W SCS ‘ADAPTIVE & SECURE
A COMPUTING SYSTEMS

CSE 598
Secure Microkernel Design

Introduction to the fundamentals of computer
architecture using the RISC-V ISA

Prof. Michel A. Kinsy

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



% A SCS ‘ADAPTIVE & SECURE
COMPUTING SYSTEMS

CSE 598
Secure Microkernel Design

RISC-V [SA

Prof. Michel A. Kinsy

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



ADAPTIVE & SECURE * Ira A.Fulton Schools of
%AS CS ‘COMPUTING SYSTEMS % Engineering

Arizona State University

Brietf Overview of the RISC-V ISA

= A new, open, free ISA from Berkeley

= Several variants
« RV32, RVé64, RV128 - Different data widths
* '|"— Base Integer instructions
* 'M" — Multiply and Divide
* 'A’ — Atomic memory instructions
« 'F"and ‘D’ - Single and Double precision floating point
* V' —Vector extension
» And many other modular extensions

= \We will focus on the RV32l the base 32-bit variant

STAM Center

SECUR! ASSURED MICROELECTRONICS



% AS CS ADAPTIVE & SECURE * Ira A.Fulton Schools of
COMPUTING SYSTEMS % En g i n e eri ng

Arizona State University

RV32| Register State

= 32 general purpose registers (GPR)
= x0, x1, ..., x31
= 32-bit wide integer registers
= x0 is hard-wired to zero

- RV128 R _ RV128
RVe64 . B RVe64 -
RV32 RV32

[ [ [ x07/zero | A [ [ [ x16 ]
[ I [ x1 ] [ [ [ x17 ]
I I [ ] [ | [ xi8 ]
| | 3 | | | [ ]
| | [ xa ] | | [ x20 ]
[ [ [ x5 ] [ [ [ x21 ]
| | [ x6 || = I | [ <2 |
| | [ xz < | | [ <= ]
| [ [ x8 | | [ [ 2 |
[ [ [ x9 ]| m [ [ [ x5 |
| | [ xi0 | | | [ 2 ]
| | [ ] | | <z |
| i [ <z ] | | [ s ]
| | [ x3 ] I | [ x> |
| | [ x4 | | | [ x30 |
| | [ x5 1Y | | [ 31 |
127 63 31 (0}

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



SCS ‘ADAPTIVE & SECURE
& A COMPUTING SYSTEMS

RV32| Register Conventions

“IraA. Ful_ton Schoo!s of
%l Engineering

Arizona State University

NAME Register Number Usage
zero x0 Hardwired to the constant value 0
ra x1 Return address for subroutine calls
sp X2 Stack pointer (stack grows downwards)
ap X3 Global pointer (e.g. to static data area)
tp x4 Thread pointer
t0 —t2 x5 — x7 More temporary registers (caller saves)
sO/fp x8 Frame pointer (to local variables on stack)
sl X9 Saved register (callee saves)
a0 - al x10 - x11 Arguments (parameters) to subroutines / return
values
a2 —a7/ x12 = x17 Arguments (parameters) to subroutines
s2 - sll x18 — x27 Saved registers (callee saves)
t3-16 x28 — x31 Temporary registers (caller saves)

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



W AS C S ‘ ADAPTIVE & SECURE " Ira A.Fulton Schools of
COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

RV32| Register State

= 32 general purpose registers (GPR)
= X0, x1, ..., x31
= 32-bit wide integer registers
= X0 is hard-wired to zero

= Program counter (PC)
= 32-bit wide
= CSR (Control and Status Regjisters)

= User-mode
= cycle (clock cycles) // read only
= instret (instruction counts) // read only
» Machine-mode
= hartid (hardware thread ID) // read only
= mepc, mcause etc. used for exception handling
= Custom
= mtohost (output to host) // write only — custom extension

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



i ADAPTIVE & SECURE " Ira A.Fulton Schools of
Qs AS CS COMPUTING SYSTEMS %‘ Eng i neeri ng

