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Trustworthy Hardware System Design

Authentication Availability Integrity Confidentiality

Trustworthy Systems

Distributed Trustworthy Systems Standalone Trustworthy Systems

Communication 
related concerns 
are minimal

Resilience

Reliability Security Privacy

Isolation Dissociation Obfuscation
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Foundations of Computer Security
§ It is not necessary to be a cryptographer to properly use 

cryptography
• Not everything is math – knowing your assumptions & inherent 

vulnerabilities, correctly modeling your threats, understanding information 
flows, and applying right solutions are all important 

§ Cryptography is a large and diverse field, ranging from very 
practical to very abstract concepts
• Often taught as a potpourri of methods
• Hard (at first) to separate abstraction layers

§ “Is e.g., zero-knowledge proofs a concept? An algorithm/method? A property?”
• Can we do better? 
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Functional Security Properties of Systems
Confidentiality:
• Secure channels / symmetric 

cryptography:
• One-time pads
• Stream ciphers
• Block ciphers

• M odes of operation

• Key exchange / key distribution:
• Public / private cryptography
• Forward secrecy

• Obfuscation:
• Indistinguishability obfuscation
• Deniable encryption
• Program obfuscation

• O paque predicates

• Hardware obfuscation
• Anti-tam per, sp lit m anufacturing, …

• Private lookups, private metadata:
• Mix networks, oblivious RAM, onion 

routing
• Isolation

• Virtualization, containerization, 
sandboxing…

• Secure architectures, 
• Trusted execution engines, secure 

enclaves
• Formal verification

• Zero-knowledge proofs

4

Functional Security Properties of Systems
Confidentiality:
• Secure channels / symmetric 

cryptography:
• One-time pads
• Stream ciphers
• Block ciphers

• M odes of operation

• Key exchange / key distribution:
• Public / private cryptography
• Forward secrecy

• Obfuscation:
• Indistinguishability obfuscation
• Deniable encryption
• Program obfuscation

• O paque predicates

• Hardware obfuscation
• Anti-tam per, sp lit m anufacturing, …

• Private lookups, private metadata:
• Mix networks, oblivious RAM, onion 

routing
• Isolation

• Virtualization, containerization, 
sandboxing…
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Integrity:
• Message integrity: 

• Error correction codes
• (Cryptographic) hash functions

• Privacy-preserving computation:
• Multi-Party Computation (MPC):

• Oblivious Transfer
• Yao’s Garbled circuits
• Universal composability

• Homomorphic Encryption (HE)
• Hardware Root-of-Trust (HRoT):

• Physical unclonable functions, e-fuses
• Federated Learning
• Distributed Consensus:

• Digital currency, private voting
• Software security:

• Virtual memory, file system permissions
• App signing, sandboxing
• Control flow integrity:

• Shadow stacks
• Buffer overflow protection:

• ASLR, stack canaries
• Malware detection:

• Antiviruses, malware signatures
• Hardware performance counters
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• ASLR, stack canaries
• Malware detection:
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Authentication:
• Asymmetric cryptography

• One-way functions, trapdoor functions
• Key exchange / key distribution algorithms
• Digital signatures

• Public key infrastructure:
• Web of trust
• Certificate authorities, root certificates, self-

signed certificates
• Passwords, biometrics, …
• Password-based key derivation

Authorization:
• Access Control Lists
• Role-Based Access Control
• Capability-Based Security

Non-repudiation:
• Digital signatures
• Commitment schemes
• Message authentication codes
• Deniable encryption, undeniable signatures
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Functional Security Properties of Systems

§ Functionality:
• CIA triad:

§ Confidentiality
§ Integrity
§ Availability

• Types of security services, 
according to NIST [1]:
• Confidentiality
• Data Integrity
• Authentication
• Authorization
• Non-repudiation

• Not ordered by importance!

Fu
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Confidentiality

Data Integrity

Authentication

Authorization

Non-repudiation

[1] Elaine Barker, NIST Special Publication 800-57 Part 1 Revision 5,
Recommendation for Key Management. 
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Functional Security Properties of Systems
§ Security:

• Source of security:
§ Information theoretic security 
§ Computational security

• Security nonuniformity 
• Attack & threat models:

§ threat = possibility of something bad happening
§ attack = a vulnerability exploited to realize a threat

• Adversary capability:
§ Computational model
§ Computational resources

• Domain properties:
§ Secure channels
§ Trusted parties / hardware
§ Domain assumptions

• Again, not ordered by importance!

