%‘ Ira A.Fulton Schools of
STAM Center Engineering
zzzzzz , TRUSTED, AND ASSURED MICROELECTRONICS Arizona State University

CSE 520
Computer Architecture |

CPU Performance Evaluation

Prof. Michel A. Kinsy




STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lIra A.Ful_ton Schoo!sof
% Engineering

Arizona State University

Performance Measurement

= Processor performance:
= Execution time
= Area
= Logic complexity

= Power

Time = Instructions Cycles Time

Program Program * Instruction * Cycle

» |n this class we will focus on Execution time
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Datapath for Memory Instructions

= Should program and data memory be separate?
= Harvard style: separate (Aiken and Mark 1 influence)

* read-only program memory
» read/write data memory

* Princeton style: the same (von Neumann’s influence)

= single read/write memory for program and data

= Executing a Load or Store instruction requires accessing the memory more
than once
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Harvard Architecture
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imm | rs2 | rs1 | funct3 | imm | opcode | Store (rs) + displacement
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Hardwired Control
= Hardwired Control is pure Combinational Logic

ImmSel
Op2Sel

FuncSel
op code >

MemWrite
Combinational

equal? > Logic _, WBSel

RegDst

RegWrite

PCSel
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Inst<14:12> (Func3) \
Inst<6:0> (Opcode) ALUop
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Hardwired Control Table

Opcode | ImmSel | Op2Sel | FuncSel | MemWr | RFWen | WBSel | WASel PCSel
ALU * Reg Func no yes ALU rd pc+4
ALUi IType,,| Imm| Op no yes ALU rd pc+4
LW IType,,| Imm + no yes Mem rd pc+4
SW SType;,| Imm + yes no * * pc+4
BEQu.. |[SBType,,| * * no no * * br
BEQy,s, SBType,,| * * no no * * pc+4
J * * * no no * * jabs
JAL * * * no yes PC X1 jabs
JALR * * * no yes PC rd rind
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Single-Cycle Hardwired Control

» Harvard architecture: we will assume that

= clock period is sufficiently long for all of and the following steps to be
“completed”:
= 1. instruction fetch
= 2. decode and register fetch
= 3. ALU operation
= 4. data fetch if required
= 5. register write-back setup time

tc > Uretch T Rretech T tatut TomMem™ TRwB
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Princeton Microarchitecture
RegWrite MemWrite | WBSel
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Two-State Controller
= |n the Princeton Microarchitecture, a flipflop can be used to

remember the phase

AddrSel=PC
IRen=0on
PCen=off
Wen=off

fetch phase

AddrSel=ALU
IRen=off
PCen=o0n
Wen=on

execute phase
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Clock Period

" Princeton architecture

" tC—Princeton > max {tl\/l / tRF+ tALU+ tl\/l + tWB}

" TcpPrinceton = RetT tTatut tTw + twe

» while in the hardwired Harvard architecture

" TcHavard = tTw T rRe t Talut tvt tws

» which will execute instructions faster?
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Clock Rate vs CPI

= Suppose ty >> tget tay + tws

_ *
tC—Princeton = 0.5 tC—Harvard

. CPlPrincetor\ =2
. CI:)lHarvard =

= No difference in performance!
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Princeton Microarchitecture

= Can we overlap instruction fetch and execute?

0Ox4
s

>rsl
>PCH—laddr S rdl > we
. rdata |—|IR|—% =:|_:a§ . . ‘ ALU addr
N >
PR > .
Memory coe > Men:?rt;] >
wdata | Imm >
Select »{Wdata
fetch
phase

execute phase
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Princeton Microarchitecture
= Only one of the phases is active in any cycle

= A lot of datapath is not in use at any given time

The same

o/ (n;;)e( not shown) \

PCH—>addr IR > we rd1 > we
rdata|— - > >lwd rd2 . X ALU addr
/\
Memory EKS > rdata >
Memory
wdata o] Imm >
Select » Wdata
fetch
hase
p execute phase
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Stalling the instruction fetch

a

t‘ 0x4 a
A A
nop VvV we

rsi

\ A 4

VvV we rs2

—> addr I—Fﬁ . ‘R Wsrdl > e

-y » —
A rdata u o > wdrd? R AL addr
Memory GPRs > rdata >
Memory
wdata J Imm | >
| selec » Wdata
fetch
hase

p execute phase

» When stall condition is indicated

= Do not fetch a new instruction and do not change the PC

= Insertanopinthe IR
= Set the Memory Address mux to ALU (not shown)
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Pipelined Princeton Architecture

