
Introduction to the fundamentals of computer
architecture using the RISC-V ISA

Prof. Michel A. Kinsy

CSE 598
Secure Microkernel Design

RISC-V ISA

Prof. Michel A. Kinsy

CSE 598
Secure Microkernel Design

Brief Overview of the RISC-V ISA
§ A new, open, free ISA from Berkeley
§ Several variants

• RV32, RV64, RV128 – Different data widths
• ‘I’ – Base Integer instructions
• ‘M’ – Multiply and Divide
• ‘A’ – Atomic memory instructions
• ‘F’ and ‘D’ – Single and Double precision floating point
• ‘V’ – Vector extension
• And many other modular extensions

§ We will focus on the RV32I the base 32-bit variant

RV32I Register State
§ 32 general purpose registers (GPR)

§ x0, x1, …, x31
§ 32-bit wide integer registers
§ x0 is hard-wired to zero

RV32I Register Conventions
NAME Register Number Usage

zero x0 Hardwired to the constant value 0

ra x1 Return address for subroutine calls
sp x2 Stack pointer (stack grows downwards)

gp x3 Global pointer (e.g. to static data area)

tp x4 Thread pointer

t0 – t2 x5 – x7 More temporary registers (caller saves)

s0/fp x8 Frame pointer (to local variables on stack)

s1 x9 Saved register (callee saves)

a0 - a1 x10 – x11 Arguments (parameters) to subroutines / return
values

a2 – a7 x12 – x17 Arguments (parameters) to subroutines

s2 - s11 x18 – x27 Saved registers (callee saves)

t3 – t6 x28 – x31 Temporary registers (caller saves)

RV32I Register State
§ 32 general purpose registers (GPR)

§ x0, x1, …, x31
§ 32-bit wide integer registers
§ x0 is hard-wired to zero

§ Program counter (PC)
§ 32-bit wide

§ CSR (Control and Status Registers)
§ User-mode

§ cycle (clock cycles) // read only
§ instret (instruction counts) // read only

§ Machine-mode
§ hartid (hardware thread ID) // read only
§ mepc, mcause etc. used for exception handling

§ Custom
§ mtohost (output to host) // write only – custom extension

Base Instruction Formats
§ The base RISC-V ISA has four main instruction formats

§ R, I, S and U types

Volume I: RISC-V User-Level ISA V2.2 11

2.2 Base Instruction Formats

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in Figure 2.2. All are
a fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An instruction
address misaligned exception is generated on a taken branch or unconditional jump if the target
address is not four-byte aligned. No instruction fetch misaligned exception is generated for a
conditional branch that is not taken.

The alignment constraint for base ISA instructions is relaxed to a two-byte boundary when
instruction extensions with 16-bit lengths or other odd multiples of 16-bit lengths are added.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 2.2: RISC-V base instruction formats. Each immediate subfield is labeled with the bit
position (imm[x]) in the immediate value being produced, rather than the bit position within the
instruction’s immediate field as is usually done.

The RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers at the same position
in all formats to simplify decoding. Except for the 5-bit immediates used in CSR instructions
(Section 2.8), immediates are always sign-extended, and are generally packed towards the leftmost
available bits in the instruction and have been allocated to reduce hardware complexity. In partic-
ular, the sign bit for all immediates is always in bit 31 of the instruction to speed sign-extension
circuitry.

Decoding register specifiers is usually on the critical paths in implementations, and so the in-
struction format was chosen to keep all register specifiers at the same position in all formats at
the expense of having to move immediate bits across formats (a property shared with RISC-IV
aka. SPUR [18]).

In practice, most immediates are either small or require all XLEN bits. We chose an asym-
metric immediate split (12 bits in regular instructions plus a special load upper immediate in-
struction with 20 bits) to increase the opcode space available for regular instructions.

Immediates are sign-extended because we did not observe a benefit to using zero-extension
for some immediates as in the MIPS ISA and wanted to keep the ISA as simple as possible.

2.3 Immediate Encoding Variants

There are a further two variants of the instruction formats (B/J) based on the handling of imme-
diates, as shown in Figure 2.3.

Base Instruction Formats
§ opcode: Basic operation of the instruction
§ rs1: The first register source operand
§ rs2: The second register source operand

Volume I: RISC-V User-Level ISA V2.2 11

2.2 Base Instruction Formats

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in Figure 2.2. All are
a fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An instruction
address misaligned exception is generated on a taken branch or unconditional jump if the target
address is not four-byte aligned. No instruction fetch misaligned exception is generated for a
conditional branch that is not taken.

