CSE/CEN 598
Hardware Security & Trust

Classic and Modern Encryption Algorithms

Prof. Michel A. Kinsy

1/20/25

Trustworthy Hardware System Design
[_rstworty sysems_|

i
Distributed Trustworthy Systems ] [Standa\one Trustworthy Systems]

]
Authenticati

) ] (] 2

Foundations of Computer Security

= It is not necessary to be a cryptographer to properly use
cryptography
* Not everything is math — knowing your assumptions & inherent
vulnerabilities, correctly modeling your threats, understanding information
flows, and applying rig{wt solutions are all important
= Cryptography is a large and diverse field, ranging from very
practical to very abstract concepts
« Often taught as a potpourri of methods
* Hard (at first) to separate abstraction layers
= “Is e.g., zero-knowledge proofs a concept? An algorithm/method? A property?”
« Can we do better?
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Functional Security Properties of Systems

» Functionality:

>
« CIA triad: % Confidentiality
* Confidentiality 5
.2 | pata integrity
* Integrity ©
. R c
Availability 5 | Authentication
2

« Types of security services,
according to NIST [1]: Authorization
+ Confidentiality
+ Data Integrity Non-repudiation
+ Authentication
+ Authorization
+ Non-repudiation

* Not ordered by importance!

[1] Elaine Barker, NIST Special Publication 800-57 Part 1 Revision 5,
Recommendation for Key Management
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Functional Security Properties of Systems

= Security:
« Source of security:
= Information theoretic security
= Computational securi
* Security nonuniformity
* Attack & threat models:
= threat = possibility of something bad happening
* attack = a vulnerability exploited to realize a threat
+ Adversary capability:
= Computational model
= Computational resources
« Domain properties:
= Secure channels Aot
= Trusted parties / hardware
* Domain assumptions o
« Again, not ordered by importance! “"eu%

Confidentiality
Data Integrity

Authentication

Functionality

Authorization

Non-repudiation
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Security Concepts: Implementational Properties

= Implementational properties:

« Algorithmic properties:
= Computational / space complexity

Confidentiality
* Strong / weak scaling

+ Compute requirements:
= FLOPS
= Memory
= Network bandwidth
+ Implementational properties:
= Throughput
= Latency

Data Integrity

Authentication

Functionality

Authorization

Non-repudiation

= Power & area
= Error correction,
noise robustness

* Solution side-effects:
= Side-channel attacks & defense

DOm,,n
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Computer Systems Security
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Secure Channels

= Scenario:
+ Alice and Bob need to privately communicate
+ The only channel between them is being eavesdropped on Eve

= Goal:
+ Need a method to privately transmit data over unsecure channel

= Assumptions:
« Alice and Bob can securely and privately communicate ahead of time

Eve

Alice

12
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One-Time Pads

= Basic idea:
« Alice and Bob exchange a codebook containing a stream of random numbers
* When Alice wants to send Bob a message, she reads numbers from the codebook
* Alice XORs the plaintext with them to create ciphertext
* Alice sends ciphertext over an insecure channel
+ Bob performs the same steps to retrieve the plaintext
*+ Both cross out used numbers
= Upsides:
 Perfect provable secrecy
« Plausible deniability
= Downsides:
* “Key” is as large as the text
* Must be communicated ahead of time
+ Cannot use encryption to send one-time pad if encryption is already using a one-time pad

1/20/25
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Symmetric Cryptography
= Encryption
« Input data, i.e., plaintext plus a secret key
« Qutput is the ciphertext secret key (K)

Plaintext (m) — | Encryption| Ciphertext (c)
Enc()

= Decryption is the inverse function
secret key (k)
|

Plaintext (m) | Decyption, Ciphertext (c)
Dec()
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One-Way & Trapdoor Functions

A one-way function is a function that is easy to compute but computationally
hard to reverse

« Easy to calculate f(x) from x

« Hard to invert, i.e., calculate x from f(x)
There is no cProof that one-way functions exist or that they can be
constructe

« Generations of cryptographers have not made (public) progress

« For example, the modular exponentiation function

= Fairly easy to calculate (x* mod n) from x
* But hard to calculate x from (x® mod n)

A trapdoor one-way function has one additional property
+ With a certain knowledge, the function can be easily inverted
* x = (xmod n) mod n
We will see these more later when discussing asymmetric cryptography

