= Execution time

= Area
= Logic complexity
= Power
Time = Instructions Cycles Time
Program Program * Instruction * Cycle

= |n this class we will focus on Execution time

Datapath for Memory Instructions

= Should program and data memory be separate?

= Harvard style: separate (Aiken and Mark 1 influence)
= read-only program memory

= read/write data memory

= Princeton style: the same (von Neumann'’s influence)

= single read/write memory for program and data
= Executing a Load or Store instruction requires accessing the memory more
than once

Harvard Architecture
dtite

Mermitite
Wesal
ok ALUTMom
‘base”. ! ak \
sz
i
a2
Gers
Datd
e | B | | & r
Oncode el Opzsal
7 5 5 3 7

s
[Cimm rs2 [rst [funct3 [imm [opcode | Store (rs) + displacement
[immi11:0) [rst [funct3] rd [opcode | Load

1/17/26

Hardwired Control
* Hardwired Control is pure Combinational Logic

Immsel
op2sel
Funcsel

op code

MemWrite
Combinational wesel
equal? ——| Logic -
RegDst

RegWrite

, PCsel

ALU Control & Immediate Extension

Inst<14:12> (Func3)
Inst<6:0> (Opcode
{Opcode) ALUop
PR
[[LJ—
FuncSel
(Func, Op, +,0?)
Decode Map —
ImmSel

(IType12,STypetz, UTypez)

Hardwired Control Table

Opcode | ImmSel | Op2Sel | Funcsel | MemWr | RFWen | WBSel | WASel | PCSel
ALU * Reg | Func | no es ALU rd pctd
ALUI IType, Imm| Op no yes ALU rd pc+d
w IType,,| Imm + no yes Mem rd pc+d
sw SType,| Imm| + yes no * * pc+d
BEQ,,. [SBType,. * * no no * * br
BEQuse |sBType,,| * * no no * * pe+d
J * * * no no * * jabs
JAL - * * no es | pC x1 jabs
JALR * * * no es PC rd rind

1/17/26

Single-Cycle Hardwired Control

= Harvard architecture: we will assume that
= clock period is sufficiently long for all of and the following steps to be
"completed”:
= 1.instruction fetch
= 2. decode and register fetch
= 3. ALU operation
= 4. data fetch if required
= 5. register write-back setup time

" C > tiFetch + tRFetch + tALU+ tDMem+ tRWB

ISTAM Center En

ECURE, TRUSTED, AND ASSORED MICROSLECTROMICS ‘Arizona State University

Princeton Microarchitecture

MemWrite | WBSel

i

R p P

I

Fetch phase

IRen OpCode RegDst ImmSel Op2sel Addrsel

Two-State Controller
* In the Princeton Microarchitecture, a flipflop can be used to

remember the phase

fetch phase

execute phase

10

Hardwired Controller

. ImmSel, Op2Sel,
op code . FuncSel, MemWrite,
old WBSel, RegDst,
combinational RegWrite, PCSel
equal? logic —
(Harvard) emWrite
RegWrite B
Wen
e Pcen
sSb——r combinational
logic > Iren
1-bit Toggle FF
I-fetch / Execute > Addrsel

11

Clock Period

= Princeton architecture
® {tC-Princeton > max {tm , trRF+ talu+ tm + tws}
® {C-Princeton > tRF+ taLU+ tM + twB

= while in the hardwired Harvard architecture
® tCHarvard > t™M + trRF + tALU+ tM+ twB

= which will execute instructions faster?

1/17/26

12

Clock Rate vs CPI

* Suppose ty >> tge+ tay + twe

= tCPrinceton = 0.5 * tC-Harvard

® CPlerinceton = 2
* CPlhavars =1

= No difference in performance!

1/17/26

13

Princeton Microarchitecture

= Can we overlap instruction fetch and execute?

execute phase

14

Princeton Microarchitecture
= Only one of the phases is active in any cycle
= A lot of datapath is not in use at any given time

The same

(mux not shown)
- \
-
rs2.
rdi] e
GPRs

—] ot

Memory|

s

execute phase

15

fetch
“ phase

execute phase
= When stall condition is indicated

* Do not fetch a new instruction and do not change the PC

* Inserta nop in the IR

* Set the Memory Address mux to ALU (not shown)

16

Pipelined Princeton Architecture
= Clock: tcprinceton > tret tawu+ tw
= CPl: (1-1) + 2f cycles per instruction

where f is the fraction of
instructions that cause a stall

17

Compiler Effects on Performance
= CPU time = Instruction count x CPI / Clock rate
= A machine running at 100 MHz has these instruction classes