The alignment constraint for base ISA instructions is relaxed to a two-byte boundary when
instruction extensions with 16-bit lengths or other odd multiples of 16-bit lengths are added.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 2.2: RISC-V base instruction formats. Each immediate subfield is labeled with the bit
position (imm[x]) in the immediate value being produced, rather than the bit position within the
instruction’s immediate field as is usually done.

The RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers at the same position
in all formats to simplify decoding. Except for the 5-bit immediates used in CSR instructions
(Section 2.8), immediates are always sign-extended, and are generally packed towards the leftmost
available bits in the instruction and have been allocated to reduce hardware complexity. In partic-
ular, the sign bit for all immediates is always in bit 31 of the instruction to speed sign-extension
circuitry.

Decoding register specifiers is usually on the critical paths in implementations, and so the in-
struction format was chosen to keep all register specifiers at the same position in all formats at
the expense of having to move immediate bits across formats (a property shared with RISC-IV
aka. SPUR [18]).

In practice, most immediates are either small or require all XLEN bits. We chose an asym-
metric immediate split (12 bits in regular instructions plus a special load upper immediate in-
struction with 20 bits) to increase the opcode space available for regular instructions.

Immediates are sign-extended because we did not observe a benefit to using zero-extension
for some immediates as in the MIPS ISA and wanted to keep the ISA as simple as possible.

2.3 Immediate Encoding Variants

There are a further two variants of the instruction formats (B/J) based on the handling of imme-
diates, as shown in Figure 2.3.

Base Instruction Formats
§ opcode: Basic operation of the instruction
§ rs1: The first register source operand
§ rs2: The second register source operand
§ rd: The register destination operand, it gets the result of the

operation
§ funct: Function. This field selects the specific variant of the

operation in the op field, and is sometimes called the function
code

Volume I: RISC-V User-Level ISA V2.2 11

2.2 Base Instruction Formats

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in Figure 2.2. All are
a fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An instruction
address misaligned exception is generated on a taken branch or unconditional jump if the target
address is not four-byte aligned. No instruction fetch misaligned exception is generated for a
conditional branch that is not taken.

The alignment constraint for base ISA instructions is relaxed to a two-byte boundary when
instruction extensions with 16-bit lengths or other odd multiples of 16-bit lengths are added.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 2.2: RISC-V base instruction formats. Each immediate subfield is labeled with the bit
position (imm[x]) in the immediate value being produced, rather than the bit position within the
instruction’s immediate field as is usually done.

The RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers at the same position
in all formats to simplify decoding. Except for the 5-bit immediates used in CSR instructions
(Section 2.8), immediates are always sign-extended, and are generally packed towards the leftmost
available bits in the instruction and have been allocated to reduce hardware complexity. In partic-
ular, the sign bit for all immediates is always in bit 31 of the instruction to speed sign-extension
circuitry.

Decoding register specifiers is usually on the critical paths in implementations, and so the in-
struction format was chosen to keep all register specifiers at the same position in all formats at
the expense of having to move immediate bits across formats (a property shared with RISC-IV
aka. SPUR [18]).

In practice, most immediates are either small or require all XLEN bits. We chose an asym-
metric immediate split (12 bits in regular instructions plus a special load upper immediate in-
struction with 20 bits) to increase the opcode space available for regular instructions.

Immediates are sign-extended because we did not observe a benefit to using zero-extension
for some immediates as in the MIPS ISA and wanted to keep the ISA as simple as possible.

2.3 Immediate Encoding Variants

There are a further two variants of the instruction formats (B/J) based on the handling of imme-
diates, as shown in Figure 2.3.

Base Instruction Formats
§ There are other formats dealing primarily with different versions

of immediate

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

Base Instruction Formats
§ There are other formats dealing primarily with different versions

of immediate

12 Volume I: RISC-V User-Level ISA V2.2

The only di↵erence between the S and B formats is that the 12-bit immediate field is used to encode
branch o↵sets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign
bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B
format.

