

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University **Engineering**
Arizona State University

CSE 520
Computer Architecture II

CPU Performance Evaluation

Prof. Michel A. Kinsky

1

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University **Engineering**
Arizona State University

Performance Measurement

- Processor performance:
 - Execution time
 - Area
 - Logic complexity
 - Power

$$\frac{\text{Time}}{\text{Program}} = \frac{\text{Instructions}}{\text{Program}} * \frac{\text{Cycles}}{\text{Instruction}} * \frac{\text{Time}}{\text{Cycle}}$$

- In this class we will focus on Execution time

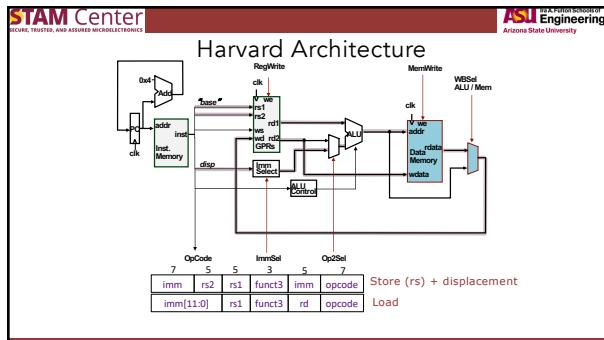
2

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University **Engineering**
Arizona State University

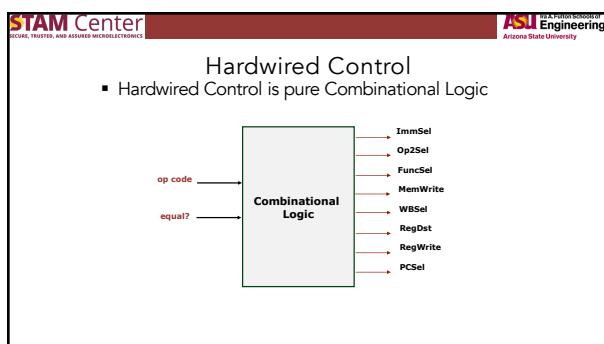
Datapath for Memory Instructions

- Should program and data memory be separate?
 - Harvard style: separate (Aiken and Mark 1 influence)
 - read-only program memory
 - read/write data memory
- Princeton style: the same (von Neumann's influence)
 - single read/write memory for program and data
 - Executing a Load or Store instruction requires accessing the memory more than once