Instruction class CPI

B 2
[3

= For a given program, two compilers produced the following
instruction counts

Instruction counts (in millions)
for each instruction class
[

Code from:
Compiler 1 50 10 10
Compiler 2 100 10 10

1/17/26

18

Compiler Effects on Performance

= CPU time = Instruction count x CPI / Clock rate
= For compiler 1:
. 1C|Z\é:(5x1 +1x2+1x3)/65+1+1)=10/7=

= CPU timer = ((50 + 10 + 10) x 10¢x 1.43) / (100 x

109 = 1 second

= For compiler 2:

= CP2=(10x1+1x2+1x3)/(10+1+1)=15/12
=1.25

= CPU timez = ((100 + 10 + 10) x 10¢ x 1.25) / (100 x
10% = 1.5 seconds

1/17/26

19

Processor Performance

= Speed Up Equations for Pipelining
CPlp‘pempd = Ideal CPI + Average Stall cycle per Instruction

Ideal CPI X Pipeline Depth Clock Cycleunpipelined
Speedup = X

Ideal CPI + Pipeline stall CPI Clock Cyclepipelined
= IfIdeal CPI =1
= Speed Up <= Pipeline Depth

Pipeline Depth Clock Cycleunpipelined
Speedup = ipeline Dept X

1 + Pipeline stall CPI Clock Cycleripelined

20

lllustrative Example

* We want to compare the performance of two machines. Which
machine is faster?
= Machine A: Dual ported memory - so there are no memory stalls
= Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate
= Assumptions
= |deal CPI = 1 for both
= Loads are 40% of instructions executed

21

lllustrative Example

= We want to compare the performance of two machines. Which machine is faster?
* Machine A: Dual ported memory - so there are no memory stalls

= Machine B: Single ported memory, but its pipelined implementation has a 1.05 times faster
clock rate

= Assumptions
= Ideal CPI = 1 for both
= Loads are 40% of instructions executed

Machine A speed = Pipeline Depth/(1 + 0) x (clockungipeline/clockpipeine)
= Pipeline Depth

Machine B speed = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipeine/clockpipeine)
(Pipeline Depth/1.4) x (clockunpipeiine/(1.05 *clockungipeline)
0.68 x Pipeline Depth

A Speed/ B Speed = Pipeline Depth / (0.68 x Pipeline Depth) = 1.47

1/17/26

22

er

Amdahl's Law

= By Gene Amdahl

= This law answers the critical question:
= How much of a speedup one can get for a given architectural
improvement/enhancement?
= The performance enhancement possible due to a given design improvement
is limited by the amount that the improved feature is used

= Performance improvement or speedup due to enhancement E
Execution Time without £ Performance with E

Execution Time with E Performance without E

23

er

Amdahl's Law

= By Gene Amdahl
= This law answers the critical question:
= How much of a speedup one can get for a given architectural
improvement/enhancement?
= Suppose that enhancement E accelerates a fraction F of the execution
time by a factor S and the remainder of the time is unaffected then:
= Execution Time with E = ((1-F) + F/S) x Execution Time without E
= Hence speedup is given by:

Execution Time without E 1
Speedup(E) = =
((1-F) + F/S) x Execution Time without E (1-F) + F/s

24

Amdahl's Law

= For the RISC machine with the following instruction composition:

= Op Freq Cycles CPI(i) % Time
= ALU 50% 1 5 23%
= Load 20% 5 1.0 45%
= Store 10% 3 3 14%
= Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement

1/17/26

25

er

Amdahl's Law

= For the RISC machine with the following instruction composition:

= Op Freq Cycles CPI() % Time
= AU 50% 1 5 3%

* load 20% 5 1.0 45%

* Store 0% 3 3 14%

= Branch 20% 2 4 18%

= Ifa CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the
resulting performance improvement from this enhancement

Fraction enhanced = F= 45% or .45
Unaffected fraction =100% - 45% = 55% or .55
Factor of enhancement = 5/2= 2.5
;
Speedup®) == = - 137
(1-F) + F/S 55 + .45/2.5

26

STA

Amdahl's Law

= For the RISC machine with the following instruction composition:

= Op Freq Cycles CPI(i) % Time
= ALU 50% 1 5 23%
= Load 20% 5 1.0 45%
= Store 10% 3 3 14%
= Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement

27

Amdahl's Law

For the RISC machine with the following instruction composition

= Op Freq Cycles CPIi) % Time
= AlU 50% 1 5 23%
= load 20% 5 1.0 45%
= Store 10% 3 3 14%
= Branch 20% 2 4 18%

If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the
resulting performance improvement from this enhancement

Old CPI =22

NewCPl= 5x1+.2x2+ .1x3+.2x2 = 16

Original Execution Time Instruction count x _old CPl_x clock cycle

Speedup(E) =

New Execution Time

Instruction count x new CPl x clock cycle
—ldce 22

= =137
new CPI 16

1/17/26

28

er

Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the loa
operation be improved to make the program four times faster?

