
CPU Performance Evaluation

Prof. Michel A. Kinsy

CSE 520
Computer Architecture II

Performance Measurement
§ Processor performance:

§ Execution time
§ Area

§ Logic complexity

§ Power

§ In this class we will focus on Execution time

Time = Instructions Cycles Time

 Program Program * Instruction * Cycle

Datapath for Memory Instructions
§ Should program and data memory be separate?

§ Harvard style: separate (Aiken and Mark 1 influence)
§ read-only program memory
§ read/write data memory

§ Princeton style: the same (von Neumann’s influence)
§ single read/write memory for program and data

§ Executing a Load or Store instruction requires accessing the memory more
than once

Harvard Architecture
WBSel
ALU / Mem

Op2Sel

“base”

disp

ImmSelOpCode

ALU
Control

ALU

0x4

Add

clk

addr
inst

Inst.
Memory

PC

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Select

clk

MemWrite

addr

wdata

rdata
Data
Memory

we

Store (rs) + displacementimm rs2 funct3rs1 imm opcode
7 5 5 3 5 7

Loadimm[11:0] funct3rs1 rd opcode

Hardwired Control
§ Hardwired Control is pure Combinational Logic

Combinational
Logic

op code

equal?

ImmSel

Op2Sel

FuncSel

MemWrite

WBSel

RegDst

RegWrite

PCSel

ALU Control & Immediate Extension

Inst<6:0> (Opcode)

Decode Map

Inst<14:12> (Func3)

ALUop

0?

+

FuncSel
(Func, Op, +, 0?)

ImmSel
(IType12,SType12, UType20)

Hardwired Control TableHardwired	Control	Table	

51	

Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel

ALU
ALUi
LW
SW
BEQtrue

BEQfalse

J
JAL

JALR

Op2Sel=	Reg	/	Imm		 	WBSel	=	ALU	/	Mem	/	PC					
WASel	=	rd	/	X1 			 	PCSel	=	pc+4	/	br	/	rind	/	jabs 		

*	 *	 *	 no	 yes	 rind	PC	 rd	
jabs	*	 *	 *	 no	 yes	 PC	 X1		

jabs	*	 *	 *	 no	 no	 *	 *	
pc+4	SBType12	 *	 *	 no	 no	 *	 *	

br	SBType12	 *	 *	 no	 no	 *	 *	
pc+4	SType12	 Imm	 +	 yes	 no	 *	 *	

pc+4	*	 Reg	 Func	 no	 yes	 ALU	 rd	
IType12	 Imm	 Op	 pc+4	no	 yes	 ALU	 rd	

pc+4	IType12	 Imm	 +	 no	 yes	 Mem	 rd	

Single-Cycle Hardwired Control
§ Harvard architecture: we will assume that

§ clock period is sufficiently long for all of and the following steps to be
“completed”:
§ 1. instruction fetch
§ 2. decode and register fetch
§ 3. ALU operation
§ 4. data fetch if required
§ 5. register write-back setup time

§ tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB

Princeton Microarchitecture

IR

0x4

clk

RegDst

PCSel RegWrite

Op2Sel

WBSel

31

ImmSelOpCode

Add

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Select

addr

wdata

rdata
Data
Memory

ALU

Add

ALU
Control

clk

we

MemWrite

clk

PC

PCen

IRen AddrSel

clk

Fetch phase

Br Logic

Two-State Controller
§ In the Princeton Microarchitecture, a flipflop can be used to

remember the phase

fetch phase

execute phase
AddrSel=ALU
IRen=off
PCen=on
Wen=on

AddrSel=PC
IRen=on
PCen=off
Wen=off

Hardwired Controller

old
combinational
logic
(Harvard)

op code

equal?

ImmSel, Op2Sel,
FuncSel, MemWrite,
WBSel, RegDst,
RegWrite, PCSel

MemWrite

IR

new
combinational
logic

Pcen

Iren

AddrSel

S

1-bit Toggle FF
I-fetch / Execute

RegWrite

.

.

.