Confidentiality

Data Integrity

Authentication

Authorization

Non-repudiation
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ty

Source of security
Attack / threat model

Adversary capability
Domain properties
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Security Concepts: Implementational Properties
§ Implementational properties:

• Algorithmic properties:
§ Computational / space complexity
§ Strong / weak scaling

• Compute requirements:
§ FLOPS
§ Memory
§ Network bandwidth

• Implementational properties:
§ Throughput
§ Latency
§ Power & area
§ Error correction, 

noise robustness
• Solution side-effects:

§ Side-channel attacks & defense

Confidentiality

Data Integrity

Authentication

Authorization

Non-repudiation

Fu
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Source of security
Attack / threat model

Adversary capability
Domain properties

Implementation

Algorit
hmic 

properti
es

Compute 

require
ments

Im
plementatio

nal 

properti
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n

sid
e-effe

cts
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Computer Systems Security
§ Processing - Data in manipulation

• Program obfuscation
• Opaque predicates
• Virtualization, containerization, sandboxing
• Secure architectures, 
• Trusted execution engines, secure enclaves

§ Communication - Data in motion
• Secure channels / cryptography
• Key exchange / key distribution
• Forward/backward secrecy 
• Oblivious Transfer

§ Storage - Data at rest 
• Certificate authorities
• Root certificates, 
• Self-signed certificates
• Message authentication codes

§ System-in-Use - Side-Channel
• Control flow integrity
• Shadow stacks
• Buffer overflow protection:
• ASLR, stack canaries

§ Supply-Chain Trust Issues 
• Hardware obfuscation
• Anti-tamper
• split manufacturing
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Secure Channels
§ Scenario: 

• Alice and Bob need to privately communicate
• The only channel between them is being eavesdropped on Eve

§ Goal:
• Need a method to privately transmit data over unsecure channel

§ Assumptions:
• Alice and Bob can securely and privately communicate ahead of time 

Bob Alice

Eve

12
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One-Time Pads
§ Basic idea:

• Alice and Bob exchange a codebook containing a stream of random numbers
• When Alice wants to send Bob a message, she reads numbers from the codebook
• Alice XORs the plaintext with them to create ciphertext
• Alice sends ciphertext over an insecure channel
• Bob performs the same steps to retrieve the plaintext
• Both cross out used numbers

§ Upsides:
• Perfect provable secrecy
• Plausible deniability

§ Downsides:
• “Key” is as large as the text
• Must be communicated ahead of time
• Cannot use encryption to send one-time pad if encryption is already using a one-time pad

13

Symmetric Cryptography
§ Encryption 
• Input data, i.e., plaintext plus a secret key
• Output is the ciphertext

§ Decryption is the inverse function 

Plaintext (m) Ciphertext (c)

secret key (k)

Encryption
Enc()

Plaintext (m) Ciphertext (c)

secret key (k)

Decryption
Dec()
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One-Way & Trapdoor Functions
§ A one-way function is a function that is easy to compute but computationally 

hard to reverse
• Easy to calculate f(x) from x
• Hard to invert, i.e., calculate x from f(x)

§ There is no proof that one-way functions exist or that they can be 
constructed
• Generations of cryptographers have not made (public) progress 
• For example, the modular exponentiation function 

§ Fairly easy to calculate (xe mod n) from x
§ But hard to calculate x from (xe mod n)

§ A trapdoor one-way function has one additional property
• With a certain knowledge, the function can be easily inverted

§ x = (xe mod n)d mod n
§ We will see these more later when discussing asymmetric cryptography

15
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Aspects of Cryptography
§ General categories of algorithms
• Stream Ciphers

§ Operate on a variable-length stream
§ Generate a pseudo-random key stream and XOR with the plaintext
§ The algorithm key serves as the seed of the pseudo-random stream generator

• Block Ciphers
§ Operate on blocks of predefined sizes

CRYPTOGRAPHY

Private Key
(Secret Key)