" Clock:  tcprnceton > tret tarut tv

= CPI: (1- ) + 2f cycles per instruction
where fis the fraction of
instructions that cause a stall
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Compiler Effects on Performance
» CPU time = Instruction count x CPI / Clock rate
= A machine running at 100 MHz has these instruction classes

Instruction class CPI

A 1
B 2
C 3

= For a given program, two compilers produced the following
Instruction counts

Code from:
Compiler 1
Compiler 2

Instruction counts (in millions)
for each instruction class

A B C
50 10 10
100 10 10
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Compiler Effects on Performance

= CPU time = Instruction count x CPI / Clock rate

= For compiler 1:
» CPlLL=05x1+1x2+1x3)/65+1+1)=10/7=
1.43

= CPU time, = (50 + 10 + 10) x 106 x 1.43) / (100 x
10°) = 1 second

= For compiler 2:

» CPL=(10x1T+1x2+1x3)/(10+1+1)=15/12
= 1.25

= CPU time, = ((100 + 10 + 10) x 106 x 1.25) / (100 x
100) = 155econds
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Processor Performance

= Speed Up Equations for Pipelining
CPlpipelined = |deal CPI + Average Stall cycle per Instruction

Ideal CPI X Pipeline Depth Clock CydeUnpipeIined
Speedup = —— X —
Ideal CPI + Pipeline stall CPI Clock Cyclepipejined

= |t Ideal CPI =1
= Speed Up <= Pipeline Depth

Pipeline Depth Clock CydeUnpipeIined
1 + Pipeline stall CPI Clock Cyclepipefined
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llustrative Example

= We want to compare the performance of two machines. Which
machine is faster?
= Machine A: Dual ported memory - so there are no memory stalls

= Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

= Assumptions
= |deal CPl = 1 for both
» | oads are 40% of instructions executed
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llustrative Example

= We want to compare the performance of two machines. Which machine is faster?
= Machine A: Dual ported memory - so there are no memory stalls

= Machine B: Single ported memory, but its pipelined implementation has a 1.05 times faster
clock rate

= Assumptions

» |deal CPI = 1 for both
» |Loads are 40% of instructions executed

Machine A speed = Pipeline Depth/(1 + 0) x (clockynpipeline/CloCKpipeline)
= Pipeline Depth

Machine B speed = Pipeline Depth/(1 + 0.4 x 1) x (clockynpipeline/€loCKpipeline)
= (Pipeline Depth/1.4) x (clock,npipetine/ (1.05 *clockynpipeline))
= 0.68 x Pipeline Depth

A Speed/ B Speed = Pipeline Depth / (0.68 x Pipeline Depth) = 1.47
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Amdahl's Law

= By Gene Amdanhl

= This law answers the critical question:

= How much of a speedup one can get for a given architectural
improvement/enhancement?
= The performance enhancement possible due to a given design improvement
is limited by the amount that the improved feature is used

= Performance improvement or speedup due to enhancement E

Execution Time without E Performance with E

Speedup(E) = =

Execution Time with E Performance without E
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Amdahl's Law

* By Gene Amdahl

= This law answers the critical question:

= How much of a sEeedup one can get for a given architectural
improvement/enhancement?

= Suppose that enhancement E accelerates a fraction F of the execution
time by a factor S and the remainder of the time is unaffected then:

= Execution Time with E = ((1-F) + F/S) x Execution Time without E
* Hence speedup is given by:

Execution Time without E 1

Speedup(E) =

(1 - F) + F/S) x Execution Time without E (1-F) + F/S
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Amdahl's Law

= For the RISC machine with the following instruction composition:
= Op Freg Cycles CPI(i) % Time

= ALU 50% 1 5 23%
= | oad 20% 5 1.0 45%
= Store 10% 3 3 14%
= Branch 20% 2 4 18%

= |t a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement
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Amdahl's Law

= For the RISC machine with the following instruction composition:

= Op Freq Cycles  CPI(i) % Time
= ALU 50% 1 5 23%

= |oad 20% 5 1.0 45%

= Store 10% 3 3 14%

= Branch 20% 2 4 18%

= |t a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the
resulting performance improvement from this enhancement

Fraction enhanced = F= 45% or .45
Unaffected fraction = 100% - 45% = 55% or .55
Factor of enhancement = 5/2= 2.5
1 1
Speedup(E) = - = 1.37

(1-F) + F/S .55 + .45/2.5
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Amdahl's Law

= For the RISC machine with the following instruction composition:
= Op Freg Cycles CPI(i) % Time

= ALU 50% 1 5 23%
= | oad 20% 5 1.0 45%
= Store 10% 3 3 14%
= Branch 20% 2 4 18%

= |t a CPU design enhancement improves the CPI of load instructions
from 5 to 2, what is the resulting performance improvement from
this enhancement
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Amdahl's Law