Arizona State University

Base Instruction Formats

» The base RISC-V ISA has four main instruction formats
= R, I, Sand U types

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rsl funct3 rd opcode R-type
imm|11:0] rsl funct3 rd opcode I-type
imm|[11:5] rs2 rsl funct3 | imm/4:0] opcode S-type
imm|31:12] rd opcode U-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



i ADAPTIVE & SECURE " Ira A.Fulton Schools of
Qs AS CS COMPUTING SYSTEMS %‘ Eng i neeri ng

Arizona State University

Base Instruction Formats

= opcode: Basic operation of the instruction
= rs: The first register source operand
= rs2: The second register source operand

31 25 24 20 19 15 14 12 11 76 0
funct? rs2 rsl funct3 rd opcode R-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



A_ SCS ‘ADAPTIVE & SECURE
4 COMPUTING SYSTEMS

= opcode: Basic operation of the instruction

Base Instruction Formats

= rs: The first register source operand

= rs2: The second register source operand

“IraA. Ful_ton Schoo!s of
%l Engineering

Arizona State University

= rd: The register destination operand, it gets the result of the

operation

= funct: Function. This field selects the specitic variant of the
operation in the op field, and is sometimes called the function

code

31

25 24

20 19

15 14 12 11

76

funct7

rs2

rsl

funct3

rd

opcode

R-type

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



% AS CS ADAPTIVE & SECURE * Ira A.Fulton Schools of
COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

Base Instruction Formats

= There are other formats dealing primarily with different versions
of immediate

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct? | rs2 | rsl | funct3 | rd | opcode | R-type
| imm[11:0] | sl | funct3 | rd | opcode | I-type
[ w115 rs2 [ ts1 | funct3 | imm[4:0] | opcode | S-type
[fmm[12] | imm[10:5] | T2 [ s | funct3 |imm[4:1] | imml[11] | opcode | B-type
| imm|31:12] | rd | opcode | U-type
[ om[20] | fmml[10:1] [fmm[11] ]| mm[19:12] | rd [opcode | J-type

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



% A SCS ADAPTIVE & SECURE
COMPUTING SYSTEMS

Base Instruction Formats

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

= There are other formats dealing primarily with different versions

of immediate

31 30 20 19 12 11 10 5 4 1 0
— inst[31] — inst[30:25] | inst[24:21] | inst[20]
— inst[31] — inst[30:25] | inst[11:8] | inst[7]
— inst[31] — inst[7] | inst[30:25] | inst[11:§] 0
inst[31] inst[30:20] inst[19:12] — 0 —
— inst[31] — inst[19:12] | inst[20] | inst[30:25] | inst[24:21] 0

I-immediate

S-immediate

B-immediate

U-immediate

J-immediate

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



g AS CS ‘ ADAPTIVE & SECURE " Ira A.Fulton Schools of
COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

Instruction Formats

= R-type instruction

7 5 5 3 5 7
funct?7 rs2 rsl funct3 rd opcode
addx1l, x2, x3 # x1 = x2 + x3

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



w ADAPTIVE & SECURE " Ira A.Fulton Schools of
Zod AS CS ‘COMPUTING SYSTEMS % Engineering

Arizona State University

Instruction Formats

= R-type instruction

7 5 5 3 5 7
funct?7 rs2 rsl funct3 rd opcode

= |-type instruction & I-immediate (32 bits)

12 5 3 5 7
imm[11:0] rsl funct3 rd opcode

= [-imm = signExtend(inst[31:20])

addx1l, x2, 413 # x] = x2 + 413

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



w ADAPTIVE & SECURE " Ira A.Fulton Schools of
G AS CS ‘COMPUTING SYSTEMS % Engineering

Arizona State University

Instruction Formats

= R-type instruction

7 5 5 3 5 7
funct?7 rs2 rsl funct3 rd opcode

= |-type instruction & l-immediate (32 bits)

12 5 3 5 7
imm[11:0] rsl funct3 rd opcode

» |-imm = signExtend(inst[31:20])

= S-type instruction & S-immediate (32 bits)