Public Key

Discrete LogarithmInteger FactorizationBlock Cipher Stream Cipher

16

Stream Ciphers
§ Generate a stream of pseudo-random bits
§ XOR bits with plaintext to create ciphertext
§ To decrypt text, run RC4 in reverse

• What does it mean to run “in reverse”?
• Encryption and decryption must be perfectly aligned to work

§ Upsides:
• Very efficient implementation
• No restrictions on plaintext size
• Single-bit errors do not break rest of cipher

§ Downsides:
• By definition, stream ciphers operate on bits
• A single ciphertext bit is a function of the key and a single 

plaintext bit
§ No avalanche effect w.r.t. the plaintext

• Does this sound familiar?
§ Cipher feedback (CFB) can help (discussed in a couple of slides)

• Malleable!

Hash function

Key
Nonce

Counter
Constants

Plaintext Ciphertext⊕
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Block Ciphers
§ A block cipher operating on 𝑏-bit inputs is a family of 

mappings on 𝑏 bits specified by the key
• 𝑘 : 𝑞-bit key
• 𝑝: 𝑏-bit string denoting a plaintext
• 𝑐 : 𝑏-bit string denoting a ciphertext

§ Multiple modes of operation that can provide:
• Confidentiality
• Authentication
• Error detection

§ Upsides:
• Better suited to modern networks
• High diffusion: 

§ Avalanche effect w.r.t. plaintext in some modes
§ Downsides:

• Slower than stream ciphers, may be impossible to 
preemptively execute the part of computation

• One-bit errors threaten whole block

𝑝!

𝑝"

𝑝#

𝑝$

𝑐!

𝑐"

𝑐#

𝑐$

𝑘!

𝑘$

Block cipher

Key
Nonce

Counter
Constants

Plaintext Ciphertext

18
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Example Block Cipher

§ 2 bit block cipher, 2 bit key with encryption function 
defined by

m c
00 11
01 10
10 01
11 00

m c
00 10
01 11
10 01
11 00

m c
00 01
01 00
10 11
11 10

m c
00 11
01 00
10 01
11 10

Key 00 Key 01 Key 10 Key 11

19

Block Ciphers as Hash Functions
§ Iterate over all of the b blocks
§ Use the output value from the previous block as input to the 

current block
• x0 is a constant 

m1 m2

x0 x1 x2

h’ h’

m3

x3

h’

mb

xb

h’

=h(m)
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Block Ciphers as Hash Functions
§ A commonly used cryptographic hash function is SHA-1
• SHA-1 was originally designed by NIST and NSA in 1993/1995
•  It is used in the Digital Signature Standard (DSS)
• SHA-256, SHA-384 and SHA-512

m1 m2

x0 x1 x2

h’ h’

m3

x3

h’

mb

xb

h’

=h(m)

21
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Modes of Operation
• m and c are fixed length (e.g., 

128  or 256 or 512 bits)
• Secret key, k, expanded via a 

function called a key schedule to 
create round keys k1,k2, … kr Round 

Function

ciphertext c

plaintext m

r rounds
round i 
uses ki

22

Modes of Operation

§ Advanced Encryption 
Standard (AES)
• 10, 12, 14 rounds for 128, 192, 

256 bit keys
§ Regular Rounds (9, 11, 13)
§ Final Round is different (10th, 

12th, 14th)
• Each regular round consists of 4 

steps
§ Byte substitution (BSB)
§ Shift row (SR)
§ Mix column (MC)
§ Add Round key (ARK)

128 bit plaintext

AddRoundKey

S-Box
Shiftrows
MixColumns

AddRoundKey

S-Box
Shiftrows

AddRoundKey

128 bit ciphertext

Initial Whitening

9 Regular 
Rounds

Final Round

23

Modes of Operation
§ Diffusion 

• Byte Substitution
§ Predefined substitution table  

§ Confusion 
• Shift Row
§ Left circular shift

§ Diffusion and Confusion 
• Mix Columns
§ 4 elements in each column are multiplied by a polynomial

§ Confusion
• Add Round Key
§ Key is derived and added to each column

24
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Modes of Operation
§ 128-bit Shift Row