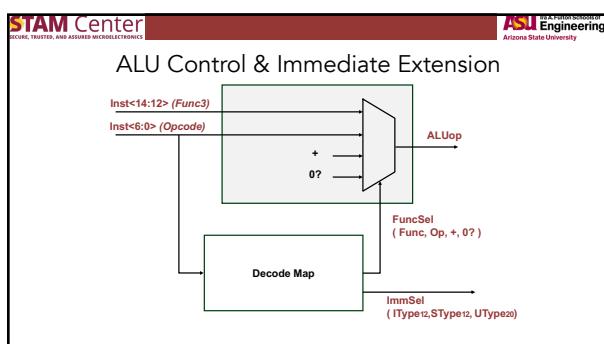


3

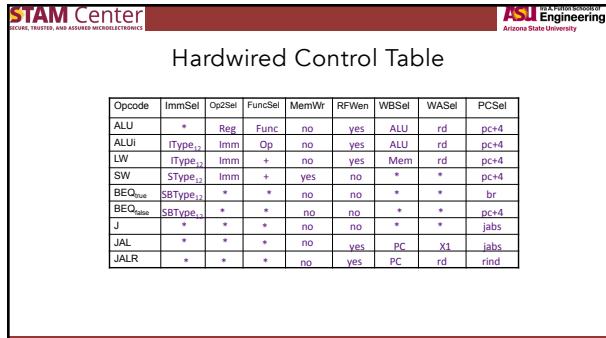
4

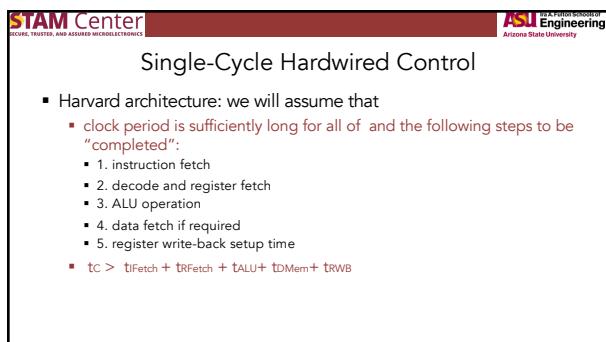


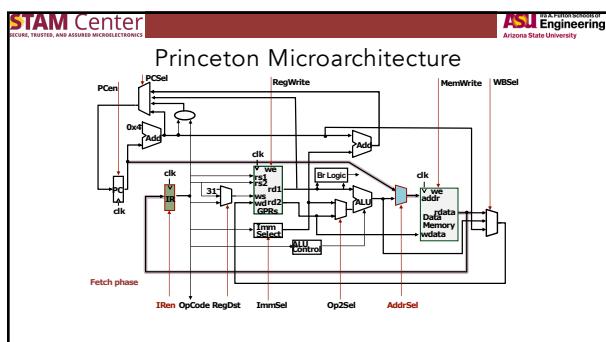
5



6







7

8

9

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Two-State Controller

- In the Princeton Microarchitecture, a flipflop can be used to remember the phase

10

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Hardwired Controller

11

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Clock Period

- Princeton architecture
 - $t_{C-Princeton} > \max \{t_M, t_{RF} + t_{ALU} + t_M + t_{WB}\}$
 - $t_{C-Princeton} > t_{RF} + t_{ALU} + t_M + t_{WB}$
- while in the hardwired Harvard architecture
 - $t_{C-Harvard} > t_M + t_{RF} + t_{ALU} + t_M + t_{WB}$
- which will execute instructions faster?

12

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Clock Rate vs CPI

- Suppose $t_M \gg t_{RF} + t_{ALU} + t_{WB}$
 - $t_{C-Princeton} = 0.5 * t_{C-Harvard}$
 - $CPI_{Princeton} = 2$
 - $CPI_{Harvard} = 1$
- No difference in performance!

13

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Princeton Microarchitecture

- Can we overlap instruction fetch and execute?

