
Secure Microkernel Design: Trends & Forces

Prof. Michel A. Kinsy

CSE 598
Secure Microkernel Design

Major Topics
§ Topic 1: Introduction to the fundamentals of computer architecture using the RISC-V ISA

• CPU design (datapath and control, pipelining),
• Memory systems including caching and virtual memory
• Peripherals–I/O

§ Topic 2: LVM Overview: a modern compiler infrastructure
• Brief introduction to LLVM analysis and instrumentation passes
• LLVM-based symbolic execution
• LLVM intermediate representation (LLVM IR) programming

§ Topic 3: Overview of Operating Systems and Microkernels
• Differences between microkernel and monolithic
• Advantages of a microkernel architecture in terms of security, safety, and reliability

§ Topic 4: OS/microkernel structures and privileged operations
• Characteristics/properties of microkernel-based operating systems
• Exokernel, L3 microkernel, sel4 microkernel
• Microkernel-implemented capabilities
• Implementation of microkernel internals on the RISC-V architecture.

Major Topics
§ Topic 5: Virtualization techniques

• Memory Virtualization
• CPU and Device virtualization

§ Topic 6: Microkernel process management
• Synchronization, communication, and scheduling
• Lightweight message passing interface (MPI) and remote procedure calls (RPC)
• Shared memory multiprocessor

§ Topic 7: File system design fundamental concepts
• Linked and indexed file allocation, mounting, virtual filesystem layer, memory mapping, and journaling
• Goals of different filesystems and virtual filesystem (VFS)
• Filesystems performance optimizations

Computer System Abstraction Layers

Operating System

Programming Language

Applications & Algorithms

Firmware

Datapath & Control

Digital Design

Circuit Design

Layout

I/O systemProcessor Memory organization
ISA

Compiler

Traditional Computer System Performance Evaluation
§ Instructions per program depends on source code, compiler

technology and ISA
§ Cycles per instructions (CPI) depends upon the ISA and the

microarchitecture
§ Time per cycle depends upon the microarchitecture and the base

technology

§ Security was overlooked!

Time = Instructions Cycles Time

 Program Program * Instruction * Cycle

Department of Defense Orange Book

§ "The ability of a trusted computing
base to enforce correctly a unified
security policy depends on the
correctness of the mechanisms
within the trusted computing base,
the protection of those
mechanisms to ensure their
correctness, and the correct input
of parameters related to the
security policy." *

* P. S. Tasker et al., “Department of Defense Trusted Computer System Evaluation Criteria”,
1985.

Trusted Computing Base (TCB)
§ The trusted computing base = {hardware, firmware, software} that

are critical to the system's security.
§ Vulnerabilities in the TCB can jeopardize the security of the entire

system.
§ "Any code executing in privileged mode can bypass security, and

it is therefore inherently part of a system's trusted computing
base."*

* J. M. Rushby. 1981. Design and verification of secure systems. SIGOPS Oper. Syst. Rev. 15, 5 (December 1981), 12–21.

Monolithic vs. Microkernel-based OS Designs
§ S. Biggs, et al., "The Jury Is In: Monolithic OS Design Is Flawed:

Microkernel-based Designs Improve Security"
§ 9th Asia-Pacific Workshop on Systems (APSys '18)

Hardware

Device Drivers, Dispatchers, …

Scheduler, Virtual Memory, …

IPC, Filesytem, …

Virtual Filesytem, …

Applications

Applications
IPC

Process
Server

Device
Drivers

Filesystem
Server

Basic IPC, Virtual Memory, Scheduling

Monolithic Kernel Security Woes
§ Monolithic kernels are big!

§ 26 MSLOC for Linux
§ 65 MSLOC for Windows
§ 80 MSLOC for Mac OS X 10.4

Tiger

Linux kernel code size growth

Larger Kernel => Larger TCB => More Vulnerabilities
§ "OS vulnerabilities are a key

enabler of cyber crime, the cost
of which is estimated to reach
$6 trillion by 2021." [1]

§ Average estimates of fault
density in code is 0.5-3/kSLOC
[2] [3]
§ 13,000 vulnerabilities in Linux
§ 32,500 vulnerabilities in Windows
§ 40,000 vulnerabilities in Mac OS X

[1] R. Mardisalu. "14 Most Alarming Cyber Security Statistics in
2020" https://thebestvpn.com/cyber-security-statistics-2020/
[2] Hatton, Les. “Reexamining the Fault Density-Component Size
Connection.” IEEE Softw. 14 (1997): 89-97.
[3] P. Mohagheghi, et al., "An Empirical Study of Software Reuse vs.
Defect-Density and Stability". In the 26th International Conference
on Software Engineering (ICSE '04), 2004.