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b0 b4 b8 b12

b5 b9 b13 b1

b10 b14 b2 b6

b15 b3 b7 b11

25

Modes of Operation
§ Mix Column

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

S0,i

S1,i

S2,I

S3,i

S’0,I

S’1,I

S’2,I

S’3,i

= *

26

Modes of Operation
§ Add Key

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

b’x bx kx= XOR

27
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Data Encryption Standards
DES (Data Encryption Standard) AES

Date 1976 1999

Block size 64 bits 128 bits

Key length 56 bits 128, 192, 256, … bits

Encryption 
primitives

Substitution and permutation Substitution, shift, bit mixing

Cryptographic 
primitives

Confusion and diffusion Confusion and diffusion

Design Open Open

Design rationale Closed Open

Selection process Secret Secret (accepted public 
comment)

Source IBM, enhanced by NSA Belgian cryptographers

28

Problems with Symmetric Cryptography
§ Alice and Bob require prior communication to privately 

communicate
• Keys must be exchanged ahead of time
• No secure method to exchange keys over the channel

§ Not possible to authenticate other party

Bob Alice

Eve

29

Diffie-Hellman Key Exchange Algorithm
§ Allow two parties agree on a secret value
§ Both parties compute the secret key K=gxy

§ Assuming the communication channel is authenticated 
• Which a very big assumption

§ It cannot be used to exchange an arbitrary message 
§ It is a practical method for public exchange of a secret key
§ It is based on exponentiation in a finite – Galois - field 

• Modulo a prime or a polynomial
§ This is easy

§ The security relies on the difficulty of computing discrete logarithms 
• This is hard

30
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Diffie-Hellman Key Exchange Algorithm
§ Select two large numbers

• One prime p and g a primitive root of p
• p and g are both publicly available numbers

§ Participant pick private values x and y
§ Compute public values

• A = gx mod p
• B = gy mod p

§ Public values A and B are exchanged
§ Compute shared, private key

• kx = Bx mod p
• ky = Ay mod p

§ kx = ky  
§ Participants now have a symmetric secret key to encrypt their messages 

31

Diffie-Hellman
§ This is just an introduction of the concept. There are number of 

issues to solve for its secure deployment 
• Man-In-The-Middle attack 
• Replay attack 
• Identity-misbinding attack

§ Diffie-Hellman vs. RSA
• Diffie-Hellman uses a symmetric key scheme, i.e., both participants agree 

on one key 
• RSA uses an asymmetric - public-private - key scheme such that a 

message encrypted by a public key, can only be decrypted by the 
corresponding private key

32

Asymmetric / Public Key Cryptosystem
§ A public encryption method has 
• A public encryption algorithm
• A public decryption algorithm
• A public encryption key

§ Using the public key and encryption algorithm anyone can 
encrypt a message

§ The decryption key is known only to authorized parties
§ RSA: Rivest, Shamir, Adleman

33
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Necessary Math for RSA
§ Modular arithmetic:

• 𝑎 ⋅ 𝑏 = 𝑐 ⇒ 	𝑎 𝑚𝑜𝑑	𝑛 ⋅ 𝑏 𝑚𝑜𝑑	𝑛 = 𝑐 𝑚𝑜𝑑	𝑛
• 𝑎 ≡ 𝑏 𝑚𝑜𝑑	𝑛 ⇒ 𝑎' ≡ 𝑏' 𝑚𝑜𝑑	𝑛 , 𝑘 ∈ ℤ
• 𝑎( 𝑚𝑜𝑑	𝑛 ) 𝑚𝑜𝑑	𝑛 = 𝑎() 𝑚𝑜𝑑	𝑛
• 𝑎 ⋅ 𝑎 ≡ 1 𝑚𝑜𝑑	𝑛 ⇒ 𝑎 is the modular inverse of 𝑎

§ Euler’s totient function:
• Euler's totient function 𝜙 𝑛  counts the positive integers up to a given integer 𝑛 that are 

relatively prime to 𝑛
• If 𝑛 is prime, 𝜙 𝑛 = 𝑛−1
• 𝜙 𝑝𝑞 = 𝜙 𝑝 𝜙 𝑞

§ Euler’s theorem:
• If 𝑎 and 𝑛 are coprime integers, 𝑎*(,) ≡ 1	(𝑚𝑜𝑑	𝑛)