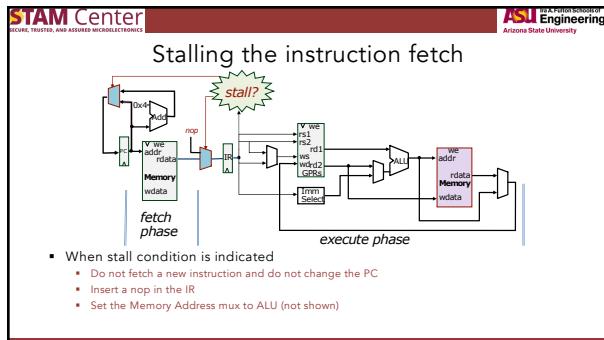
14

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

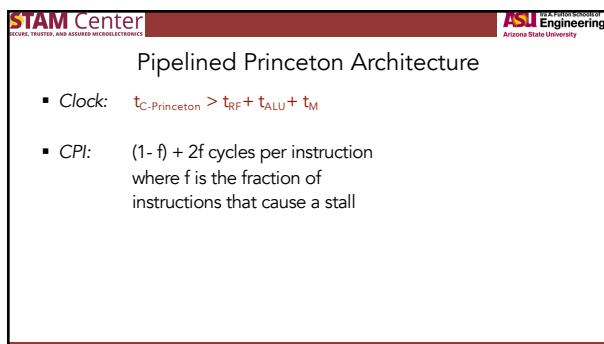
Princeton Microarchitecture

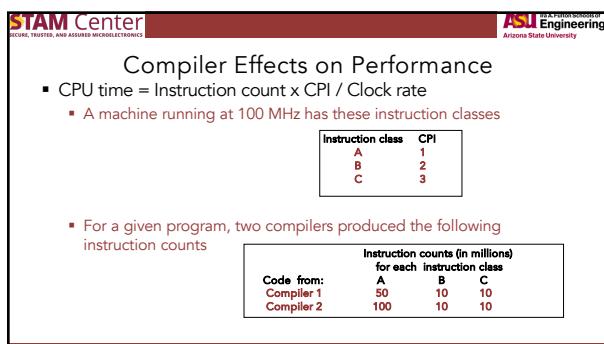
- Only one of the phases is active in any cycle
 - A lot of datapath is not in use at any given time



15

16





17

18

- Compiler Effects on Performance
 - CPU time = Instruction count x CPI / Clock rate
 - For compiler 1:
 - $CPI_1 = (5 \times 1 + 1 \times 2 + 1 \times 3) / (5 + 1 + 1) = 10 / 7 = 1.43$
 - $CPU\ time_1 = ((50 + 10 + 10) \times 10^6 \times 1.43) / (100 \times 10^9) = 1\ second$
 - For compiler 2:
 - $CPI_2 = (10 \times 1 + 1 \times 2 + 1 \times 3) / (10 + 1 + 1) = 15 / 12 = 1.25$
 - $CPU\ time_2 = ((100 + 10 + 10) \times 10^6 \times 1.25) / (100 \times 10^9) = 1.5\ seconds$

19

Processor Performance

- Speed Up Equations for Pipelining

$$CPI_{\text{pipelined}} = \text{Ideal CPI} + \text{Average Stall cycle per Instruction}$$

$$\text{Speedup} = \frac{\text{Ideal CPI} \times \text{Pipeline Depth}}{\text{Ideal CPI} + \text{Pipeline stall CPI}} \times \frac{\text{Clock Cycle}_{\text{Unpipelined}}}{\text{Clock Cycle}_{\text{Pipelined}}}$$

- If Ideal CPI = 1
 - Speed Up \leq Pipeline Depth

$$\text{Speedup} = \frac{\text{Pipeline Depth}}{1 + \text{Pipeline stall CPI}} \times \frac{\text{Clock Cycle}_{\text{Unpipelined}}}{\text{Clock Cycle}_{\text{Pipelined}}}$$

20

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering
Arizona State University

Illustrative Example

- We want to compare the performance of two machines. Which machine is faster?
 - Machine A: Dual ported memory - so there are no memory stalls
 - Machine B: Single ported memory, but its pipelined implementation has a 1.05 times faster clock rate
- Assumptions
 - Ideal CPI = 1 for both
 - Loads are 40% of instructions executed

21

22

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering
Arizona State University

Amdahl's Law

- By Gene Amdahl
- This law answers the critical question:
 - How much of a speedup one can get for a given architectural improvement/enhancement?
 - The performance enhancement possible due to a given design improvement is limited by the amount that the improved feature is used
- Performance improvement or speedup due to enhancement E

$$\text{Speedup}(E) = \frac{\text{Execution Time without } E}{\text{Execution Time with } E} = \frac{\text{Performance with } E}{\text{Performance without } E}$$

23

- By Gene Amdahl
- This law answers the critical question:
 - How much of a speedup one can get for a given architectural improvement/enhancement?
 - Suppose that enhancement E accelerates a fraction F of the execution time by a factor S and the remainder of the time is unaffected then:
 - Execution Time with E = $((1-F) + F/S) \times$ Execution Time without E
 - Hence speedup is given by:

24

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Amdahl's Law

- For the RISC machine with the following instruction composition:

Op	Freq	Cycles	CPI(i)	% Time
ALU	50%	1	.5	23%
Load	20%	5	1.0	45%
Store	10%	3	.3	14%
Branch	20%	2	.4	18%
- If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the resulting performance improvement from this enhancement

25

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Amdahl's Law

- For the RISC machine with the following instruction composition:

Op	Freq	Cycles	CPI(i)	% Time
ALU	50%	1	.5	23%
Load	20%	5	1.0	45%
Store	10%	3	.3	14%
Branch	20%	2	.4	18%
- If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the resulting performance improvement from this enhancement

Fraction enhanced = $F = 45\% \text{ or } .45$
 Unaffected fraction = $100\% - 45\% = 55\% \text{ or } .55$
 Factor of enhancement = $5/2 = 2.5$

$$\text{Speedup}(E) = \frac{1}{(1 - F) + F/S} = \frac{1}{.55 + .45/2.5} = 1.37$$

26

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Amdahl's Law

- For the RISC machine with the following instruction composition:

Op	Freq	Cycles	CPI(i)	% Time
ALU	50%	1	.5	23%
Load	20%	5	1.0	45%
Store	10%	3	.3	14%
Branch	20%	2	.4	18%
- If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the resulting performance improvement from this enhancement

27

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Amdahl's Law

- For the RISC machine with the following instruction composition:

Op	Freq	Cycles	CPI(0)	% Time
ALU	50%	1	.5	23%
Load	20%	5	1.0	45%
Store	10%	3	.3	14%
Branch	20%	2	.4	18%
- If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the resulting performance improvement from this enhancement?

$$\text{Old CPI} = 2.2$$

$$\text{New CPI} = .5 \times 1 + 2 \times 2 + .1 \times 3 + .2 \times 2 = 1.6$$

$$\text{Speedup}(E) = \frac{\text{Original Execution Time}}{\text{New Execution Time}} = \frac{\text{Instruction count} \times \text{old CPI} \times \text{clock cycle}}{\text{Instruction count} \times \text{new CPI} \times \text{clock cycle}}$$

$$= \frac{\text{old CPI}}{\text{new CPI}} = \frac{2.2}{1.6} = 1.37$$

28

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Amdahl's Law

- A program takes 100 seconds to execute on a machine with load operations responsible for 80 seconds of this time. By how much must the load operation be improved to make the program four times faster?

29

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Amdahl's Law

- A program takes 100 seconds to execute on a machine with load operations responsible for 80 seconds of this time. By how much must the load operation be improved to make the program four times faster?

$$\frac{100}{\text{Execution Time with enhancement}}$$

$$\text{Desired speedup} = 4 = \frac{100}{\text{Execution Time with enhancement}}$$

$$\text{Execution time with enhancement} = 100 * (1/4) = 25 \text{ seconds}$$

$$\rightarrow 25 \text{ seconds} = (100 - 80 \text{ seconds}) + 80 \text{ seconds} / n$$

$$\rightarrow 25 \text{ seconds} = 20 \text{ seconds} + 80 \text{ seconds} / n$$

$$\rightarrow 5 = 80 \text{ seconds} / n$$

$$\rightarrow n = 80/5 = 16$$
- Load operation should be 16 times faster to get a speedup of 4!

30

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Amdahl's Law

- A program takes 100 seconds to execute on a machine with load operations responsible for 80 seconds of this time. By how much must the load operation be improved to make the program five times faster?

