

CSE/CEN 598 Hardware Security & Trust

Public Key Infrastructure

Prof. Michel A. Kinsy

Public Key Infrastructure (PKI)

- What is Public Key Infrastructure (PKI)?
 - Enables users to securely and privately exchange data over an unsecured medium without the loss of integrity or confidentiality
 - "A PKI is a set of agreed-upon standards, Certification Authorities (CA), structure between multiple CAs, methods to discover and validate Certification Paths, Operational Protocols, Management Protocols, Interoperable Tools and supporting Legislation"
 - "Digital Certificates" book by J. Feghhi, J. Feghhi, and P. Williams
 - "agreed-upon standards"
 - By who?
 - "Interoperable Tools and supporting Legislation"
 - Interesting
 - "Certification Authorities (CA)"
 - This is a technical nugget that we can work with

Public Key Infrastructure (PKI)

- A PKI is an Infrastructure to support and manage Public Key-based Digital Certificates
 - Couple concepts
 - Public Key
 - Digital Certificates
- What are the functions and components of PKI
 - Certification authority (CA)
 - Registration authority (RA)
 - PKI clients
 - Digital certificates
 - Certificate Distribution System or repository
 - Keys (Public and Private)

Public-Key Cryptography

- A Public-key cryptography (PKC) is a two-key protocol system
 - It uses one key for encryption and another for decryption
 - It also called asymmetric encryption
 - It is primarily used for authentication, non-repudiation, and key exchange
- PKC depends upon the existence of so-called one-way functions or mathematical functions that are easy to compute whereas their inverse function is relatively difficult to compute
- There are three classes of cryptosystems
 - Message Digest
 - Secret Key
 - Public Key

The Three Cryptosystem Classes

- Message Digest
 - Maps variable length plaintext into fixed length ciphertext
 - No key usage, computationally infeasible to recover the plaintext
 - Examples
 - MD2-4-5, SHA, SHA-1, etc.
- Secret Key
 - Encrypt and decrypt messages by using the same Secret Key
 - Examples
 - Blowfish, DES, IDEA, RC2-4-5, Triple-DES, etc.
- Public Key
 - Encrypt and decrypt messages by using two different Keys: Public Key, Private Key (coupled together)
 - Examples
 - DSA, RSA, etc.

Secret Key vs. Public Key

- Secret Key based approaches
 - Advantages
 - Simple model
 - Provides Integrity and confidentiality
 - Challenges
 - The same secret key must be shared by all the entities involved in the data exchange
 - High risk of being compromised and does not scale well
 - Does not provide authentication and non-repudiation
- Public Key based approaches
 - Private key is only known by the owner, therefore has less risk of being compromised
 - It ensures integrity and confidentiality by encrypting with the Receiver's Public key
 - It ensures non-repudiation by encrypting with the Sender's Private key

Public Key Infrastructure (PKI)

- A PKI is an Infrastructure to support and manage Public Keybased Digital Certificates
 - Couple concepts
 - Public Key
 - Digital Certificates
- What are digital certificates and digital signatures?
 - A Digital Signature is a data item that vouches the origin and the integrity of a Message
 - The originator of a message uses a signing key (Private Key) to sign the message and send the message and its digital signature to a recipient
 - The recipient uses a verification key (Public Key) to verify the origin of the message and that it has not been tampered with while in transit

Public Key Infrastructure (PKI)

- What are digital certificates and digital signatures?
 - A Digital Signature is a data item that vouches the origin and the integrity of a Message
- Problem with Digital Signature is how to linked the "Identity" of the Signer to signature
 - Why should one trusts who the Sender claims to be?
- Digital Certificate
 - A Digital Certificate is a binding between an entity's Public Key and one or more Attributes relating its Identity
 - The entity can be a Person, an Hardware Component, or a Service
 - A Digital Certificate is issued (and signed) by someone
 - Usually the issuer is a Trusted Third Party

Digital Certificates (CA)