34

Public Key Cryptosystem (RSA)
§ Let p and q be two prime numbers
• n = pq
• m = (p-1)(q-1)

§ x is such that 1 < x < m and gcd(m,x) = 1
§ y is such that (xy) mod m = 1
• x is computed by generating random positive integers and testing 

gcd(m,x) = 1 using the extended Euclid’s gcd algorithm
• The extended Euclid’s gcd algorithm also computes y when gcd(m,x) = 1

35

Public Key Cryptosystem (RSA)
§ Security relies on the fact that prime factorization is computationally 

very hard
• If k is the number of bits in the binary representation of n
• There is no known algorithm, polynomial in k, to find the prime factors of n

§ RSA Encryption And Decryption
• Message M < n
• Encryption key = (a, n)
• Decryption key = (b, n)
• Encrypt 

§ Enc(M) = Ma mod n

• Decrypt 
§ Dec(M) = Eb mod n

36
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RSA Asymmetric Cryptosystem
Setup:
§ Alice publishes a public key (𝑛, 𝑒):

• 𝑛=𝑝𝑞, where 𝑝 and 𝑞 are large prime numbers
• 𝑒 is some large number, e.g., 𝑒 =2!%+1=65537

§ Chosen to be relatively prime to 𝜙 𝑛 = (𝑝 − 1)(𝑞 − 1)

§ Alice calculates her private key 𝑑:
• 𝑒𝑑 ≡1 𝑚𝑜𝑑	𝜙 𝑛

§ 𝑒𝑑 = 1 + 𝑘𝜙 𝑛

Transmitting messages:
§ Bob wants to send message 𝑚 to Alice

• 𝑚 < 𝑛, so Bob potentially splits message into 
smaller pieces

§ Bob sends 𝑐 ≡ 𝑚A 𝑚𝑜𝑑	𝑛
§ Alice calculates 𝑐B ≡𝑚 𝑚𝑜𝑑	𝑛

Bob AliceEve

𝑚≡ 𝑐B 𝑚𝑜𝑑	𝑛
	 ≡ 𝑚A 𝑚𝑜𝑑	𝑛 B 𝑚𝑜𝑑	𝑛
	 ≡ 𝑚AB 𝑚𝑜𝑑	𝑛
	 ≡ 𝑚CD'* , 	(𝑚𝑜𝑑	𝑛)
	 ≡ 𝑚C ⋅ 𝑚'* , 𝑚𝑜𝑑	𝑛
	 ≡ 𝑚C ⋅ 𝑚* , 𝑚𝑜𝑑	𝑛

'
𝑚𝑜𝑑	𝑛

     ≡𝑚C ⋅ 1' 𝑚𝑜𝑑	𝑛

Euler’s theorem: 
𝑎3(4) ≡ 1	(𝑚𝑜𝑑	𝑛)

37

Security Foundation of RSA 
§ A large value of 𝑛 prevents finding prime factors 𝑝 and 𝑞
• Factorizing large numbers is very hard

§ 𝑒 chosen to be a very large integer relatively prime to (𝑝 −1)(𝑞 −
1):
• 𝑚A 𝑚𝑜𝑑	𝑛  “wraps” many times
• Finding discrete logarithms is very hard

38

Brief Review of Number Theory

39
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Brief Review of Number Theory
§ Divisibility
• Given integers x and y, with x > 0, x divides y (denoted x|y) if there exists 

an integer a, such that   y = ax
§  x is then called a divisor of y, and y a multiple of x

• Given integers x, y such that x>0, x<y then there exist two unique 
integers q and r, 0 <= r < x such that             y = xq + r
• r = y mod x 

§ An integer p > 1 is a prime number if only positive divisors of p 
are 1 and p

§ Any integer number p > 1 that is not prime, is a composite 
number

40

Brief Review of Number Theory
§ Fundamental Theorem of Arithmetic
§ Any integer number x > 1 can be written as a product of prime 

numbers that are greater than 1
§ The product is unique if the numbers are written in increasing order

§ Given integers x > 0 and x > 0, we define gcd(x, y) = z, the greatest 
common divisor (GCD),  as the greatest number that divides both x 
and y

§ The integers x and y are relatively prime (rp) if gcd(x, y) =1

X =d1e1.d2e2 .d3e3… dkek

41

Brief Review of Number Theory
§ Given integers x, y > 0 and m > n, then z = gcd(x,y) is the least 

positive integer that can be represented as z = mx + ny
§ Given integers x, y, z >1
• If gcd(x, z) = gcd(y, z) = 1, then gcd(xy, z) = 1

§ The least common multiple (lcm) of the positive integers x and y 
is the smallest positive integer that is divisible by both x and y

§ What is the least common multiple of 233572 and 2433?