Wen

Clock Period
§ Princeton architecture

§ tC-Princeton > max {tM , tRF+ tALU+ tM + tWB}
§ tC-Princeton > tRF+ tALU+ tM + tWB

§ while in the hardwired Harvard architecture
§ tC-Harvard > tM + tRF + tALU+ tM+ tWB

§ which will execute instructions faster?

Clock Rate vs CPI
§ Suppose tM >> tRF+ tALU + tWB

§ tC-Princeton = 0.5 * tC-Harvard

§ CPIPrinceton = 2
§ CPIHarvard = 1

§ No difference in performance!

Princeton Microarchitecture
§ Can we overlap instruction fetch and execute?

fetch
phase execute phase

addr

wdata

rdata
Memory

we
ALU

Imm
Select

PC

0x4
Add

IR
addr

wdata

rdata

Memory

we rd1

GPRs

rs1
rs2

ws
wd rd2

we

Princeton Microarchitecture
§ Only one of the phases is active in any cycle

§ A lot of datapath is not in use at any given time

The same
(mux not shown)

fetch
phase execute phase

addr

wdata

rdata
Memory

we
ALU

Imm
Select

PC

0x4
Add

IR
addr

wdata

rdata

Memory

we rd1

GPRs

rs1
rs2

ws
wd rd2

we

Stalling the instruction fetch

§ When stall condition is indicated
§ Do not fetch a new instruction and do not change the PC
§ Insert a nop in the IR
§ Set the Memory Address mux to ALU (not shown)

fetch
phase execute phase

addr

wdata

rdata
Memory

we
ALU

Imm
Select

rd1

GPRs

rs1
rs2

ws
wdrd2

we

PC

0x4
Add

addr

wdata

rdata

Memory

we

stall?

nop

IR

Pipelined Princeton Architecture
§ Clock: tC-Princeton > tRF+ tALU+ tM

§ CPI: (1- f) + 2f cycles per instruction
 where f is the fraction of
 instructions that cause a stall

Compiler Effects on Performance
§ CPU time = Instruction count x CPI / Clock rate

§ A machine running at 100 MHz has these instruction classes

§ For a given program, two compilers produced the following
instruction counts

Instruction class CPI
 A 1
 B 2
 C 3

Instruction counts (in millions)
 for each instruction class
 Code from: A B C
 Compiler 1 50 10 10
 Compiler 2 100 10 10

Compiler Effects on Performance
§ CPU time = Instruction count x CPI / Clock rate
§ For compiler 1:

§ CPI1 = (5 x 1 + 1 x 2 + 1 x 3) / (5 + 1 + 1) = 10 / 7 =
1.43

§ CPU time1 = ((50 + 10 + 10) x 106 x 1.43) / (100 x
106) = 1 second

§ For compiler 2:
§ CPI2 = (10 x 1 + 1 x 2 + 1 x 3) / (10 + 1 + 1) = 15 / 12

= 1.25
§ CPU time2 = ((100 + 10 + 10) x 106 x 1.25) / (100 x

106) = 1.5 seconds

Processor Performance
§ Speed Up Equations for Pipelining

§ If Ideal CPI = 1
§ Speed Up <= Pipeline Depth

CPIpipelined = Ideal CPI + Average Stall cycle per Instruction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock CycleUnpipelined

Clock CyclePipelined

Speedup =
Ideal CPI X Pipeline Depth

Ideal CPI + Pipeline stall CPI
X

Clock CycleUnpipelined

Clock CyclePipelined

Illustrative Example
§ We want to compare the performance of two machines. Which

machine is faster?
§ Machine A: Dual ported memory - so there are no memory stalls
§ Machine B: Single ported memory, but its pipelined

implementation has a 1.05 times faster clock rate

§ Assumptions
§ Ideal CPI = 1 for both
§ Loads are 40% of instructions executed

Illustrative Example
§ We want to compare the performance of two machines. Which machine is faster?