Similarly, the only di↵erence between the U and J formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and J format immediates is chosen to maximize overlap with the other formats and
with each other.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

Figure 2.4 shows the immediates produced by each of the base instruction formats, and is labeled
to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so would not benefit from keeping the location of immediate bits constant across

Instruction Formats
§ R-type instruction

funct7 rs2 funct3rs1 rd opcode
7 5 5 3 5 7

add x1, x2, x3 # x1 = x2 + x3

Instruction Formats
§ R-type instruction

§ I-type instruction & I-immediate (32 bits)

§ I-imm = signExtend(inst[31:20])

funct7 rs2 funct3rs1 rd opcode
7 5 5 3 5 7

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

add x1, x2, 413 # x1 = x2 + 413

Instruction Formats
§ R-type instruction

§ I-type instruction & I-immediate (32 bits)

§ I-imm = signExtend(inst[31:20])
§ S-type instruction & S-immediate (32 bits)

§ S-imm = signExtend({inst[31:25], inst[11:7]})

funct7 rs2 funct3rs1 rd opcode
7 5 5 3 5 7

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

imm[11:5] rs2 funct3rs1 imm[4:0] opcode
7 5 5 3 5 7

Instruction Formats
§ SB-type instruction & B-immediate (32 bits)

§ B-imm = signExtend({inst[31], inst[7], inst[30:25], inst[11:8], 1’b0})

§ U-type instruction & U-immediate (32 bits)

§ U-imm = signExtend({inst[31:12], 12’b0})

§ UJ-type instruction & J-immediate (32 bits)

§ J-imm = signExtend({inst[31], inst[19:12], inst[20], inst[30:21], 1’b0})

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode
1 6 5 5 3 4 1 7

rd opcode
5 7

imm[31:12]
20

imm[20] imm[10:1] rdimm[19:12]imm[11] opcode
1 10 1 8 5 7

§ Register-Register instructions (R-type)

§ opcode=OP: rd ß rs1 (funct3, funct7) rs2
§ funct3 = SLT/SLTU/AND/OR/XOR/SLL
§ funct3= ADD

§ funct7 = 0000000: rs1 + rs2
§ funct7 = 0100000: rs1 – rs2

§ funct3 = SRL
§ funct7 = 0000000: logical shift right
§ funct7 = 0100000: arithmetic shift right

funct7 rs2 funct3rs1 rd opcode
7 5 5 3 5 7

Computational Instructions

§ Register-immediate instructions (I-type)

§ opcode = OP-IMM: rd ß rs1 (funct3) I-imm
§ I-imm = signExtend(inst[31:20])
§ funct3 = ADDI/SLTI/SLTIU/ANDI/ORI/XORI

§ A slight variant in coding for shift instructions - SLLI / SRLI / SRAI
§ rd ß rs1 (funct3, inst[30]) I-imm[4:0]

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

Computational Instructions

§ Register-immediate instructions (U-type)

§ opcode = LUI : rd ß U-imm
§ opcode = AUIPC : rd ß pc + U-imm
§ U-imm = {inst[31:12], 12’b0}

rd opcode
5 7

imm[31:12]
20

Computational Instructions

Control Instructions
§ Unconditional jump and link (UJ-type)

§ opcode = JAL: rd ß pc + 4; pc ß pc + J-imm
§ J-imm = signExtend({inst[31], inst[19:12], inst[20], inst[30:21], 1’b0})
§ Jump ±1MB range

§ Unconditional jump via register and link (I-type)

§ opcode = JALR: rd ß pc + 4; pc ß (rs1 + I-imm) & ~0x01
§ I-imm = signExtend(inst[31:20])

imm[20] imm[10:1] rdimm[19:12]imm[11] opcode
1 10 1 8 5 7

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

Control Instructions
§ Conditional branches (SB-type)

§ opcode = BRANCH: pc ß compare(funct3, rs1, rs2) ? pc + B-imm : pc + 4
§ B-imm = signExtend({inst[31], inst[7], inst[30:25], inst[11:8], 1’b0})
§ Jump ±4KB range
§ funct3 = BEQ/BNE/BLT/BLTU/BGE/BGEU

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode
1 6 5 5 3 4 1 7

§ Load (I-type)

§ opcode = LOAD: rd ß mem[rs1 + I-imm]
§ I-imm = signExtend(inst[31:20])
§ funct3 = LW/LB/LBU/LH/LHU

§ Store (S-type)

§ opcode = STORE: mem[rs1 + S-imm] ß rs2
§ S-imm = signExtend({inst[31:25], inst[11:7]})
§ funct3 = SW/SB/SH