42
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Brief Review of Number Theory
§ What is the least common multiple of 233572 and 2433?
• lcm(233572 ,2433) = 2 max(3,4). 3max(5,3). 7max(2,0) = 243572

§ Let x and y be positive integers, then xy = gcd(x,y).lcm(x, y)

§ All of these transformations and definitions have formal proofs

43

Brief Review of Number Theory
§ Euclidean Algorithm

• Given integers x and y great or equal to 1, on can use the division algorithm 
repeatedly

y = q1x + r1 0 ≤	r1 < x
x = q2r1 + r2 0 ≤ r2 < r1

        ...
       r k-2  = qkrk−1 + rk     0 ≤ rk < rk-1

       rk−1  = qk+1rk

• The remainders ri get smaller 
§      r1 > r2 > · · ·≥  0

44

Brief Review of Number Theory
§ Let (x, y) be in Z2, and n in Z+, then x is a congruent to y modulo n 

if n divides a – b
• x ≡ y (mod n)

§ Similarly, given n> 0, x, y, we say that y is a multiplicative inverse 
of x modulo n if xy ≡ 1 (mod n)
• (x mod n) = (y mod n) à x ≡ y (mod n)

45
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Modular Arithmetic
§ Cummutative Laws

• (y + x) mod n = (x + y) mod n
• (y * x) mod n = (x * y) mod n

§ Associative Laws
• [(z + x) + y] mod n = [z + (x + y)] mod n
• [(z * x) * y] mod n   = [z * (x * y)] mod n

§ Distributive Law
• [z * (x + y)] mod n = [(z * x) + (z * y)] mod n

§ Identities
• (0 + x) mod n = x mod n
• (1 * x) mod n =  x mod n 

§ Additive Inverse (-w)
• For each x in Zn, there exists a r such that x + r ≡ 0 mod n

46

Brief Review of Number Theory
§ Quadratic residues

• If there is an integer s, with 0< x <p, such that x2 = q (mod p)
• If the congruence x2 = q (mod p) has a solution, then q is a quadratic residue of 

p 
• If the congruence x2 = q (mod p) has no solution, then q is a quadratic 

nonresidue of p 

§ Quadratic reciprocity 
• It relates the solvability of the congruence 

§ x2 = q (mod p) 

• To the solvability of the congruence 
§ x2 = p (mod q)
§ Where p and q are distinct odd primes

47

Brief Review of Number Theory
§ Our goal in this class is to quickly run through some these 

concepts as they form the foundation of modern cryptography 
and by default computer security
• This allows us to better understand the gap between the theoretical 

aspects of these problems and the impurities introduced by their software 
and/or hardware implementation or even their susceptibility to side-
channel attacks

§ For example, understanding of prime factorization 
• Prime Factorization Theorem

§ Every integer n > 2 can be written as a product of one or more primes

§ There is an infinite number of primes
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Review of Groups
§ Definition of a Group
• A Group G is a collection of elements together with a binary operation*  

which satisfies the following properties
§ Closure
§ Associativity
§ Identity
§ Inverses 

§ * A binary operation is a function on G which assigns an element 
of G to each ordered pair of elements in G. 
• For example, multiplication and addition are binary operations
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Review of Groups
§ Groups may be finite or infinite
• They are finite when they have a finite number of elements

§ Groups may be commutative or non-commutative
§ A set G with a binary operation + (addition) is called a 

commutative group if
§ The commutative property may or may not apply to all elements 

of the group
• Commutative groups are also called Abelian groups
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Review of Groups
§ Groups may be finite or infinite
• They are finite when they have a finite number of elements

