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Performance Measurement 
§ Processor performance: 

§ Execution time 
§ Area 

§ Logic complexity 

§ Power 

§ In this class we will focus on Execution time

Time   =   Instructions Cycles    Time

   Program           Program    *   Instruction   *   Cycle



Datapath for Memory Instructions
§ Should program and data memory be separate?

§ Harvard style: separate (Aiken and Mark 1 influence)
§ read-only program memory
§ read/write data memory

§ Princeton style: the same (von Neumann’s influence)
§ single read/write memory for program and data

§ Executing a Load or Store instruction requires accessing the memory more 
than once
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Hardwired Control
§ Hardwired Control is pure Combinational Logic 
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ALU Control & Immediate Extension
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Hardwired Control TableHardwired	Control	Table	

51	

Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel 

ALU 
ALUi 
LW 
SW 
BEQtrue 

BEQfalse 

J 
JAL 

JALR 

Op2Sel=	Reg	/	Imm		 	WBSel	=	ALU	/	Mem	/	PC					
WASel	=	rd	/	X1 			 	PCSel	=	pc+4	/	br	/	rind	/	jabs 		

*	 *	 *	 no	 yes	 rind	PC	 rd	
jabs	*	 *	 *	 no	 yes	 PC	 X1		

jabs	*	 *	 *	 no	 no	 *	 *	
pc+4	SBType12	 *	 *	 no	 no	 *	 *	

br	SBType12	 *	 *	 no	 no	 *	 *	
pc+4	SType12	 Imm	 +	 yes	 no	 *	 *	

pc+4	*	 Reg	 Func	 no	 yes	 ALU	 rd	
IType12	 Imm	 Op	 pc+4	no	 yes	 ALU	 rd	

pc+4	IType12	 Imm	 +	 no	 yes	 Mem	 rd	



Single-Cycle Hardwired Control
§ Harvard architecture: we will assume that

§ clock period is sufficiently long for all of  and the following steps to be 
“completed”:
§ 1. instruction fetch
§ 2. decode and register fetch
§ 3. ALU operation
§ 4. data fetch if required
§ 5. register write-back setup time

§  tC >  tIFetch + tRFetch + tALU+ tDMem+ tRWB



Princeton Microarchitecture
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Two-State Controller
§ In the Princeton Microarchitecture, a flipflop can be used to 

remember the phase

fetch phase

execute phase
AddrSel=ALU
IRen=off
PCen=on
Wen=on

AddrSel=PC
IRen=on
PCen=off
Wen=off



Hardwired Controller
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Clock Period
§  Princeton architecture

§ tC-Princeton > max {tM , tRF+ tALU+ tM + tWB}
§ tC-Princeton > tRF+ tALU+ tM + tWB

§ while in the hardwired Harvard architecture
§ tC-Harvard >  tM + tRF + tALU+ tM+ tWB

§ which will execute instructions faster?



Clock Rate vs CPI
§ Suppose tM >> tRF+ tALU + tWB

§  tC-Princeton = 0.5 * tC-Harvard 

§  CPIPrinceton  = 2
§  CPIHarvard    = 1

§ No difference in performance!



Princeton Microarchitecture
§ Can we overlap instruction fetch and execute?
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Princeton Microarchitecture
§ Only one of the phases is active in any cycle

§ A lot of datapath is not in use at any given time

The same
(mux not shown)
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Stalling the instruction fetch 

§ When stall condition is indicated
§ Do not fetch a new instruction and do not change the PC
§ Insert a nop in the IR 
§ Set the Memory Address mux to ALU (not shown)
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Pipelined Princeton Architecture 
§ Clock:      tC-Princeton > tRF+ tALU+ tM

§ CPI:  (1- f) + 2f cycles per instruction
    where f is the fraction of 
    instructions that cause a stall 



Compiler Effects on Performance
§ CPU time = Instruction count x CPI / Clock rate

§ A machine running at 100 MHz has these instruction classes

§ For a given program, two compilers produced the following 
instruction counts

Instruction class     CPI
          A        1
          B        2
          C        3 

Instruction counts (in millions) 
                                     for each  instruction class
 Code  from:                 A                 B           C
  Compiler 1                 50               10          10
  Compiler 2                100              10          10



Compiler Effects on Performance
§ CPU time = Instruction count x CPI / Clock rate
§ For compiler 1:

§ CPI1 = (5 x 1 + 1 x 2 + 1 x 3) / (5 + 1 + 1) = 10 / 7 = 
1.43

§ CPU time1 =  ((50 + 10 + 10) x 106 x 1.43) / (100 x 
106)  =  1 second

§ For compiler 2:
§ CPI2 = (10 x 1 + 1 x 2 + 1 x 3) / (10 + 1 + 1) = 15 / 12 

= 1.25
§ CPU time2 =  ((100 + 10 + 10) x 106 x 1.25) / (100 x 

106)  =  1.5 seconds



Processor Performance
§ Speed Up Equations for Pipelining

§ If Ideal CPI = 1
§ Speed Up <= Pipeline Depth

CPIpipelined = Ideal CPI + Average Stall cycle per Instruction 

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock CycleUnpipelined

Clock CyclePipelined

Speedup =
Ideal CPI X Pipeline Depth

Ideal CPI + Pipeline stall CPI
X

Clock CycleUnpipelined

Clock CyclePipelined



Illustrative Example
§ We want to compare the performance of two machines.  Which 

machine is faster?
§ Machine A: Dual ported memory - so there are no memory stalls
§ Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate

§ Assumptions
§ Ideal CPI = 1 for both
§ Loads are 40% of instructions executed



Illustrative Example
§ We want to compare the performance of two machines.  Which machine is faster?

§ Machine A: Dual ported memory - so there are no memory stalls
§ Machine B: Single ported memory, but its pipelined implementation has a 1.05 times faster 

clock rate
§ Assumptions

§ Ideal CPI = 1 for both
§ Loads are 40% of instructions executed

Machine A speed  = Pipeline Depth/(1 + 0) x (clockunpipeline/clockpipeline)
= Pipeline Depth

Machine B speed  = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipeline/clockpipeline)
= (Pipeline Depth/1.4) x (clockunpipeline/(1.05 *clockunpipeline))
= 0.68 x Pipeline Depth

A Speed/ B Speed = Pipeline Depth / (0.68 x Pipeline Depth) = 1.47



Amdahl's Law 
§ By Gene Amdahl
§ This law answers the critical question: 

§ How much of a speedup one can get for a given architectural 
improvement/enhancement?
§ The performance enhancement possible due to a given design improvement 

is limited by the amount that the improved feature is used 

§ Performance improvement or speedup due to enhancement E
                              Execution Time without E              Performance with E
   Speedup(E) =                                                   =
        Execution Time with E              Performance without E



Amdahl's Law 
§ By Gene Amdahl
§ This law answers the critical question: 

§ How much of a speedup one can get for a given architectural 
improvement/enhancement?

§ Suppose that enhancement E accelerates a fraction F of the execution 
time by a factor S and the remainder of the time is unaffected then:
§ Execution Time with E  =   ((1-F) + F/S)  x  Execution Time without E 
§ Hence speedup is given by:

                                  Execution Time without E                                1
Speedup(E) =                                                                         =
                         ((1 - F) + F/S) x  Execution Time without E        (1 - F)  +  F/S



Amdahl's Law 
§  For the RISC machine with the following instruction composition:

§ Op  Freq  Cycles CPI(i)  % Time
§ ALU  50%    1    .5    23%
§ Load  20%    5  1.0    45%
§ Store  10%    3    .3    14%
§ Branch  20%     2    .4    18%

§ If a CPU design enhancement improves the CPI of load instructions 
from 5 to 2,  what is the resulting performance improvement from 
this enhancement



Amdahl's Law 
§  For the RISC machine with the following instruction composition:

§ Op  Freq  Cycles CPI(i)  % Time
§ ALU  50%    1    .5    23%
§ Load  20%    5  1.0    45%
§ Store  10%    3    .3    14%
§ Branch 20%     2    .4    18%

§ If a CPU design enhancement improves the CPI of load instructions from 5 to 2,  what is the 
resulting performance improvement from this enhancement

Fraction enhanced  =  F =  45%  or  .45
Unaffected fraction         = 100% - 45% =  55%   or  .55
Factor of enhancement =  5/2 =  2.5
                                 1                              1
Speedup(E)  =                            =                             =    1.37
                           (1 - F)  +  F/S          .55  +  .45/2.5



Amdahl's Law 
§  For the RISC machine with the following instruction composition:

§ Op  Freq  Cycles CPI(i)  % Time
§ ALU  50%    1    .5    23%
§ Load  20%    5  1.0    45%
§ Store  10%    3    .3    14%
§ Branch  20%     2    .4    18%

§ If a CPU design enhancement improves the CPI of load instructions 
from 5 to 2,  what is the resulting performance improvement from 
this enhancement



Amdahl's Law 
§  For the RISC machine with the following instruction composition:

§ Op  Freq  Cycles CPI(i)  % Time
§ ALU  50%    1    .5    23%
§ Load  20%    5  1.0    45%
§ Store  10%    3    .3    14%
§ Branch 20%     2    .4    18%

§ If a CPU design enhancement improves the CPI of load instructions from 5 to 2,  what is the 
resulting performance improvement from this enhancement

Old CPI = 2.2
New CPI =  .5 x 1 + .2 x 2 +  .1 x 3 + .2 x 2  =  1.6

                         Original Execution Time           Instruction count   x   old CPI   x  clock cycle
Speedup(E) =                                                =   
                             New Execution Time                Instruction count  x  new CPI  x  clock cycle

         old CPI            2.2
   =                      =              =  1.37
                                new CPI        1.6



Amdahl's Law 
§ A program takes 100 seconds to execute on a machine with load operations 

responsible for 80 seconds of this time. By how much must the load 
operation be improved to make the program four times faster?