7 5 5 3 5 7
imm[11:5] rs2 rsl funct3 imm[4:0] opcode

= S-imm = signExtend({inst[31:25], inst[11:7]})
STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



w ADAPTIVE & SECURE " Ira A.Fulton Schools of
G AS CS ‘COMPUTING SYSTEMS % Engineering

Arizona State University

Instruction Formats
= SB-type instruction & B-immediate (32 bits)

1 6 5 5 3 4 1 7
imm[12] imm[10:5] rs2 rsl funct3 imm[4:1] imm[11] opcode

= B-imm = signExtend({inst[31], inst[7], inst[30:25], inst[11:8], 1'b0})

= U-type instruction & U-immediate (32 bits)
20 5 7

imm[31:12] rd opcode

= U-imm = signExtend({inst[31:12], 12'b0})

= UJ-type mstructlon & J- |mmed|ate (32 blts)
10 5 7

|mm[20] imm[10:1] |mm[11] |mm[19.12] rd opcode

= J-imm = signExtend({inst[31], inst[19:12], inst[20], inst[30:21], 1'b0})

STAM Center

SECUR ASSURED MICROELECTRONICS



W AS C S ‘ ADAPTIVE & SECURE " Ira A.Fulton Schools of
COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

Computational Instructions
= Register-Register instructions (R-type)

7 5 5 3 5 7
funct?7 rs2 rsl funct3 rd opcode

= opcode=0P: rd < rs1 (funct3, funct?/) rs2
= funct3 = SLT/SLTU/AND/OR/XOR/SLL

» funct3= ADD
= funct7 = 0000000: rs1 + rs2
= funct7 = 0100000: rs1 —rs2
= funct3 = SRL

= funct7 = 0000000: logical shift right
= funct7 = 0100000: arithmetic shift right

STAM Center

SECUR! ASSURED MICROELECTRONICS



w ADAPTIVE & SECURE " Ira A.Fulton Schools of
Zod AS CS ‘COMPUTING SYSTEMS % Engineering

Arizona State University

Computational Instructions

= Register-immediate instructions (I-type)

12 5 3 5 7
imm[11:0] rsl funct3 rd opcode

= opcode = OP-IMM: rd € rs1 (funct3) I-imm
= |-imm = signExtend(inst[31:20])
= funct3 = ADDI/SLTI/SLTIU/ANDI/ORI/XORI

= A slight variant in coding for shift instructions - SLLI / SRLI / SRAI
» rd € rs1 (funct3, inst[30]) [-imm[4:0]

STAM Center

SECUR! ASSURED MICROELECTRONICS



% AS C S ‘ ADAPTIVE & SECURE * Ira A.Fulton Schools of
COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

Computational Instructions

= Register-immediate instructions (U-type)

20 5 7
imm[31:12] rd opcode

= opcode = LUI : rd € U-imm
= opcode = AUIPC :rd € pc + U-imm
= U-imm = {inst[31:12], 12'b0}

STAM Center

SECUR! ASSURED MICROELECTRONICS



w ADAPTIVE & SECURE " Ira A.Fulton Schools of
& AS CS COMPUTING SYSTEMS % Engineering

Arizona State University

Control Instructions

= Unconditional jump and link (UJ-type)

1 10 1 8 5 7
imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

= opcode = JAL: rd € pc + 4; pc € pc + J-imm
= J-imm = signExtend({inst[31], inst[19:12], inst[20], inst[30:21], 1'b0})
= Jump =1MB range

= Unconditional jump via register and link (I-type)

12 5 3 5 7

imm[11:0] rsl funct3 rd opcode
= opcode=JALRTTd < pc + 4; pC < (151 + f-imm) & ~0x0]
= |-imm = signExtend(inst[31:20])

STAM Center

SECUR! ASSURED MICROELECTRONICS




W ADAPTIVE & SECURE " Ira A.Fulton Schools of
= AS CS COMPUTING SYSTEMS % Engineering

Arizona State University

Control Instructions

= Conditional branches (SB-type)

1 6 5 5 3 4 1 7
imm[12] imm[10:5] rs2 rsl funct3 imm[4:1] imm[11] opcode

opcode = BRANCH: pc € compare(funct3, rs1, rs2) ? pc + B-imm : pc + 4
B-imm = signExtend({inst[31], inst[7], inst[30:25], inst[11:8], 1'b0})