§ Groups may be commutative or non-commutative
§ A set G with a binary operation + (addition) is called a 

commutative group if

1.  ∀ x,y ∈	G, x+y ∈	G
2.  ∀ x,y,z ∈	G, (x+y)+z=x+(y+z) 
3.  ∀ x,y ∈	G, x+y=y+x
4.  ∃ 0 ∈	G, ∀	x ∈	G, x+0=x
5.  ∀ x ∈	G, ∃	-x ∈	G, x+(-x)=0
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Review of Groups
§ The commutative property may or may not apply to all elements 

of the group
• Commutative groups are also called Abelian groups

§ Infinite and Abelian:
• For example, the integers under the addition operation (Z +)
• The rational numbers without 0 under multiplication   (Q*, x)

§ Infinite and non-Abelian
§ Finite and Abelian
• The integers mod n under modular addition operation (Zn, +)

§ Finite and non-Abelian
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Review of Groups
§ Let (G, +) be a group,  (H,+) is a sub-group of (G,+) if it is a group, and 

H⊆G
• If (G, +) be a finite group, H ⊆	G, and H is closed under +, then (H,+) is a sub-

group of (G,+)
• Lagrange theorem

§ If G is finite and (H,+) is a sub-group of (G,+) then |H| divides |G|

§ Let xn denote x+…+x  

§ The x is of order n if xn = 0, and for any m<n, xm≠0
§ Euler theorem

• In the multiplicative group of Zn, every element is of order at most 𝜑(n)

(n times)
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Review of Groups
§ If G be a group and x be an element of order n, then the set 

<x>={1, x,…,xn-1} is a sub-group of G
• x is then the generator of the set <x> 

§ If G is generated by x, then G is called cyclic, and x is a primitive 
element of G

§ For any prime p, the multiplicative group of Zp is cyclic
§ If G is a group with x ∈	G, then H={xn|n ∈	Z} is a sub-group of G
• It is the cyclic sub-group <x> of G generated by x

§ Every cyclic group is abelian cyclic
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Review of Groups
§ Rings
• A set G with two binary operations + and * is called a commutative ring 

with identity if

1.  ∀ x,y ∈	G, x+y ∈	G
2.  ∀ x,y,z ∈	G, (x+y)+z=x+(y+z) 
3.  ∀ x,y ∈	G, x+y=y+x
4.  ∃ 0 ∈	G, ∀	x ∈	G, x+0=x
5.  ∀ x ∈	G, ∃	-x ∈	G, x+(-x)=0

6.  ∀ x,y ∈	G, x*y ∈	G 6. 
7.   ∀ x,y,z ∈	G, (x*y)*z=x*(y*z) 
8.   ∀ x,y ∈	G, x*y=y*x
9.   ∃ 1 ∈	G, ∀	x ∈	G, x*1=x
10. ∀ x,y,z ∈	G, x*(y+z)=x*y + x*z

11. ∀ x ≠ 0 ∈	G, x*x-1 =1
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Review of Groups
§ Fields 

• A field is a commutative ring with identity where each non-zero element has a 
multiplicative inverse

§ ∀ x ≠  0 ∈	G,∃x-1 ∈	G, x*x-1 =1
§ Given a polynomial function f of degree n in one variable x over a field G, i.e., an, 

an-1,…, a1, a0 ∈	G
• f(x)= an*xn + an-1*xn-1 + an-2*xn-2 + … + a1*x + a0 

• f(x)=0 has at most n solutions in G
§ Polynomial  remainders

• f(x)= an·xn + an-1·xn-1 + an-2·xn-2 + … + a1·x + a0 

• g(x)= bm·xm + bm-1·xm-1 + bm-2·xm-2 + … + b1·x + b0
§ Two polynomials over G such that  m ≤ n
§ There is a unique polynomial r(x) of degree less than m over G such that f(x) = h(x) * g(x) + r(x)
§ r(x) is called the remainder of f(x) modulo g(x)
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Review of Groups
§ Finite field
• A field (G,+,*) is called a finite field if the set G is finite