31

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Amdahl's Law

- A program takes 100 seconds to execute on a machine with load operations responsible for 80 seconds of this time. By how much must the load operation be improved to make the program five times faster?

$$\text{Desired speedup} = 5 = \frac{100}{\text{Execution Time with enhancement}}$$

Execution time with enhancement = $100 * (1/5) = 20$ seconds

$$\begin{aligned} \rightarrow 20 \text{ seconds} &= (100 - 80 \text{ seconds}) + 80 \text{ seconds} / n \\ \rightarrow 20 \text{ seconds} &= 20 \text{ seconds} + 80 \text{ seconds} / n \\ \rightarrow 0 &= 80 \text{ seconds} / n \end{aligned}$$

- No amount of load operation improvement will be able achieve this speed

32

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Multiple Enhancements

- Suppose that enhancement E_i accelerates a fraction F_i of the execution time by a factor S_i and the remainder of the time is unaffected then:

$$\text{Speedup} = \frac{\text{Original Execution Time}}{\left((1 - \sum_i F_i) + \sum_i \frac{F_i}{S_i} \right) \times \text{Original Execution Time}}$$

$$\text{Speedup} = \frac{1}{\left((1 - \sum_i F_i) + \sum_i \frac{F_i}{S_i} \right)}$$

33

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

Multiple Enhancements

- Three CPU performance enhancements are proposed with the following speedups and percentage of the code execution time affected:

Speedup ₁ = S ₁ = 10	Percentage ₁ = F ₁ = 20%
Speedup ₂ = S ₂ = 15	Percentage ₂ = F ₂ = 15%
Speedup ₃ = S ₃ = 30	Percentage ₃ = F ₃ = 10%
- While all three enhancements are in place in the new design, each enhancement affects a different portion of the code and only one enhancement can be used at a time.
- What is the resulting overall speedup?

$$\text{Speedup} = \frac{1}{((1 - \sum F_i) + \sum \frac{F_i}{S_i})}$$

34

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

Multiple Enhancements

- Three CPU performance enhancements are proposed with the following speedups and percentage of the code execution time affected:

Speedup ₁ = S ₁ = 10	Percentage ₁ = F ₁ = 20%
Speedup ₂ = S ₂ = 15	Percentage ₂ = F ₂ = 15%
Speedup ₃ = S ₃ = 30	Percentage ₃ = F ₃ = 10%
- While all three enhancements are in place in the new design, each enhancement affects a different portion of the code and only one enhancement can be used at a time.
- What is the resulting overall speedup?

$$\text{Speedup} = \frac{1}{((1 - \sum F_i) + \sum \frac{F_i}{S_i})}$$

- Speedup = 1 / [(1 - .2 - .15 - .1) + .2/10 + .15/15 + .1/30]

$$= 1 / [.55 + .0333]$$

$$= 1 / .5833 = 1.71$$

35

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

Amdahl's Law

- Key Insights**
 - The performance of any system is constrained by the speed or capacity of the slowest point
 - The impact of an effort to improve the performance of a program is primarily constrained by the amount of time that the program spends in parts of the program NOT TARGETED by the effort
 - Amdahl's Law is a statement of the maximum theoretical speed-up you can ever hope to achieve
 - The actual speed-ups are always less than the speed-up predicted by Amdahl's Law

36

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

Amdahl's Law

- For software and hardware engineers MUST have a very deep understanding of Amdahl's Law if they are to avoid having unrealistic performance expectations
 - For systems folks: this law allows you to estimate the net performance benefit a new hardware feature will add to program executions
 - For software folks: this law allows you to estimate the amount of parallelism your program/algorithm can achieve before you start writing your parallel code

37

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

CPU Performance

- CPU performance factors
 - Instruction count
 - Determined by ISA and compiler
 - CPI and Cycle time
 - Determined by CPU hardware
 - Longest delay determines clock period
 - Critical path: load instruction

38

STAM Center SECURE, TRUSTED, AND ASSURED MICROELECTRONICS **ASU** Arizona State University **Engineering**

CPU Performance

- Longest delay determines clock period
 - Critical path: load instruction
 - Instruction memory
 - Register file read
 - ALU operation
 - Data memory access
 - Register file writeback
- Performance can be improved by pipelining

39

STAM Center
SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ASU Arizona State University
Engineering

Next Learning Module

- Branch Prediction