15
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Aspects of Cryptography
= General categories of algorithms
« Stream Ciphers
= Operate on a variable-length stream

= Generate a pseudo-random key stream and XOR with the plaintext
= The algorithm key serves as the seed of the pseudo-random stream generator

* Block Ciphers

= Operate on blocks of predefined sizes
e
Private Key,
T J [ e ]

-
J [ seeomcirer ] (g roctoreaton | [ ovecere togmrim |

Block Cipher
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Stream Ciphers

= Generate a stream of pseudo-random bits
= XOR bits with plaintext to create ciphertext
= To decrypt text, run RC4 in reverse

3%
+ What does it mean to run “in reverse”? %% %
« Encryption and decryption must be perfectly aligned to work 5% %%
= Upsides:
it mlamantaton il
+ No restrictions on plaintext size

ot e P |
Downsides:

A
* By definition, stream ciphers operate on bits
* Asinle cahertext bt s function of the key and  sngle Plaintext ) () E) Ciphertext
plaintext bit

Unﬂﬂﬂn Uol]“ﬂn

« Does this soun
= Cipher feedback (C
* Malleable!

d familiar?
FB) can help (discussed in a couple of slides)

17

STA

Block Ciphers

A block cipher operating on b-bit inputs is a family of
mappings on b bits specified by the key
* k: g-bitkey

* p: b-bit string denoting a plaintext

+ c: b-bit string denoting a ciphertext
Multiple modes of operation that can provide:
+ Confidentiality

* Authentication

* Error detection

Upsides:

Q
S %,
%, %

%
* Better suited to modern networks

3
%,
% %%
" Righ augon (2222
= Avalanche effect w.r.t. plaintext in some modes.

A Plaintext ﬁ: ) Ciphertext
Downsides:

+ Slower than stream ciphers, may be impossible to
preemptively execute the part of computation

+ One-bit errors threaten whole block

18



Example Block Cipher

= 2 bit block cipher, 2 bit key with encryption function

defined by
Key 00 Key 01 Key 10 Key 11
m |C m|c m |C m |Cc

00 |10 00|11 00|11 00 |01
01|11 0100 01|10| |01|00
10 |01 1001 10 |01 10 |11
11 |00 1110 11 |00 11 110

19
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Block Ciphers as Hash Functions

= |terate over all of the b blocks

= Use the output value from the previous block as input to the
current block

* X0 is a constant

m
oSN 0,
(a] =

20
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Block Ciphers as Hash Functions

= A commonly used cryptographic hash function is SHA-1
* SHA-1 was originally designed by NIST and NSA in 1993/1995
« Itis used in the Digital Signature Standard (DSS)
* SHA-256, SHA-384 and SHA-512

] (]
OB OISO, O)
fa] =

21
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Modes of Operation
« mand care fixed length (e.g.,
128 or 256 or 512 bits)

. plaintext m
- Secret key, k, expanded via a |

function called a key schedule to i}

create round keys ki, ko, ... k. r rounds Rl
round i Function
uses ki ;

v
ciphertext ¢

1/20/25
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Modes of Operation

128 bit plaintext

= Advanced Encryption
Standard (AES) =
« 10, 12, 14 rounds for 128, 192,
256 bit keys
= Regular Rounds (9, 11, 13)
* Final Round is different (10%,
12, 14th)
« Each regular round consists of 4
steps
* Byte substitution (BSB)
* Shift row (SR)
* Mix column (MC)
* Add Round key (ARK)

Initial Whitening

9 Regular
Rounds

] Final Round

23
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Modes of Operation

= Diffusion
* Byte Substitution
* Predefined substitution table
= Confusion
* Shift Row
*  Leftcircular shift
= Diffusion and Confusion
* Mix Columns
* 4 elements in each column are multiplied by a polynomial
= Confusion
* Add Round Key

*  Keyis derived and added to each column

24



= 128-bit Shift Row

Modes of Operation

1/20/25

b0 b4 b8 | b12 b0 | b4 | b8 | b12
b1 b5 b9 | b13 b5 | b9 | b13 | b1

b2 b6 | b10 | b14 b10| b14 | b2 | bé
b3 b7 b11 | b15 b15| b3 | b7 | b11

25

Modes of Operation

= Mix Column

- 3 | 1 1
o 2 | 3 | 1
su | 1 2 | 3
ssi 1 1| 2

26

Modes of Operation
= Add Key
b0 b4 b8 b12 kO k4 k8 k12
b1 b5 b9 b13 k1 k5 k9 k13
b2 b6 b10 b14 k2 k6 k10 | k14
b3 b7 b11 b15 k3 k7 k11 k15