§ Machine A: Dual ported memory - so there are no memory stalls
§ Machine B: Single ported memory, but its pipelined implementation has a 1.05 times faster

clock rate
§ Assumptions

§ Ideal CPI = 1 for both
§ Loads are 40% of instructions executed

Machine A speed = Pipeline Depth/(1 + 0) x (clockunpipeline/clockpipeline)
= Pipeline Depth

Machine B speed = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipeline/clockpipeline)
= (Pipeline Depth/1.4) x (clockunpipeline/(1.05 *clockunpipeline))
= 0.68 x Pipeline Depth

A Speed/ B Speed = Pipeline Depth / (0.68 x Pipeline Depth) = 1.47

Amdahl's Law
§ By Gene Amdahl
§ This law answers the critical question:

§ How much of a speedup one can get for a given architectural
improvement/enhancement?
§ The performance enhancement possible due to a given design improvement

is limited by the amount that the improved feature is used

§ Performance improvement or speedup due to enhancement E
 Execution Time without E Performance with E
 Speedup(E) = =
 Execution Time with E Performance without E

Amdahl's Law
§ By Gene Amdahl
§ This law answers the critical question:

§ How much of a speedup one can get for a given architectural
improvement/enhancement?

§ Suppose that enhancement E accelerates a fraction F of the execution
time by a factor S and the remainder of the time is unaffected then:
§ Execution Time with E = ((1-F) + F/S) x Execution Time without E
§ Hence speedup is given by:

 Execution Time without E 1
Speedup(E) = =
 ((1 - F) + F/S) x Execution Time without E (1 - F) + F/S

Amdahl's Law
§ For the RISC machine with the following instruction composition:

§ Op Freq Cycles CPI(i) % Time
§ ALU 50% 1 .5 23%
§ Load 20% 5 1.0 45%
§ Store 10% 3 .3 14%
§ Branch 20% 2 .4 18%

§ If a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement

Amdahl's Law
§ For the RISC machine with the following instruction composition:

§ Op Freq Cycles CPI(i) % Time
§ ALU 50% 1 .5 23%
§ Load 20% 5 1.0 45%
§ Store 10% 3 .3 14%
§ Branch 20% 2 .4 18%

§ If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the
resulting performance improvement from this enhancement

Fraction enhanced = F = 45% or .45
Unaffected fraction = 100% - 45% = 55% or .55
Factor of enhancement = 5/2 = 2.5
 1 1
Speedup(E) = = = 1.37
 (1 - F) + F/S .55 + .45/2.5

Amdahl's Law
§ For the RISC machine with the following instruction composition:

§ Op Freq Cycles CPI(i) % Time
§ ALU 50% 1 .5 23%
§ Load 20% 5 1.0 45%
§ Store 10% 3 .3 14%
§ Branch 20% 2 .4 18%

§ If a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement

Amdahl's Law
§ For the RISC machine with the following instruction composition:

§ Op Freq Cycles CPI(i) % Time
§ ALU 50% 1 .5 23%
§ Load 20% 5 1.0 45%
§ Store 10% 3 .3 14%
§ Branch 20% 2 .4 18%

§ If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the
resulting performance improvement from this enhancement

Old CPI = 2.2
New CPI = .5 x 1 + .2 x 2 + .1 x 3 + .2 x 2 = 1.6

 Original Execution Time Instruction count x old CPI x clock cycle
Speedup(E) = =
 New Execution Time Instruction count x new CPI x clock cycle

 old CPI 2.2
 = = = 1.37
 new CPI 1.6

Amdahl's Law
§ A program takes 100 seconds to execute on a machine with load operations

responsible for 80 seconds of this time. By how much must the load
operation be improved to make the program four times faster?

Amdahl's Law
§ A program takes 100 seconds to execute on a machine with load operations responsible for

80 seconds of this time. By how much must the load operation be improved to make the
program four times faster?

 100
 Desired speedup = 4 =
 Execution Time with enhancement

 Execution time with enhancement = 100 * (1/4) = 25 seconds
 è 25 seconds = (100 - 80 seconds) + 80 seconds / n

è 25 seconds = 20 seconds + 80 seconds / n
 è 5 = 80 seconds / n
 è n = 80/5 = 16

Load operation should be 16 times faster to get a speedup of 4!