Jump +4KB range
funct3 = BEQ/BNE/BLT/BLTU/BGE/BGEU

STAM Center

SECUR! ASSURED MICROELECTRONICS



% A SCS ADAPTIVE & SECURE
COMPUTING SYSTEMS

|l oad & Store Instructions

* Load (I-type)

12 5 3 5 7

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

imm[11:0] rsl funct3 rd opcode

= opcode = LOAD: rd € mem][rs1 + I-imm]
= |-imm = signExtend(inst[31:20])
= funct3 = LW/LB/LBU/LH/LHU

= Store (S-type)

7 5 5 3 5 7

imm[11:5] rs2 rsl funct3 imm[4:0] opcode

= opcode = STORE: mem|[rs1 + S-imm] € rs2
= S-imm = signExtend({inst[31:25], inst[11:7]})
» funct3 = SW/SB/SH

STAM Center

SECUR! ASSURED MICROELECTRONICS



W AS CS ADAPTIVE & SECURE " Ira A.Fulton Schools of
COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

Instructions to Read and Write CSR

12 5 3 5 7
csr rsl funct3 rd opcode

= opcode = SYSTEM
= CSRW rs1, csr (funct3 = CSRRW, rd = x0): csr € rs1
» CSRR csr, rd (funct3 = CSRRS, rs1 = x0): rd € csr

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



S C S ‘ADAPTIVE & SECURE
LA s COMPUTING SYSTEMS

Software for interrupt handling

» Hardware transfers control to the common software
interrupt handler (CH) which:

1.

2.

Saves all GPRs into the memory pointed by mscratch

Passes mcause, mepc, stack pointer to the IH (a C function) to
handle the specific interrupt

On the return from the |H, writes the return value to mepc
Loads all GPRs from the memory

Execute ERET, which does: CH |~ |
= set pc to mepc 1 |
* pop mstatus (mode, enable) stack 2

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%’ Ira A.Fulton Schools of
Engineering

Arizona State University

IH

IH

IH




Y Q SCS ADAPTIVE & SECURE
L COMPUTING SYSTEMS

“IraA. Ful_ton Schoo!s of
%l Engineering

Arizona State University

Instruction Types

= Register-to-Register Arithmetic and Logical operations
= Control Instructions alter the sequential control flow
= Memory Instructions move data to and from memory

= CSR Instructions move data between CSRs and GPRs: the instructions often
perform read-modify-write operations on CSRs

= Privileged Instructions are needed by the operating systems, and most
cannot be executed by user programs

STAM Center

SECUR ASSURED MICROELECTRONICS



% A SCS ‘ADAPTIVE & SECURE
COMPUTING SYSTEMS

Instruction Functions

= Data movement

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Operation Type | Template

Load Byte I LB rd,rsl,imm
Load Halfword I LH rd,rsl,imm
Load Word I LW rd,rsl,imm
Load Byte Unsigned I LBU rd,rsl,imm
Load Half Unsigned I LHU rd,rsl,imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



W AS CS ADAPTIVE & SECURE " Ira A.Fulton Schools of
' COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

Instruction Functions

= Data movement

Operation Type | Template

Load Byte I LB rd,rsl,imm
Load Halfword I LH rd,rsl,imm
Load Word I LW rd,rsl,imm
Load Byte Unsigned I LBU rd,rsl,imm
Load Half Unsigned I LHU rd,rsl,imm

Operation Type | Template

Store Byte & SB rsl,rs2,imm
Store Halfword & SH rsl,rs2,imm
Store Word & SW rsl,rs2,imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



% A SCS ADAPTIVE & SECURE
COMPUTING SYSTEMS

Instruction Functions
= Arithmetic & Logic

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Operation Type | Template

ADD R ADD rd,rsl,rs2
ADD Immediate I ADDI rd,rsl,imm
SUBtract R SUB rd,rsl,rs2
Load Upper Imm U LUI rd, imm