27



STAM Center .
Data Encryption Standards
DES (pata Encryption Standard) AES
Date 1976 1999
Block size 64 bits 128 bits.
Key length 56 bits 128, 192, 256, ... bits
and p i itution, shift, bit mixing
primitives
Cryptographic Confusion and diffusion Confusion and diffusion
primitives
Design Open Open
Design rationale  Closed Open
Selection process ~ Secret Secret (accepted public
comment)

Source 1BM, enhanced by NSA Belgian cryptographers

28
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Problems with Symmetric Cryptography

= Alice and Bob require prior communication to privately
communicate
« Keys must be exchanged ahead of time
 No secure method to exchange keys over the channel
= Not possible to authenticate other party
Eve

Bob Alice

29
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Diffie-Hellman Key Exchange Algorithm

Allow two parties agree on a secret value

Both parties compute the secret key K=g¥

Assuming the communication channel is authenticated

* Which a very big assumption

It cannot be used to exchange an arbitrary message

It is a practical method for public exchange of a secret key
It is based on exponentiation in a finite — Galois - field

* Modulo a prime or a polynomial

* This is easy
The security relies on the difficulty of computing discrete logarithms
* This is hard

30

1/20/25
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Diffie-Hellman Key Exchange Algorithm

Select two large numbers

+ One prime p and g a primitive root of p

+ pand g are both publicly available numbers
Participant pick private values x and y
Compute public values

¢ A=g<mod p

«B=gmodp

Public values A and B are exchanged
Compute shared, private key

*+ ke=B<modp
« kr=Armod p
. =k

Participants now have a symmetric secret key to encrypt their messages

31
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Diffie-Hellman

= This is just an introduction of the concept. There are number of
issues to solve for its secure deployment
* Man-In-The-Middle attack
* Replay attack
* Identity-misbinding attack

= Diffie-Hellman vs. RSA
« Diffie-Hellman uses a symmetric key scheme, i.e., both participants agree
on one key
* RSA uses an asymmetric - public-private - key scheme such that a
message encrypted by a public key, can only be decrypted by the
corresponding private key

32

Asymmetric / Public Key Cryptosystem

= A public encryption method has
« A public encryption algorithm
* A public decryption algorithm
* A public encryption key
= Using the public key and encryption algorithm anyone can
encrypt a message
= The decryption key is known only to authorized parties
= RSA: Rivest, Shamir, Adleman

33
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Necessary Math for RSA

= Modular arithmetic:

* a-b=c= a(modn)-b(modn) = c (modn)

+ a=b(modn) = ak = b* (mod n),k € Z

+ (a*(mod n))” (mod n) = @ (mod n)

* a-a=1(modn) = aisthe modular inverse of a
= Euler’s totient function:

« Euler's totient function ¢(n) counts the positive integers up to a given integer n that are

relatively prime to n

« Ifnis prime, ¢p(n) =n—1

* ¢ = o))
= Euler’s theorem:

« If a and n are coprime integers, a®® =1 (mod n)

34

Public Key Cryptosystem (RSA)

* Let p and g be two prime numbers
*n=pq
*m=(p-1)g-1)
= xis such that 1 <x <mand ged(m,x) = 1
= yis such that (xy) mod m = 1
* x is computed by generating random positive integers and testing
ged(m,x) = 1 using the extended Euclid's gcd algorithm
* The extended Euclid’s ged algorithm also computes y when ged(m,x) = 1

35

Public Key Cryptosystem (RSA)

= Security relies on the fact that prime factorization is computationally
very hard
« If kis the number of bits in the binary representation of n
* There is no known algorithm, polynomial in k, to find the prime factors of n
= RSA Encryption And Decryption
* Message M <n
* Encryption key = (a, n)
« Decryption key = (b, n)
« Encrypt
* Enc(M) = M2mod n
* Decrypt
= Dec(M) = Ebmod n

36
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RSA Asymmetric Cryptosystem

Transmitting messages:
= Bob wants to send message m to Alice

Setup:

= Alice publishes a public key (n, e):
+ n=pq, where p and q are large prime numbers

i : + m < n, s0 Bob potentially splits message into
+ eis some large number e.g, e =210 4+ 1= 65537 smaller pieces
* Chosen o be il pine 0 600 = =00 =1y Pl Gl T e gy
= Alice calculates her private key d: o
+ ed=1(mod p(m) = Alice calculates ¢4 = m (mod n)
* ed=1+kp(n)

m = cd(mod n)
a
e
gfd g"nléz :3) (mod n) Euler’s theorem:
L a%™ = 1 (mod n)

ml - mk® (mod n) .
=mt- (m#® (mod ) (mod n)
=m!- 1% (mod n)

Alice

1/20/25
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Security Foundation of RSA

= Alarge value of n prevents finding prime factors p and q
« Factorizing large numbers is very hard

= e chosen to be a very large integer relatively prime to (p — 1)(q —
1):
« m¢ (mod n) "wraps” many times
« Finding discrete logarithms is very hard

38

Brief Review of Number Theory

39
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Brief Review of Number Theory

= Divisibility
« Given integers x and y, with x > 0, x divides y (denoted xly) if there exists
an integer a, such that y = ax
= xis then called a divisor of y, and y a multiple of x
« Given integers X, y such that x>0, x<y then there exist two unique
integers g and r, 0 <= r < x such that y=xq-+r
* r=ymodx
An integer p > 1 is a prime number if only positive divisors of p
are 1and p
Any integer number p > 1 that is not prime, is a composite
number

40
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Brief Review of Number Theory

Fundamental Theorem of Arithmetic

Any integer number x > 1 can be written as a product of prime
numbers that are greater than 1

The product is unique if the numbers are written in increasing order

X =diel.d,e2 .d3e3... diek

Given integers x > 0 and x > 0, we define gcd(x, y) = z, the greatest
common divisor (GCD), as the greatest number that divides both x
andy

The integers x and y are relatively prime (rp) if ged(x, y) =1

41

Brief Review of Number Theory

Given integers x, y > 0 and m > n, then z = gcd(x,y) is the least
positive integer that can be represented as z = mx + ny

Given integers x, y, z >1

* If ged(x, 2) = ged(y, 2) = 1, then ged(xy, 2) = 1

The least common multiple (lcm) of the positive integers x and y
is the smallest positive integer that is divisible by both x and y

= What is the least common multiple of 233572 and 2433?

42
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Brief Review of Number Theory

= What is the least common multiple of 223°72 and 2¢33?
. |cm(233572 ’2433) = 2 max34) 3max(53) 7max(2,0) = 243572
= Letx and y be positive integers, then xy = ged(x,y).lem(x, y)

= All of these transformations and definitions have formal proofs

1/20/25
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Brief Review of Number Theory

= Euclidean Algorithm
+ Given integers x and y great or equal to 1, on can use the division algorithm
repeatedly
y =qix+rn 0<r <x
X =qaftro 0<rn<n

M2 = Qi1 + e 0= <ng
M=1 = Qk+1Tk
« The remainders . get smaller
f>>20

44

Brief Review of Number Theory

= Let (x, y) be in 72, and n in Z*, then x is a congruent to y modulo n
ifndividesa-b
* x =y (mod n)

= Similarly, given n> 0, x, y, we say that y is a multiplicative inverse
of x modulo n if xy = 1 (mod n)
« (xmod n) = (y mod n) > x =y (mod n)

45
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Modular Arithmetic

= Cummutative Laws
* (y+x modn=(x+y)modn
* (y*x)modn = (x*y) mod n
= Associative Laws
« [(z+x) +ylmodn=[z+(x+y)]modn
* [z*x*ylmodn =[z*(x*y)]modn
= Distributive Law
e 2*(x+y)modn=[z*x +(z*y)] modn
= |dentities
* (0+x) modn=xmodn
« (1*xmodn= xmodn
= Additive Inverse (-w)
« For each x in Z», there exists a r such that x + r =0 mod n

1/20/25
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Brief Review of Number Theory

= Quadratic residues
« If there is an integer s, with 0< x <p, such that x* = q (mod p)
« If the congruence x* = q (mod p) has a solution, then q is a quadratic residue of

P
« If the congruence x* = q (mod p) has no solution, then q is a quadratic
nonresidue of p
= Quadratic reciprocity
« It relates the solvability of the congruence
= x2=gq(mod p)
« To the solvability of the congruence
= x2=p(modq)
* Where p and q are distinct odd primes