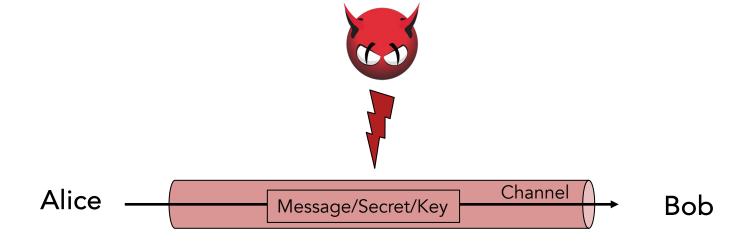
- Challenges to resolve with CA
 - How are Digital Certificates Issued?
 - Who is issuing them?
 - Why should one Trust the Certificate Issuer?
 - How can one check if a Certificate is valid?
 - How can one revoke a Certificate?
 - Who is revoking Certificates?

Certification Authorities (CA)

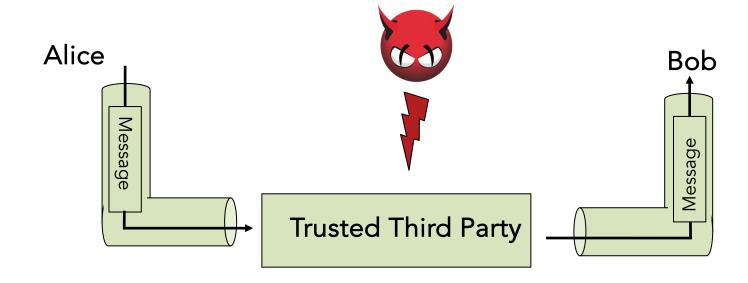
- The basic functions of the CA
 - Key Generation
 - Digital Certificate Generation
 - Certificate Issuance and Distribution
 - Revocation
 - Key Backup and Recovery System
 - Cross-Certification
- Certificate Distribution System
 - Provide a repository or a set of repositories for
 - Digital Certificates
 - Certificate Revocation Lists (CRLs)

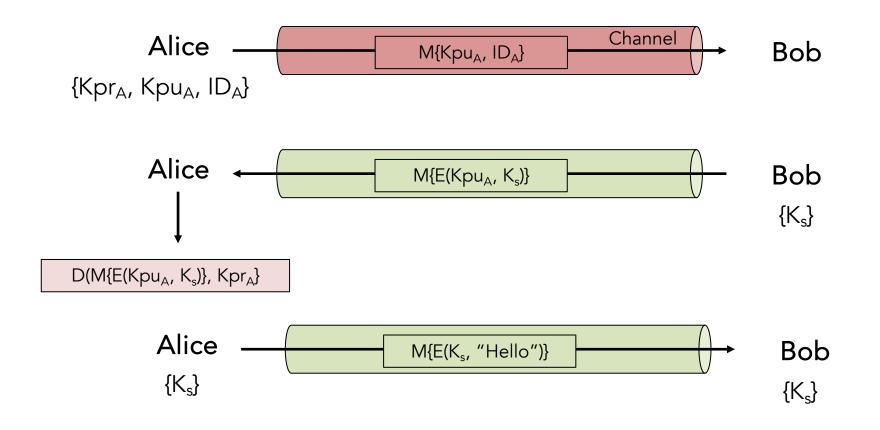
Registration Authority (RA)

- The basic functions of the RA
 - Registration of Certificate Information
 - Face-to-Face Registration
 - Remote Registration
 - Automatic Registration
 - Revocation
- How should we do these for hardware?
 - Excellent question


Public Key Infrastructure (PKI)

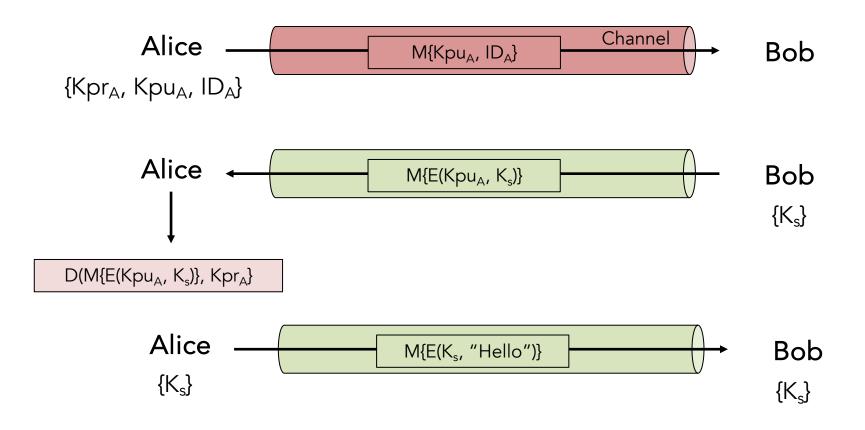
- PKI-enabled Applications
- Functionality required for PKI
 - Cryptographic functionality
 - Secure storage of Personal Information
 - Digital Certificate Handling
 - Directory Access
 - Communication Facilities