29

er

Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations responsible for
80 seconds of this time. Blf how much must the load operation be improved to make the
program four times faster?

100
Desired speedup = 4 =

Execution Time with enhancement

Execution time with enhancement = 100 * (1/4) = 25 seconds
=> 25 seconds = (100 - 80 seconds) + 80 seconds / n
= 25seconds = 20 seconds + 80 seconds /n
25 = 80seconds /n

2n = 80/5=16

Load operation should be 16 times faster to get a speedup of 4!

30

10

Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the load
operation be improved to make the program five times faster?

1/17/26

31

Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the load operation be
improved to make the program five times faster?
100

Desired speedup = 5 =
Execution Time with enhancement

Execution time with enhancement = 100 * (1/5) = 20 seconds
= 20 seconds = (100 - 80 seconds) + 80 seconds/n
2 20 seconds = 20 seconds + 80 seconds /n
2 0 = 80seconds /n

= No amount of load operation improvement will be able achieve this speed

32

ISTAM Center En

ECURE, TRUSTED, AND ASSORED MICROSLECTROMICS ‘Arizona State University

Multiple Enhancements

= Suppose that enhancement E; accelerates a fraction F, of the
execution time by a factor S; and the remainder of the time is
unaffected then:

Original Execution Time

((I_EyF')+2,%) X' Original Execution Time

Speedup =

1

By
(- P25

Speedup =

33

11

Multiple Enhancements
- . .
Three, CPU Rgrﬁormance enhancemel etseireecgtri%osed w]gfh the following

speedups and percentage of the co time affected:

Speedupt =S1= 10 Percentage1 = F1 = 20%

Speedupz=S2= 15 Percentage1 = F2 = 15%

Speedups =S3= 30 Percentage1 =Fs = 10%

= While all three enhancements are in place in the new design, each
enhancement affects a different portion of the code and only one
enhancement can be used at a time.

= What is the resulting overall speedup?

5 ey F
(BWID S{)

Speedup =

1/17/26

34

er Engi I;eerir:g

bccusc. s, o asomen mcrosuseraomics ‘Arizona State Univers

Multiple Enhancements

Three CPU performance enhancements a#e groci)osed with the following speedups and
percentage of the code execution time affected:

Speedupr =S1 = 10 Percentager = F1 = 20%
Speedupz=S2= 15 Percentage1 =F2 = 15%
Speedups = S3 = 30 Percentager = F3 = 10%

W&ile all three enh{ancements are in place in the new design, each enhancement affects a
different portion of the code and only one enhancement can be used at a time.

What is the resulting overall speedup?

Speedup =

v
(B0

* Speedup=1/[(1-.2-.15-.1) + .2/10 + .15/15 + .1/30)] S
=1/ .55 + .0333]
=1/.5833 = 171
35
STAM Center i L

Amdahl's Law
= Key Insights

= The performance of any system is constrained by the speed or capacity of
the slowest point

= The impact of an effort to improve the performance of a program is
primarily constrained by the amount of time that the program spends in
parts of the program NOT TARGETED by the effort

= Amdahl's Law is a statement of the maximum theoretical speed-up you
can ever hope to achieve

= The actual speed-ups are always less than the speed-up predicted by
Amdahl's Law

36

12

Amdahl's Law

* For software and hardware engineers MUST have a very deep
understanding of Amdahl's Law if they are to avoid having
unrealistic performance expectations

1. For systems folks: this law allows you to estimate the net
performance benefit a new hardware feature will add to program
executions

2. For software folks: this law allows you to estimate the amount of
parallelism your program/algorithm can achieve before you start
writing your parallel code

1/17/26

37

CPU Performance

= CPU performance factors
Instruction count

Determined by ISA and compiler
CPIl and Cycle time

Determined by CPU hardware

Longest delay determines clock period
= Critical path: load instruction

38

CPU Performance

= Longest delay determines clock period
= Critical path: load instruction

Instruction memory

Register file read

ALU operation

N =

Data memory access
Register file writeback

= Performance can be improved by pipelining

o

39

13

1/17/26

Enguin"eering

Next Learning Module
= Branch Prediction

40

14