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

imm[11:5] rs2 funct3rs1 imm[4:0] opcode
7 5 5 3 5 7

Load & Store Instructions

Instructions to Read and Write CSR

§ opcode = SYSTEM
§ CSRW rs1, csr (funct3 = CSRRW, rd = x0): csr ß rs1
§ CSRR csr, rd (funct3 = CSRRS, rs1 = x0): rd ß csr

csr funct3rs1 rd opcode
12 5 3 5 7

Software for interrupt handling
§ Hardware transfers control to the common software

interrupt handler (CH) which:
1. Saves all GPRs into the memory pointed by mscratch
2. Passes mcause, mepc, stack pointer to the IH (a C function) to

handle the specific interrupt
3. On the return from the IH, writes the return value to mepc
4. Loads all GPRs from the memory
5. Execute ERET, which does:

§ set pc to mepc
§ pop mstatus (mode, enable) stack

IH

IH

IH

CH
1
2
3
4
5

GPR

Instruction Types
§ Register-to-Register Arithmetic and Logical operations
§ Control Instructions alter the sequential control flow
§ Memory Instructions move data to and from memory
§ CSR Instructions move data between CSRs and GPRs; the instructions often

perform read-modify-write operations on CSRs
§ Privileged Instructions are needed by the operating systems, and most

cannot be executed by user programs

Instruction Functions
§ Data movement

Operation Type Template

Load Byte
Load Halfword
Load Word
Load Byte Unsigned
Load Half Unsigned

I
I
I
I
I

LB rd,rs1,imm
LH rd,rs1,imm
LW rd,rs1,imm
LBU rd,rs1,imm
LHU rd,rs1,imm

Instruction Functions
§ Data movement

Operation Type Template

Load Byte
Load Halfword
Load Word
Load Byte Unsigned
Load Half Unsigned

I
I
I
I
I

LB rd,rs1,imm
LH rd,rs1,imm
LW rd,rs1,imm
LBU rd,rs1,imm
LHU rd,rs1,imm

Operation Type Template

Store Byte
Store Halfword
Store Word

S
S
S

SB rs1,rs2,imm
SH rs1,rs2,imm
SW rs1,rs2,imm

Instruction Functions
§ Arithmetic & Logic

Operation Type Template

ADD
ADD Immediate
SUBtract
Load Upper Imm
Add Upper Imm to PC

R
I
R
U
U

ADD rd,rs1,rs2
ADDI rd,rs1,imm
SUB rd,rs1,rs2
LUI rd,imm
AUIPC rd,imm

Instruction Functions
§ Arithmetic & Logic

Operation Type Template

ADD
ADD Immediate
SUBtract
Load Upper Imm
Add Upper Imm to PC

R
I
R
U
U

ADD rd,rs1,rs2
ADDI rd,rs1,imm
SUB rd,rs1,rs2
LUI rd,imm
AUIPC rd,imm

Operation Type Template

Shift Left
Shift Left Immediate
Shift Right
Shift Right Immediate
Shift Right Arithmetic
Shift Right Arith Imm

R
I
R
I
R
I

SLL rd,rs1,rs2
SLLI rd,rs1,shamt
SRL rd,rs1,rs2
SRLI rd,rs1,shamt
SRA rd,rs1,rs2
SRAI rd,rs1,shamt

Instruction Functions
§ Arithmetic & Logic

Operation Type Template

XOR
XOR Immediate
OR O
R Immediate
AND
AND Immediate

R
I
R
I
R
I

XOR rd,rs1,rs2
XORI rd,rs1,imm
OR rd,rs1,rs2
ORI rd,rs1,imm
AND rd,rs1,rs2
ANDI rd,rs1,imm

Instruction Functions
§ Arithmetic & Logic

Operation Type Template

XOR
XOR Immediate
OR O
R Immediate
AND
AND Immediate

R
I
R
I
R
I

XOR rd,rs1,rs2
XORI rd,rs1,imm
OR rd,rs1,rs2
ORI rd,rs1,imm
AND rd,rs1,rs2
ANDI rd,rs1,imm

Operation Type Template

Set <
Set < Immediate
Set < Unsigned
Set < Imm Unsigned

R
I
R
I

SLT rd,rs1,rs2
SLTI rd,rs1,imm
SLTU rd,rs1,rs2
SLTIU rd,rs1,imm

Instruction Functions
§ Control Flow

Operation Type Template

Branch =
Branch ≠
Branch <
Branch ≥
Branch < Unsigned
Branch ≥ Unsigned

SB
SB
SB
SB
SB
SB

BEQ rs1,rs2,imm
BNE rs1,rs2,imm
BLT rs1,rs2,imm
BGE rs1,rs2,imm
BLTU rs1,rs2,imm
BGEU rs1,rs2,imm