- Symmetric schemes require both parties to share a common secret key
 - The challenge is how to securely distribute the key
 - Frequent key changes can also be a challenge
- Let us say we have two participants Alice and Bob who need to digitally share a key/secret


- If Alice and Bob have secure communications with a trusted third party, they could use that to established a common key
 - But this just kicking the can down the road

Merkle key distribution scheme

- Recall Diffie-Hellman protocol
- Diffie and Hellman formalized Merkle's proposal
 - Public information


```
p is a prime number g is a generating element of Z_p
```

- Alice's
 - Private Key: a
 - Public Key : g^a mod p
- Bob's
 - Private Key: b
 - Public Key: g^b mod p
- Key Exchange
 - Alice obtains g^b and computes
 - $(g^b)^a = g^{ab} \bmod p = K_s$
 - Bob obtains g^a and computes
 - $(g^a)^b = g^{ab} \bmod p = K_s$
 - Alice and Bob have agreed upon key K_s

- Merkle key distribution scheme
 - Vulnerable to an active man-in-the-middle attack

- Public key based security
 - Recall the general public-private key encryption scheme
 - How should the public key distribution work?
 - Decentralized key distribution
 - Public announcement
 - Centralized key distribution
 - Publicly available directory
 - How to secure the directory itself
 - Public-key authority
 - Public-key certificates
 - Each approach has some pros and cons

- Public key based security
 - Recall the general public-private key encryption scheme
 - How should the public key distribution work?
 - Public announcement
 - Owners can distribute public keys to recipients in one-to-one, one-to-many or one to all fashions
 - There is a considerable communication overhead
 - Forgery and impersonation are problems
 - Publicly available directory
 - Public-key authority
 - Public-key certificates
 - Each approach has some pros and cons

- Public key based security
 - Recall the general public-private key encryption scheme
 - How should the public key distribution work?
 - Public announcement
 - Publicly available directory
 - · Create a directory for the public keys and have owners register them
 - The directory needs to be trusted
 - The scheme needs to allow for key replacements or invalidations
 - Owner should register key securely with the directory
 - Forgery and impersonation are still problems
 - Public-key authority
 - Public-key certificates
 - Each approach has some pros and cons

- Public key based security
 - Recall the general public-private key encryption scheme
 - How should the public key distribution work?
 - Public announcement
 - Publicly available directory
 - Public-key authority
 - To implement security control over distribution of keys from directory
 - Central authority maintains a dynamic directory of public keys of all parties
 - The parties know the authority's public key
 - Public-key certificates
 - Each approach has some pros and cons