      



Amdahl's Law 
§ A program takes 100 seconds to execute on a machine with load operations responsible for 

80 seconds of this time. By how much must the load operation be improved to make the 
program four times faster?

                                                                    100
  Desired speedup =  4  = 
 Execution Time with enhancement

       Execution time with enhancement  =  100 * (1/4)  = 25 seconds 
                       è 25 seconds = (100 - 80 seconds)  +  80 seconds / n 

è 25 seconds =      20 seconds        +  80 seconds  / n
                       è 5  =  80 seconds  / n
                       è n  =   80/5 =  16

Load operation should be 16 times faster to get a speedup of 4!



Amdahl's Law 
§ A program takes 100 seconds to execute on a machine with load operations 

responsible for 80 seconds of this time. By how much must the load 
operation be improved to make the program five times faster?



Amdahl's Law 
§ A program takes 100 seconds to execute on a machine with load operations 

responsible for 80 seconds of this time. By how much must the load operation be 
improved to make the program five times faster?

                                                                    100
  Desired speedup =  5 = 
 Execution Time with enhancement

       Execution time with enhancement  =  100 * (1/5)  = 20 seconds 
                       è 20 seconds = (100 - 80 seconds)  +  80 seconds / n 

è 20 seconds =      20 seconds        +  80 seconds  / n
                       è 0 =  80 seconds  / n
                    

§ No amount of load operation improvement will be able achieve this speed 



Multiple Enhancements
§ Suppose that enhancement  Ei  accelerates a fraction  Fi  of the 

execution time  by a factor  Si  and the remainder of the time is 
unaffected then:
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Multiple Enhancements
§ Three CPU performance enhancements are proposed with the following 

speedups and percentage of the code execution time affected:
                Speedup1 = S1 =  10 Percentage1 = F1  =  20%
                Speedup2 = S2 =  15  Percentage1 = F2  =  15%
                Speedup3 = S3 =  30 Percentage1 = F3  =  10%
            

§ While all three enhancements are in place in the new design,  each 
enhancement affects a different portion of the code and only one 
enhancement can be used at a time.

§ What is the resulting overall speedup?
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Multiple Enhancements
§ Three CPU performance enhancements are proposed with the following speedups and 

percentage of the code execution time affected:
                Speedup1 = S1 =  10 Percentage1 = F1  =  20%
                Speedup2 = S2 =  15 Percentage1 = F2  =  15%
                Speedup3 = S3 =  30 Percentage1 = F3  =  10%
            

§ While all three enhancements are in place in the new design,  each enhancement affects a 
different portion of the code and only one enhancement can be used at a time.

§ What is the resulting overall speedup?

§ Speedup =  1 /  [(1 - .2 - .15  - .1)   +   .2/10   +  .15/15  +  .1/30)]
                =  1 /  [         .55                 +          .0333                         ]  
                =  1 /  .5833  =    1.71
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Amdahl's Law 
§ Key Insights 

§ The performance of any system is constrained by the speed or capacity of 
the slowest point

§ The impact of an effort to improve the performance of a program is 
primarily constrained by the amount of time that the program spends in 
parts of the program NOT TARGETED by the effort

§ Amdahl's Law is a statement of the maximum theoretical speed-up you 
can ever hope to achieve

§ The actual speed-ups are always less than the speed-up predicted by 
Amdahl's Law 



Amdahl's Law 
§ For software and hardware engineers MUST have a very deep 

understanding of Amdahl's Law if they are to avoid having 
unrealistic performance expectations

1. For systems folks: this law allows you to estimate the net 
performance benefit a new hardware feature will add to program 
executions

2. For software folks: this law allows you to estimate the amount of 
parallelism your program/algorithm can achieve before you start 
writing your parallel code



CPU Performance
§ CPU performance factors

§ Instruction count
§ Determined by ISA and compiler
§ CPI and Cycle time
§ Determined by CPU hardware
§ Longest delay determines clock period

§ Critical path: load instruction



CPU Performance
§ Longest delay determines clock period

§ Critical path: load instruction
1. Instruction memory 
2. Register file read 
3. ALU operation 
4. Data memory access 
5. Register file writeback

§ Performance can be improved by pipelining



Next Learning Module
§ Branch Prediction