Linux kernel code size growth

How much could a µ-kernel fix?
§ Formally verified µ-kernels are about

6-10 kSLOC
§ Linux kernel Critical Vulnerabilities and

Exposures (CVE) fixed in a µ-kernel
design
§ 96% of Linux CVE would no longer

be rated critical
§ 40% of CVEs would be completely

eliminated with a verified µ-kernel
§ 29% of CVE are eliminated with

an unverified µ-kernel

S. Biggs, et al., "The Jury Is In: Monolithic OS Design Is Flawed: Microkernel-based Designs Improve Security"
9th Asia-Pacific Workshop on Systems (APSys '18)

Common Vulnerability Scoring System (CVSS)
§ Base metrics:

§ Exploitability: Ease of exploiting the vulnerability (remote, local, physical
access, complexity, privileges required,…)

§ Scope: Is the exploit confined to a single component? Does it
compromise multiple components?

§ Impact: Assess degree to which Confidentiality (C), Integrity (I), or
Availability (A) is impacted.
§ Confidentiality: Is any information stolen?
§ Integrity: Is there unauthorized modification of data?
§ Availability: Is there a crash of the system or application?

Common Vulnerability Scoring System (CVSS)
§ Temporal metrics:

§ Exploit maturity: How publicly available or pervasive is the exploit?
§ Remediation level: Are there any defenses available?
§ Report confidence: How verified is the exploit?

§ Environmental metrics:
§ Security requirements: How important is the affected asset in terms of the

CIA properties?
§ Modified base: Catch-all modifier for any special circumstances

Illustrative Examples: CVE-2015-4001
§ CVE-2015-4001: Signed integer error in OZWPAN driver

§ This driver is a USB host controller device driver that communicates with a
wireless peripheral over Wi-Fi.

§ Signed integer error => subtraction becoming negative => Causes
memcpy operation to copy network data into a heap buffer.

§ An attacker can insert a payload into a packet to inject data into the heap.
§ Since Linux loads this driver into the kernel, it could cause DOS by

crashing the kernel or execute code with kernel privileges.

Result: Eliminated by a µ-kernel
§ The driver would run as a user-level server in its own address

space
§ Cannot overwrite kernel memory to cause

§ A system crash
§ Information leakage
§ Data corruption

§ Injected code would only have minimal privileges
§ High containment: Driver only communicates with Wi-Fi user-level

server to interact with the device

Illustrative Examples: CVE-2014-9803
§ CVE-2014-9803: The Linux kernel on some Nexus devices

mishandles execute-only pages
§ Allows a malicious application to gain kernel privileges

§ Causes a total compromise of the system integrity
§ Can render the system completely unavailable

§ Result: Eliminated by a µ-kernel with Formal Verification
§ The operation must be performed in kernel mode, so it could occur in a

µ-kernel, but not if the µ-kernel was formally verified.

Illustrative Examples: CVE-2015-8961
§ CVE-2015-8961: There is a use-after-free possibility in

__ext4_journal_stop() that can result in full file-system disclosure
(C) or a kernel crash (A).

§ Result: Partially mitigated with a µ-kernel
§ The file system would be implemented as a user-level server => there

would no longer be a kernel crash
§ Access to the file system and confidential data could still be possible, but

if the data was encrypted and the file system does not have access to the
key, then data could be safe from being read.
§ This still would not protect against a ransomware attack though.

Illustrative Examples: CVE-2017-0563
§ CVE-2017-0563: An elevation of privilege vulnerability in the HTC

touchscreen driver could enable a local malicious application to
execute arbitrary code within the context of the kernel.

§ It is possible to re-flash the system-on-chip firmware or
bootloader, both of which were unsigned.

§ Result: No protection possible from a formally verified µ-kernel
§ The attacker gains control before the formally verified kernel is even

loaded.

Next Learning Module
§ Topic 1: Fundamentals of Computer System Architecture