What is initially known by the parties

Trusted Third Party

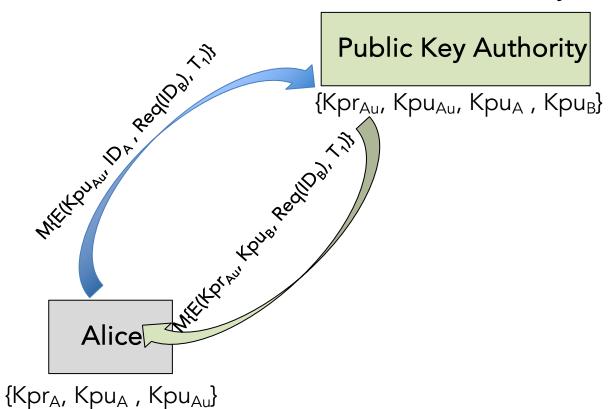
Public Key Authority

{Kpr_{Au}, Kpu_{Au}, Kpu_A, Kpu_B}

Alice

 $\{Kpr_A, Kpu_A, Kpu_{Au}\}$

Bob


 $\{Kpr_B, Kpu_B, Kpu_{Au}\}$

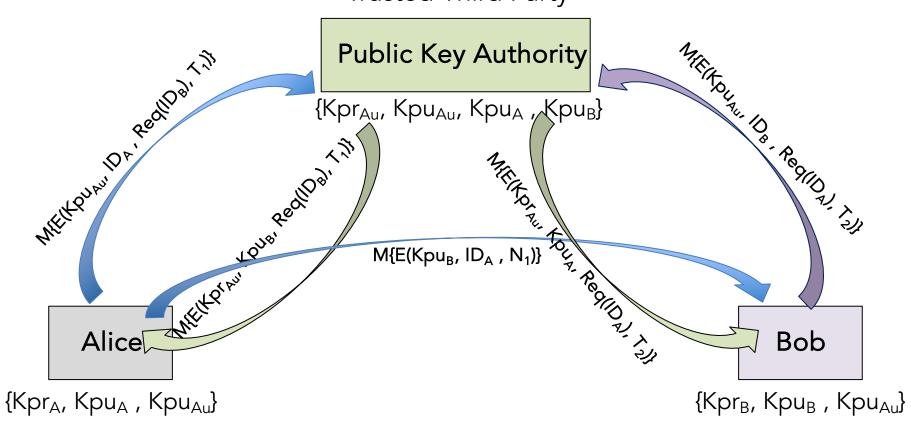
What is initially known by the parties

Trusted Third Party

Bob

{Kpr_B, Kpu_B, Kpu_{Au}}

What is initially known by the parties


Trusted Third Party **Public Key Authority** {Kpr_{Au}, Kpu_{Au}, Kpu_A, Kpu_B} Your Redill 81 7 11 $M\{E(Kpu_B, ID_A, N_1)\}$ Alice Bob $\{Kpr_A, Kpu_A, Kpu_{Au}\}$ $\{Kpr_B, Kpu_B, Kpu_{Au}\}$

What is initially known by the parties

Trusted Third Party

What is initially known by the parties

Trusted Third Party Military Do Regilba, 733 MENOUAU PAREDIDATA **Public Key Authority** {Kpr_{Au}, Kpu_{Au}, Kpu_B} Your Redilloy, 'Il $M{E(Kpu_B, ID_A, N_1)}$ LAKELYOTAU $M\{E(Kpu_A, N_1, N_2)\}$ Alice Bob {Kpr_A, Kpu_A, Kpu_{Au}} [Kpr
]
 [R, Kpu
 $M\{E(Kp_B, N_2)\}$

Public Key Certificates

- Certificates allow key exchange without real-time access to public-key authority
 - A certificate binds the identity (ID) of the owner and its public key
 - Period of validity
 - Rights of use
 - Signed by a trusted third party or public key certificate authority (CA)
 - Alice_{Certificate} = $f_{\text{binding_function}}(ID_A, Expiration, Kpu_A, use_{A1}, signature)$
 - Key: Can be verified by anyone who knows CA's public key

Public Key Certificates

- Certificates allow key exchange without real-time access to public-key authority
 - Alice needs Bob's public key
 - Alice takes Bob's certificate
 - She apply certification authority (CA)'s public key to Bob's certificate to get Bob's public key
- Lower number of message exchanges
 - Compared to the public key authority protocol
 - But there are a number of issues with both
 - How certificate requests from users are processed
 - How users' identity is validated
 - Algorithm used to generate and sign the user's certificate Efficient revocation of certificates

Key Hierarchy

- Public key encryption algorithms are slow
 - Inefficient
- Symmetric key encryption algorithms are many orders of magnitude faster than public key encryption algorithms
- Typically there is a hierarchy of keys
 - Session key or temporary key used for encryption of data between users for one logical session then discarded
 - Symmetric key
 - Master key used to negotiate session keys
 - Public key

Next Class

Information Channels, Covert Channels, & Side Channels