47
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Brief Review of Number Theory

= Our goal in this class is to quickly run through some these
concepts as they form the foundation of modern cryptography
and by default computer security
« This allows us to better understand the gap between the theoretical
aspects of these problems and the impurities introduced by their software
and/or hardware implementation or even their susceptibility to side-
channel attacks
= For example, understanding of prime factorization
* Prime Factorization Theorem
= Every integer n > 2 can be written as a product of one or more primes

= There is an infinite number of primes

48
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Review of Groups

= Definition of a Group
* A Group G is a collection of elements together with a binary operation*
which satisfies the following properties
= Closure
= Associativity
= |dentity
= Inverses
= * A binary operation is a function on G which assigns an element
of G to each ordered pair of elements in G.
« For example, multiplication and addition are binary operations

49
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Review of Groups

= Groups may be finite or infinite
« They are finite when they have a finite number of elements
= Groups may be commutative or non-commutative
= A set G with a binary operation + (addition) is called a
commutative group if
= The commutative property may or may not apply to all elements
of the group

« Commutative groups are also called Abelian groups

50

Review of Groups

= Groups may be finite or infinite
* They are finite when they have a finite number of elements
= Groups may be commutative or non-commutative

= Aset G with a binary operation + (addition) is called a
commutative group if

Vxy€G,x+ty €G

V %Y.z €G, (x+y)+z=x+(y+2)
V Xy €G, x+y=y+x

30€eG, Vx€eQG, x+0=x
VXx€EG,3-x€G, x+(-x)=0

aprwn -

51
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Review of Groups

= The commutative property may or may not apply to all elements
of the group
+ Commutative groups are also called Abelian groups
* Infinite and Abelian:
« For example, the integers under the addition operation (Z +)
« The rational numbers without O under multiplication (Q*, x)
* Infinite and non-Abelian
= Finite and Abelian
« The integers mod n under modular addition operation (Zn, +)
* Finite and non-Abelian

52
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Review of Groups
= Let (G, +) be a group, (H,+) is a sub-group of (G,+) if it is a group, and
HcG
« If (G, +) be a finite group, H € G, and H is closed under +, then (H,+) is a sub-
group of (G,+)
« Lagrange theorem
= If G is finite and (H,+) is a sub-group of (G,+) then IHI divides IGI
= Let x" denote x+...+x
RARESERE)
(n times)
= The x is of order n if x" = 0, and for any m<n, x"#0
= Euler theorem

* In the multiplicative group of Zn, every element is of order at most ¢(n)

53

Review of Groups

If G be a group and x be an element of order n, then the set
<x>=(1, x,...x""} is a sub-group of G

* x is then the generator of the set <x>

If G is generated by x, then G is called cyclic, and x is a primitive
element of G

For any prime p, the multiplicative group of Z, is cyclic

If G is a group with x € G, then H={x"In € Z} is a sub-group of G

« Itis the cyclic sub-group <x> of G generated by x

Every cyclic group is abelian cyclic

54
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Review of Groups
= Rings

« Aset G with two binary operations + and * is called a commutative ring
with identity if

1. Vxy€G,x+ty€G 6. Vxy€G,x*yeGé6.

2. Vxyz€G, (xy)tz=x+ly+2) 7. ¥ xyz €G, (x*y)z=x*y*2)

3. Vxy€G, xty=y+x 8. Vxy€G, xty=y*

4. 30€G,VxEG, x+0=x 9. 31E€G VXEG, x1=x

5 Vx€G 3x€C, xH=0 10. ¥ x,yz € G, X*{y+2)=x*y + x*z

11.Vx#0€G, x*x1 =

1/20/25
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Review of Groups

Fields
« Afield is a commutative ring with identity where each non-zero element has a
multiplicative inverse
*Vx#0€G,IxTeC, x*x" =1

Given a polynomial function f of degree n in one variable x over a field G, i.e., an,
an-1 ai,a0€G

o ()= an*X" + an X"+ an2* X"+ L +ai*x + ao
« f(x)=0 has at most n solutions in G
Polynomial remainders

o ()= anx" +an X" +an2x"? + ... +aix + ao
+ glx)= b x™ 4 bnax™" + bm2x™? + ...+ bi-x + bo
= Two polynomials over G such that m<n

2 Thore isa uiaue polynomil ) of dogro s than mover G such that s = i * 90 +109
= (4 is called the remaindr of ix) modulo 6

56
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Review of Groups

= Finite field
« Afield (G,+,*) is called a finite field if the set G is finite
= Galois Fields GF(p")

« For every prime power pk (k=1,2,...) there is a unique finite field
containing p* elements.