Amdahl's Law
§ A program takes 100 seconds to execute on a machine with load operations

responsible for 80 seconds of this time. By how much must the load
operation be improved to make the program five times faster?

Amdahl's Law
§ A program takes 100 seconds to execute on a machine with load operations

responsible for 80 seconds of this time. By how much must the load operation be
improved to make the program five times faster?

 100
 Desired speedup = 5 =
 Execution Time with enhancement

 Execution time with enhancement = 100 * (1/5) = 20 seconds
 è 20 seconds = (100 - 80 seconds) + 80 seconds / n

è 20 seconds = 20 seconds + 80 seconds / n
 è 0 = 80 seconds / n

§ No amount of load operation improvement will be able achieve this speed

Multiple Enhancements
§ Suppose that enhancement Ei accelerates a fraction Fi of the

execution time by a factor Si and the remainder of the time is
unaffected then:

∑ ∑+−
=

! !
!

!
! "

##
"$%%&'$

!" !#

#

"

((1− iF)+ iF
iS
)

i∑i∑
Speedup =

Original Execution Time

Original Execution Time x

Multiple Enhancements
§ Three CPU performance enhancements are proposed with the following

speedups and percentage of the code execution time affected:
 Speedup1 = S1 = 10 Percentage1 = F1 = 20%
 Speedup2 = S2 = 15 Percentage1 = F2 = 15%
 Speedup3 = S3 = 30 Percentage1 = F3 = 10%

§ While all three enhancements are in place in the new design, each
enhancement affects a different portion of the code and only one
enhancement can be used at a time.

§ What is the resulting overall speedup?

∑ ∑+−
=

! !
!

!
! "

##
"$%%&'$

!" !#

#

"

Multiple Enhancements
§ Three CPU performance enhancements are proposed with the following speedups and

percentage of the code execution time affected:
 Speedup1 = S1 = 10 Percentage1 = F1 = 20%
 Speedup2 = S2 = 15 Percentage1 = F2 = 15%
 Speedup3 = S3 = 30 Percentage1 = F3 = 10%

§ While all three enhancements are in place in the new design, each enhancement affects a
different portion of the code and only one enhancement can be used at a time.

§ What is the resulting overall speedup?

§ Speedup = 1 / [(1 - .2 - .15 - .1) + .2/10 + .15/15 + .1/30)]
 = 1 / [.55 + .0333]
 = 1 / .5833 = 1.71

∑ ∑+−
=

! !
!

!
! "

##
"$%%&'$

!" !#

#

"

Amdahl's Law
§ Key Insights

§ The performance of any system is constrained by the speed or capacity of
the slowest point

§ The impact of an effort to improve the performance of a program is
primarily constrained by the amount of time that the program spends in
parts of the program NOT TARGETED by the effort

§ Amdahl's Law is a statement of the maximum theoretical speed-up you
can ever hope to achieve

§ The actual speed-ups are always less than the speed-up predicted by
Amdahl's Law

Amdahl's Law
§ For software and hardware engineers MUST have a very deep

understanding of Amdahl's Law if they are to avoid having
unrealistic performance expectations

1. For systems folks: this law allows you to estimate the net
performance benefit a new hardware feature will add to program
executions

2. For software folks: this law allows you to estimate the amount of
parallelism your program/algorithm can achieve before you start
writing your parallel code

CPU Performance
§ CPU performance factors

§ Instruction count
§ Determined by ISA and compiler
§ CPI and Cycle time
§ Determined by CPU hardware
§ Longest delay determines clock period

§ Critical path: load instruction

CPU Performance
§ Longest delay determines clock period

§ Critical path: load instruction
1. Instruction memory
2. Register file read
3. ALU operation
4. Data memory access
5. Register file writeback

§ Performance can be improved by pipelining

Next Learning Module
§ Branch Prediction

