STAM Center PSU Engincering

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS Arizona State University

CSE 520 Computer Architecture I1
Term: Spring 2026
Lead Instructor: Prof. Michel A. Kinsy

sBeculalive
uitithreaded

Review Problem Set 1

Posted Jan. 27th, 2026

http://ascslab.org/courses/cse520/index. html

This problem set is designed to give you practice and help you identify and address any gaps in your
understanding.

Problem 1

The NOR instruction is not part of the RISC-V instruction set because the same functionality can
be implemented using existing instructions. Write a short assembly code snippet that has the
following functionality: s3 =s4 NOR s5. Use as few instructions as possible.

Problem 2

Convert the following high-level code snippet into RISC-V assembly. Assume that the base address
of arrayl and array2 are held in ¢I and 2 and that the array2 array is initialized before it is used.
Use as few instructions as possible. Clearly comment your code.

int 1i;
int arrayl[100]; int array2[100];

for (1 = 0; 1 < 100; i =1 + 1) arrayl[i] = array2[i];

Problem 3
Convert the following RISC-V assembly code into machine language. Write the instructions in
hexadecimal.

add s7, s8, s9
srai t0, tl, O0xC
oti s3, sl, OxABC
1w s4, 0x5C(t3)

Problem 4
Consider the RISC-V machine code snippet below.
a. Convert the machine code snippet into RISC-V assembly language.
b. Reverse engineer a high-level program that would compile into this assembly language routine
and write it.
c. Explainin words what the program does. a0 and a1 are the inputs. a0 contains a 32-bit
number and al is the address of a 32-element array of characters.

0x01F00393
0x00755E33
0x001E7E13
0x01C580A3
0x00158593

STAM Center PSU Engincering

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS Arizona State University

OxFFF38393
OxFEO3D6E3
0x00008067

Problem 5
Consider the following C code snippet.

// C code
void setArray(int num) {
int 1i;
int array[10];
for (i = 0; 1 < 10; 1 =1 + 1)
array[i] = compare (num, 1i);

}

int compare(int a, int b) {
if (sub(a, b) >= 0)
return 1;
else
return 0;

}

int sub (int a, int b) {

return a - b;
b

a. Implement the C code snippet in RISC-V assembly language. Use s4 to hold the variable i. Be
sure to handle the stack pointer appropriately. The array is stored on the stack of the setArray
function. Clearly comment your code.

b. Assume setArray is the first function called. Draw the status of the stack before calling
setArray and during each function call. Indicate stack addresses and the names of registers
and variables stored on the stack; mark the location of sp; and clearly mark each stack frame.
Assume that sp starts at 0x8000.

Problem 6

What is the maximum number of instructions that a branch instruction (like beq) can branch
backward (i.e., to lower instruction addresses)?

Problem 7

Consider how far jal instructions can jump.
a. How many instructions can a jal instruction jump forward (i.e., to higher addresses)?
b. How many instructions can a jal instruction jump backward (i.e., to lower addresses)?

Problem 8
Processor Control-Signal Assignment
For each of the five RISC-V instructions listed below, fill in the control-signal values for the single-cycle

RISC-V.

STAM Center PSU Engincering

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS Arizona State University

Use the following control signals a canonical single-cycle CPU (Figure below):

. PCSrc

J Branch

. MemRead

. MemWrite

. ALUSrc

. ALUOp (2 bits)

. RegWrite

J MemtoReqg

. ImmGen Type (I, S, B, U, J, don't-care if unused)

Instructions to Analyze

add x5, x6, x7
1w x10, 12 (x3)
sw x4, 8(x2)

beqg x1, x2, Loop
ori x8, x9, OxFF

g w N

Main Control Signals Table

Instruction PCSrc Branch MemRead MemWrite ALUSrc ALUOp RegWrite MemtoReg In}rl;l?:n
add x5, x6,
x7
1w x10,
12 (x3)
sw x4, 8(x2)
beq x1, x2,
Loop
ori x8, x9,
0xFF

ALU Control Signals Table
Instruction ALUOp Funct3 Funct? ALU Control
add x5, x6, x7
1w x10, 12 (x3)
sw x4, 8(x2)
beq x1, x2, Loop
ori x8, x9, OxFF

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

0]PCNext

CLK

Pi

6:0
14:12

)

Control

— op

’7_)

PCSrc
ResultSrc

Unit

% IraA. Ful_ton Schoo!s of
Engineering

Arizona State University

MemWrite

ALUControlz

funct3 |ALUSrc

— funct7s | ImmSrc;.o

Zero |RegWrite

C%K

19:15

IO

A RD Instr

Instruction
Memory

3
8

9

I‘,

WE3

— A1 RD1

A2 RD2
A3

WD3 Register

File

SrcA [T

Zero

0 [SrcB

ALU [

ALUResult

CLK
|

WE

WriteData

ReadData 0
A RD 1

Data
Memory

PCPlus4

Extend

ImmExt

Y7/

PCTarget

WD

Result