Add Upper Imm to PC U AUIPC rd,imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



w ADAPTIVE & SECURE " Ira A.Fulton Schools of
& AS CS COMPUTING SYSTEMS %‘ Eng i neeri ng

Arizona State University

Instruction Functions
= Arithmetic & Logic

Operation Type | Template

ADD R ADD rd,rsl,rs2
ADD Immediate I ADDI rd,rsl,imm
SUBtract R SUB rd,rsl,rs2
Load Upper Imm U LUI rd, imm
Add Upper Imm to PC U AUIPC rd,imm
Operation Type Template

Shift Left R SLL rd,rsl,rs2

Shift Left Immediate I SLLI rd,rsl,shamt
Shift Right SRL rd,rsl,rs2
Shift Right Immediate SRLI rd,rsl,shamt
Shift Right Arithmetic SRA rd,rsl,rs2
Shift Right Arith Imm SRAT rd,rsl,shamt

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

N W N X




% A SCS ‘ADAPTIVE & SECURE
COMPUTING SYSTEMS

Instruction Functions
= Arithmetic & Logic

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Operation Type | Template

XOR R XOR rd,rsl,rs2
XOR Immediate I XORI rd,rsl,imm
OR O R OR rd,rsl,rs2
R Immediate I ORI rd,rsl,imm
AND R AND rd,rsl,rs2
AND Immediate I ANDI rd,rsl,imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



) SCS ADAPTIVE & SECURE
A COMPUTING SYSTEMS

Instruction Functions
= Arithmetic & Logic

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Operation Type | Template

XOR R XOR rd,rsl,rs2
XOR Immediate I XORI rd,rsl,imm
OR O R OR rd,rsl,rs2
R Immediate I ORI rd,rsl,imm
AND R AND rd,rsl,rs2
AND Immediate I ANDI rd,rsl,imm
Operation Type | Template

Set < R SLT rd,rsl,rs2
Set < Immediate I SLTI rd,rsl,imm
Set < Unsigned R SLTU rd,rsl,rs2
Set < Imm Unsigned I SLTIU rd,rsl1,imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



% A SCS ‘ADAPTIVE & SECURE
COMPUTING SYSTEMS

Instruction Functions
= Control Flow

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Operation Type | Template

Branch = SB BEQ rsl,rs2,imm
Branch # SB BNE rsl,rs2,imm
Branch < SB BLT rsl,rs2,imm
Branch = SB BGE rsl,rs2,imm
Branch < Unsigned SB BLTU rsl,rs2,imm
Branch = Unsigned SB BGEU rsl,rs2,imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



) SCS ADAPTIVE & SECURE
A COMPUTING SYSTEMS

Instruction Functions
= Control Flow

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Operation Type | Template

Branch = SB BEQ rsl,rs2,imm
Branch # SB BNE rsl,rs2,imm
Branch < SB BLT rsl,rs2,imm
Branch = SB BGE rsl,rs2,imm
Branch < Unsigned SB BLTU rsl,rs2,imm
Branch = Unsigned SB BGEU rsl,rs2,imm
Operation Type | Template

Jump & Link UJ | JAL rd, imm
Jump & Link Register UJ |JALR rd,rsl,imm

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



g AS CS ‘ ADAPTIVE & SECURE " Ira A.Fulton Schools of
COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

Instruction Functions
= System call

Operation Type | Template
System CALL I SCALL
System BREAK I SBREAK

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



AS C S ‘ ADAPTIVE & SECURE " Ira A.Fulton Schools of
COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

Assembly Programming

= Function call

1. Caller places parameters in a place where the procedure can access
them

. Transfer control to the procedure
. Acquire storage resources required by the procedure
. Execute the statements in the procedure

o B~ W DN

. Called function places the result in a place where the caller can
access It

O~

. Return control to the statement next to the procedure call

STAM Center

D URED MICROELECTRONICS



w ADAPTIVE & SECURE " Ira A.Fulton Schools of
& AS CS COMPUTING SYSTEMS %‘ Eng i neeri ng

Arizona State University

Assembly Programming

= Function call

= Argument Passing

= Arguments to a function passed through a0-a7
» Functions with more than 8 arguments