* These fields are denoted by GF(pk)
* There are no finite fields with other cardinalities

57
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Discrete Logarithm

* Let G be a group, q € G, and y=g* where x the minimal non
negative integer satisfying y=g
« x is the discrete log of y to base q
* Let y=g* mod p be in the multiplicative group of Z,
« The exponentiation steps are O(log®p)
« Standard discrete log is computationally hard
= g given x is easy
= Finding x given g is hard - computationally infeasible
= X+ g is a one way function

= Finally we have arrived to the essence of modern cryptography

58

STAM Center

Birthday Paradox

Let G be a finite set of elements of size n

If we select k elements of G uniforml?/_avnd independently, what is the
probability of getting at least one coflision?

Consider the event Ex with no collision after k elements
Prob(E) = 1(1- 3(1-3)... (- =Y

<exp(-3) exp(- 73) expl- /(7;‘)
= exp(-(1+2+ +/‘7;')
= expl(- X

2r

~ expl- % )

If k=r'2, then Prob(E)<0.607
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Review of Hash Functions

= A hash function that maps a message

of an arbitrary length to an n-bit output
(digest)
For a function f: X =Y l
« Itis injective if f(x) = f(y) implies x = y for all
X, yEX,
« Surjective if for any y € Y there is x € X with Hash Function
fx) =y,
« Bijective if it is both injective and surjective
« If there is a bijection between two finite ﬂ
sets, then the sets have the same number of

elements N-bit Output
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Review of Hash Functions

A hash function that maps a message of an arbitrary length to an n-bit
output

Hash functions can be implemented using compression functions

A hash function is a many-to-one function, so collisions can happen
= A cryptographic hash function has additional properties
* One-wayness

* Itis computationally infeasit to find mapping to specific hash
outputs
« Collision freedom

= Itis computationally infeasible/very unlikely to find two messages that hash to the same
output

1/20/25
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Review of Hash Functions
= Message Integrity Check (MIC)

« Send hash of message, i.e., digest
« The digest is sent always encrypted

= Message Authentication Code (MAC)
« Send keyed hash of message
* MAC, message optionally encrypted

= Digital Signature for non-repudiation
* Encrypt hash with private signing key
« Verify with public verification key
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Review of Hash Functions

= Pseudorandom function (PRF)
« Generate session keys, nonces
* Produce key from password
« Derive keys from master key cooperatively
= Pseudorandom number generator (PRNG)
« Vernam Cipher

* S/Key, proof of “knowledge” via messages
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Review of Hash Functions

= Lamport One-time Passwords
* Provide password safety in distributed systems

= Server compromise does not compromise the password
* Interception of authentication exchange also does not compromise password

= [llustration
« Alice picks a password pa
« She hashes the password n times, h(pa)
« Server stores (Alice, n, h"(pa))
« Attacker is not able to get pa from h"(pa)

1/20/25
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Review of Hash Functions

= Lamport One-time Passwords
« Provide password safety in distributed systems
* Server compromise does not compromise the password
* Interception of authentication exchange also does not compromise password
= lllustration
* Protocol
* Alice sends "Alice”
* Server sends "n-1"
* Alice sends “x" where x= h™i(pa)
* Server verifies h(h) = h(ps)
* Server updates to (Alice, -1, x)

Attacker still cannot extract pa or impersonate Alice
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In Summary

= Our goal in this class is to (1uick|y run through some these concepts as
they form the foundation of modern cryptography and by default
computer security

« This allows us to better understand the gap between the theoretical aspects of
these problems and the impurities introduced by their software and/or hardware
implementation or even their susceptibility to side-channel attacks

You must understand to a certain degree some the mathematical
underpinnings of these systems, their general design goals,
approaches and strengths to be able to:

« Select the appropriate and best fitting one for a given design situation or
platform

* Understand their potential (a) inherent vulnerabilities, (b) additional software

\mr)\ementat\on vulnerabilities, or (c) additional hardware implementation
vulnerabilities
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Next Topic

= Message Authentication: Secrecy vs. Integrity
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