Instruction Functions
§ Control Flow

Operation Type Template

Branch =
Branch ≠
Branch <
Branch ≥
Branch < Unsigned
Branch ≥ Unsigned

SB
SB
SB
SB
SB
SB

BEQ rs1,rs2,imm
BNE rs1,rs2,imm
BLT rs1,rs2,imm
BGE rs1,rs2,imm
BLTU rs1,rs2,imm
BGEU rs1,rs2,imm

Operation Type Template

Jump & Link
Jump & Link Register

UJ
UJ

JAL rd,imm
JALR rd,rs1,imm

Instruction Functions
§ System call

Operation Type Template

System CALL
System BREAK

I
I

SCALL
SBREAK

Assembly Programming
§ Function call

1. Caller places parameters in a place where the procedure can access
them

2. Transfer control to the procedure
3. Acquire storage resources required by the procedure
4. Execute the statements in the procedure
5. Called function places the result in a place where the caller can

access it
6. Return control to the statement next to the procedure call

Assembly Programming
§ Function call

§ Argument Passing
§ Arguments to a function passed through a0-a7
§ Functions with more than 8 arguments

§ First eight arguments are put in a0-a7
§ Remaining arguments are put on stack by the caller

§ Return Values
§ Return values from a function passed through a0-a1
§ Functions with more than 2 return values

Assembly Programming
§ Function call

§ Argument Passing
§ Arguments to a function passed through a0-a7
§ Functions with more than 8 arguments

§ Return Values
§ Return values from a function passed through a0-a1
§ Functions with more than 2 return values

§ First two return values put in a0-a1
§ Remaining return values put on stack by the function
§ The remaining return values are popped from the stack by the caller

If then Else Assembly

if (a0 < 0) then
{

t0 = 0 - a0;
t1 = t1 +1;

}
else
{

t0 = a0;
t2 = t2 + 1;

}

bgez a0, else
if (a0 is > or = zero) branch to

else
sub t0, zero, a0
t0 gets the negative of a0
addi t1, t1, 1
increment t1 by 1
j next
branch around the else code

else:
ori t0, a0, 0
t0 gets a copy of a0
addi t2, t2, 1
increment t2 by 1

next:

While Do Assembly

t0 = 1
While (a1 < a2)

do
{

t1 = mem[a1];
t2 = mem[a2];
if (t1 != t2)

go to break;
a1 = a1 +1;
a2 = a2 –1;

}
break: t0 = 0

li t0, 1 # Load t0 with the value 1
loop:

bgeu a1, a2, done
if(a1 >= a2) Branch to done
lw t1, 0(a1)
Load a Byte: t1 = mem[a1 + 0]
lw t2, 0(a2)
Load a Byte: t2 = mem[a2 + 0]
bne t1, t2, break
if (t1 != t2) Branch to break
addi a1, a1, 1 # a1 = a1 + 1
addi a2, a2, -1 # a2 = a2 - 1
b loop # Branch to loop

break:
li t0, 0 # Load t0 with the value 0

done:

For loop Assembly

a0 = 0;
For (t0 =10;

t0 > 0;
t0 = t0 -1)

do {
a0 = a0 + t0

}

li a0, 0 # a0 = 0
li t0, 10
Initialize loop counter to 10

loop:
add a0, a0, t0
addi t0, t0, -1
Decrement loop counter
bgtz t0, loop
if (t0 >0) Branch to loop

Assembly
§ Case study

§ Assume that A is an array of 64 words and the
compiler has associated registers a1 and a2 with the
variables x and y. Also assume that the starting
address, or base address is contained in register a0.
Determine the RISC-V instructions associated with
the following C statement:
§ x = y + A[4]; // adds 4th element in array A to y and stores result in x

Assembly
§ Case study

§ Assume that A is an array of 64 words and the compiler
has associated registers a1 and a2 with the variables x
and y. Also assume that the starting address, or base
address is contained in register a0.
§ x = y + A[4]; // adds 4th element in array A to y and stores result in x

§ Solution:
§ lw t0, 16(a0) # a0 contains the base address of array and

16 is the offset address of the 4th element

§ add a1, a2, t0 # performs addition

Next Lecture Module
§ Assembly Simulation Environment