= For the RISC machine with the following instruction composition:

= Op Freq Cycles  CPI(i) % Time
= ALU 50% 1 5 23%
» |oad 20% 5 1.0 45%
=  Store 10% 3 3 14%
= Branch 20% 2 4 18%

= |fa CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the
resulting performance improvement from this enhancement

Old CPlI = 2.2
New CPl= 5x1+2x2+ 1x3+.2x2 = 1.6

Original Execution Time Instruction count x old CPl x clock cycle
Speedup(E) = -
New Execution Time Instruction count x new CPI x clock cycle

e ey
= = = 1.37
new CPI 1.6



STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%‘ Ira A. Ful_ton Schoo!s of
Engineering

Arizona State University

Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the load
operation be improved to make the program four times faster?
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Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations responsible for
80 seconds of this time. %/ how much must the load operation be improved to make the
program four times faster?

100

Desired speedup = 4 =
Execution Time with enhancement

Execution time with enhancement = 100 * (1/4) = 25 seconds
= 25 seconds = (100 - 80 seconds) + 80 seconds / n
= 25 seconds = 20 seconds + 80 seconds /n
= 5 = 80 seconds /n
=2>n = 80/5= 16

Load operation should be 16 times faster to get a speedup of 4!
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Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the load
operation be improved to make the program five times faster?
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Amdahl's Law

= A program takes 100 seconds to execute on a machine with load operations
responsible for 80 seconds of this time. By how much must the load operation be
improved to make the program five times faster?

100
Desired speedup = 5 =
Execution Time with enhancement

Execution time with enhancement = 100 * (1/5) = 20 seconds
=» 20 seconds = (100 - 80 seconds) + 80 seconds/ n
= 20 seconds = 20 seconds + 80 seconds /n
= 0 = 80seconds /n

= No amount of load operation improvement will be able achieve this speed
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Multiple Enhancements

= Suppose that enhancement E; accelerates a fraction F; of the
execution time by a factor S; and the remainder of the time is
unaffected then:

Original Execution Time
Speedup =
((1 Y F)+)

Speedup =

) X Original Execution Time

S

1

_ 5 F.
(-2 F)+Y S,.)
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Multiple Enhancements

" Three CPU performance enhancements are proposed with the following
speedups and percentage of the code execution time affected:

Speedup; =S; = 10 Percentage,; =F;, = 20%
Speedup,=S,= 15 Percentage; =F, = 15%
Speedup; = S;= 30 Percentage; =F; = 10%

= While all three enhancements are in place in the new design, each
enhancement affects a different portion of the code and only one
enhancement can be used at a time.

* What is the resulting overall speedup?

1

Speedup =

s s E
(-2 F)+2¢)
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Multiple Enhancements

" Three CPU performance enhancements are pr%ioosed with the following speedups and
percentage of the code execution time affected:

Speedup; =S; = 10 Percentage; =F; = 20%
Speedup, =S,= 15 Percentage; =F, = 15%
Speedup; = S3 = 30 Percentage; =F; = 10%

= While all three enhancements are in place in the new design, each enhancement affects a
different portion of the code and only one enhancement can be used at a time.

= What is the resulting overall speedup?
1

7T &
(-2 F)+ L)

Speedup =

(1-.2-.15-.1) + .2/10 + .15/15 + .1/30)]

" Speedup + 0333 ]

=1/ [
=1/ [ 55
=1/

5833 = 1.71
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Amdahl's Law

= Key Insights
= The performance of any system is constrained by the speed or capacity of
the slowest point

= The impact of an effort to improve the performance of a program is

primarily constrained by the amount of time that the program spends in
parts of the program NOT TARGETED by the effort

= Amdahl's Law is a statement of the maximum theoretical speed-up you
can ever hope to achieve

= The actual speed-ups are always less than the speed-up predicted by
Amdahl's Law
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Amdahl's Law

= For software and hardware engineers MUST have a very deep
understanding of Amdahl's Law if they are to avoid having
unrealistic performance expectations

1. For systems folks: this law allows you to estimate the net
performance benefit a new hardware feature will add to program
executions

2. For software folks: this law allows you to estimate the amount of
parallelism your program/algorithm can achieve before you start
writing your parallel code
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CPU Performance

= CPU performance factors

= |nstruction count

= Determined by ISA and compiler

= CPl and Cycle time

= Determined by CPU hardware

= Longest delay determines clock period

= Critical path: load instruction
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CPU Performance

= Longest delay determines clock period

= Critical path: load instruction
1. Instruction memory

Register file read

ALU operation

2.
3.
4,

5. Register file writeback
= Performance can be improved by pipelining

Data memory access
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Next Learning Module

» Branch Prediction