= First eight arguments are put in a0-a7
= Remaining arguments are put on stack by the caller

= Return Values

= Return values from a function passed through a0-a'
= Functions with more than 2 return values

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



) SCS ADAPTIVE & SECURE
A COMPUTING SYSTEMS

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Assembly Programming

» Function call

= Argument Passing

= Arguments to a function passed through a0-a7
» Functions with more than 8 arguments

= Return Values

= Return values from a function passed through a0-a'
» Functions with more than 2 return values

= First two return values put in a0-a'

= Remaining return values put on stack by the function

= The remaining return values are popped from the stack by the caller

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



% A SCS ‘ADAPTIVE & SECURE
COMPUTING SYSTEMS

It then Else Assembly

“IraA. Ful_ton Schoo!s of
% Engineering

Arizona State University

t0
tl

t0
t2

if (a0 < 0) then

bgez a0, else

0 - a0; else
£1 +1: sub t0, zero, a0
! # t0 gets the negative of a0

addi t1, t1, 1
# increment tl by 1
J next

ai; # branch around the else code

t2 + 1; else:

ori t0, a0, O

# t0 gets a copy of a0

addi t2, t2, 1

# increment t2 by 1
next:

# if (a0 is > or = zero) branch to

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS



PASCS

ADAPTIVE & SECURE
COMPUTING SYSTEMS

While

Do Assembly

“IraA. Ful_ton Schoo!s of
% Engineering

Arizona State University

t0 =1
While (al < a2)
do
{
tl = mem[al];
t2 = mem[a2];
if (t1 != t2)
go to break;
al = al +1;
a2z = a2 —-1;
}

break: t0 = 0

1i +t0, 1
loop:
bgeu al, a2, done
# if( al >= a2) Branch to done
lw tl1, O0(al)
# Load a Byte: tl
lw t2, 0(a2)
# Load a Byte: t2
bne tl1l, t2, break
# if (tl != t2) Branch to break
addi al, al, 1 # al = al + 1
addi a2, a2, -1 # a2 = a2 -1

mem[al + 0]

mem[a2 + 0]

b loop # Branch to loop
break:

1i to0, O # Load t0 with the value 0
done:

# Load t0 with the wvalue 1

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS




W AS C S ‘ADAPTIVE & SECURE " Ira A.Fulton Schools of
D COMPUTING SYSTEMS % Eng i neeri ng

Arizona State University

For loop Assembly

a0 = 0; 1i a0, O # a0 =0
For ( t0 =10; li t0, 10
t0 > 0; # Initialize loop counter to 10
t0 = t0 -1) loop:
do { add a0, a0, tO
a0 = a0 + to0 addi t0, t0, -1
} # Decrement loop counter
bgtz t0, loop
# if (t0 >0) Branch to loop

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS




ADAPTIVE & SECURE
COMPUTING SYSTEMS

PUASCS

= Case study

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

“IraA. Ful_ton Schoo!s of
%‘ Engineering

Arizona State University

Assembly

= Assume that A is an array of 64 words and the
compiler has associated registers al and a2 with the
variables x and y. Also assume that the starting
address, or base address is contained in register a0.
Determine the RISC-V instructions associated with
the following C statement:

" X=y+ A[4]; // adds 4th element in array A to y and stores result in x



ADAPTIVE & SECURE
COMPUTING SYSTEMS

UASCS

» Case study

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

“IraA. Ful_ton Schools of
%‘ Engineering

Arizona State University

Assembly

= Assume that A is an array of 64 words and the compiler
has associated registers al and a2 with the variables x
and y. Also assume that the starting address, or base
address is contained in register a0.

" X=y+ Al4]; // adds 4th element in array A to y and stores result in x
= Solution:
= lw t0, 16(a0) # a0 contains the base address of array and

# 16 is the offset address of the 4th element
= add al, a2, t0 # performs addition



W ADAPTIVE & SECURE " Ira A.Fulton Schools of
= AS CS COMPUTING SYSTEMS % Engineering

Arizona State University

Next Lecture Module

* Assembly Simulation Environment

STAM Center

D URED MICROELECTRONICS