§ Galois Fields GF(pk)
• For every prime power pk (k=1,2,…) there is a unique finite field 

containing pk elements. 
• These fields are denoted by GF(pk)
• There are no finite fields with other cardinalities
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Discrete Logarithm
§ Let G be a group, q ∈	G, and y=qx where x the minimal non 

negative integer satisfying y=qx 

• x is the discrete log of y to base q
§ Let y=qx mod p be in the multiplicative group of Zp
• The exponentiation steps are O(log3p) 
• Standard discrete log is computationally hard

§ qx given x is easy  
§ Finding x given qx is hard - computationally infeasible

§ X	⊢	qx is a one way function
§  Finally we have arrived to the essence of modern cryptography
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Birthday Paradox
§ Let G be a finite set of elements of size n
§ If we select k elements of G uniformly and independently, what is the 

probability of getting at least one collision?
§ Consider the event Ek with no collision after k elements

§     Prob(Ek) = 1(1-
=
>
)(1- L

M
)… (1- 'NC

M
) 

                  < exp(- CM) exp(- LM) … exp(- 'NCM ) 

                  = exp(-(1+2+…+'NCM ) 

                  = exp(- '('NC)LM ) 

                  ~ exp(- '
!

LM ) 

§ If  k=r1/2 , then Prob(Ek)<0.607
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§ A hash function that maps a message 
of an arbitrary length to an n-bit output 
(digest)

§ For a function f: X →Y 
• It is injective if f(x) = f(y) implies x = y for all 

x, y∈X,
• Surjective if for any y ∈ Y there is x ∈ X with 

f(x) = y, 
• Bijective if it is both injective and surjective
• If there is a bijection between two finite 

sets, then the sets have the same number of 
elements

Review of Hash Functions

Message

N-bit Output

Hash Function
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Review of Hash Functions
§ A hash function that maps a message of an arbitrary length to an n-bit 

output
§ Hash functions can be implemented using compression functions
§ A hash function is a many-to-one function, so collisions can happen
§ A cryptographic hash function has additional properties

• One-wayness
§ It is computationally infeasible/expensive to find messages mapping to specific hash 

outputs 

• Collision freedom 
§ It is computationally infeasible/very unlikely to find two messages that hash to the same 

output
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Review of Hash Functions
§ Message Integrity Check (MIC)
• Send hash of message, i.e., digest
• The digest is sent always encrypted

§ Message Authentication Code (MAC)
• Send keyed hash of message 
• MAC, message optionally encrypted

§ Digital Signature for non-repudiation
• Encrypt hash with private signing key
• Verify with public verification key
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Review of Hash Functions
§ Pseudorandom function (PRF) 
• Generate session keys, nonces
• Produce key from password
• Derive keys from master key cooperatively

§  Pseudorandom number generator (PRNG)
• Vernam Cipher
• S/Key, proof of “knowledge” via messages
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Review of Hash Functions
§ Lamport One-time Passwords
• Provide password safety in distributed systems

§ Server compromise does not compromise the password
§ Interception of authentication exchange also does not compromise password 

§ Illustration 
• Alice picks a password pA

• She hashes the password n times, hn(pA)
• Server stores (Alice, n, hn(pA))
• Attacker is not able to get pA from hn(pA)

64

§ Lamport One-time Passwords
• Provide password safety in distributed systems

§ Server compromise does not compromise the password
§ Interception of authentication exchange also does not compromise password 

§ Illustration 
• Protocol

§ Alice sends “Alice”
§ Server sends “n-1”
§ Alice sends “x” where x= hn-1(pA) 
§ Server verifies h(h) = hn(pA) 
§ Server updates to (Alice, n-1, x)
§ Attacker still cannot extract pA or impersonate Alice

Review of Hash Functions
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In Summary
§ Our goal in this class is to quickly run through some these concepts as 

they form the foundation of modern cryptography and by default 
computer security
• This allows us to better understand the gap between the theoretical aspects of 

these problems and the impurities introduced by their software and/or hardware 
implementation or even their susceptibility to side-channel attacks

§ You must understand to a certain degree some the mathematical 
underpinnings of these systems, their general design goals, 
approaches and strengths to be able to: 
• Select the appropriate and best fitting one for a given design situation or 

platform 
• Understand their potential (a) inherent vulnerabilities, (b) additional software 

implementation vulnerabilities, or (c) additional hardware implementation 
vulnerabilities
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Next Topic
§ Message Authentication: Secrecy vs. Integrity
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