

2

STAM Center

ASU Engineering

Security vs. Trust

- Security issues arise from the computing system's vulnerability to attacks
- Trust issues arise from involvement of untrusted entities and components in the life cycle of the hardware
- Untrusted IP and Compute-Aid Design (CAD) tool vendors, untrusted design, fabrication, test, and distribution facilities, and lack of traceable provenance
- These parties are capable of violating the trustworthiness of the hardware component and system
- Trust issues often lead to security concerns

Trusted vs. Trustworthy When a component of a system is trusted Security of the system depends on it Failure of component will compromise the security policy

- Determined by its role in the systemWhen a component is trustworthy
 - Component is deemed to be trusted
 - e.g., It is implemented correctly
 - Determined by intrinsic properties of the component

4

STAM Center

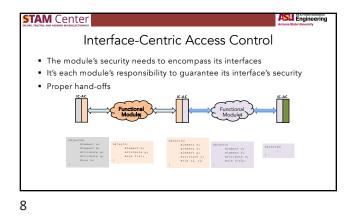
Computing System Security Patterns Concentration Concentration System Security Secur

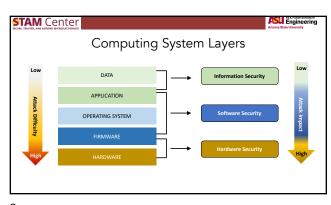
5

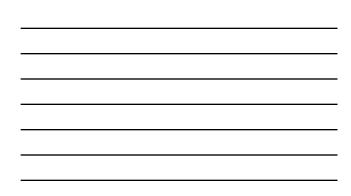
STAM Center

ASU Engineering

ASU Engineering

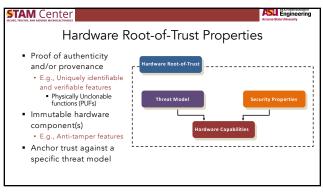

- Some of the well understood concepts are
 - Least Privilege
 - Provide to each component (hardware module or software routine) only the privileges it needs


Secure by Design

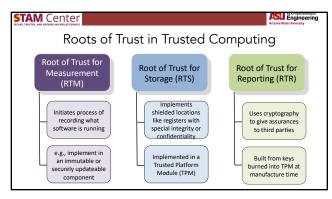

- Fail-safe defaults
- Only allow explicit permissionEfficient security mechanism
- Implement simple security mechanisms to encourage usage
- Formally Secure
- Avoid relying on security by secrecy or obscurity
- They implementation is another issue altogether

STAM Center Interface-Centric Access Control Decide how to partition the design Both physically and logically to implement IC-AC Regulate whether components have sufficient privileges to communicate through certain interfaces Provide secure interaction between secure/non-secure components Formally verify the composition of IC-AC policies, i.e., proper access privilege propagations Route messages according to policies implemented in the IC-ACs Functional Module

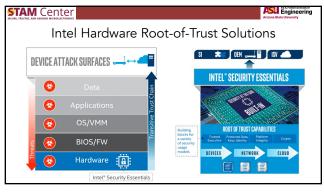
ASU Engineering

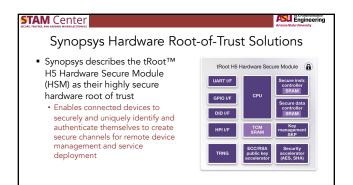


STAM Center


ASU Engineering

Security & Trust Anchor Candidate


- Since attack difficulty is at the highest with the hardware, it presents an excellent anchor for the compute security features
- Hardware as the Root-of-Trust (RoT) Design Methodologies
 NIST (NIST SP 1800-19B) defines Hardware Root-of-Trust as "An inherently trusted combination of hardware and firmware that maintains the integrity of information."
 - Practically, Hardware Root-of-Trust (HRoT) is defined as the foundational building block(s) of different security schemes, protocols, products, or services within a secure computing system
 - Formally, Hardware Root-of-Trust (HRoT) is an immutable hardware component or a set of hardware components (e.g., an encryption engine and/or a dedicated secure processor) considered unconditionally trusted against a well-defined threat model



Intel Hardware Root-of-Trust Solutions					
CORE CAPABILITY	TECHNOLOGY	PROTECTION FOR	DESCRIPTION		
Platform Integrity	Intel® Platform Protection Technology with Boot Guard	BIOS/FW	Verifies OEM pre-OS boot loader code executing out of reset		
	Intel® Platform Protection Technology with BIOS Guard	BIOS/FW	Enables a HW based static Root of Trust for measurement and verification for boot integrity		
	Intel® Runtime BIOS Resilience	OS/VMM	Helps protect SSM from malicious code injection		
	Intel® Platform Protection Technology with OS Guard	OS/VMM	Helps prevent malicious code from executing out of application memory space		
	Intel® Platform Firmware Resiliance	BIOS/FW	Helps protect firmware from corruption; assists with system restoration in case of malware		
Trusted Execution	Intel® Software Guard Extensions	Apps	Enables creation and use of isolated app enclaves to protect against attacks on executing code or data stored in memory		
	Intel® Virtualization Technology	OS/VMM	Creates firewall between main OS and secure workloads running insid a secure VM		
Protected Data, Keys, Identity	Intel® Platform Trust Technology	Data	Integrated HW TPM enables secure storage of keys/credentials, registry values, & boot block measurements for remote attestation		
	Intel® Enhanced Privacy ID	Data	Cryptographic scheme provides direct anonymous attestation of hardware for privacy		
Crypto Accelerators	Intel® Data Protection Technology with Secure Key	Data	High entropy source of random numbers to generate keys		
	Intel® Advanced Encryption Standard	Data	Accelerates math calculations for AES-NI encryption		

Hardware Root-of-Trust Usage Model DoD Orange Book "The ability of a trusted computing base to enforce correctly a unified security policy depends on the correctness of the mechanisms within the trusted computing base, the protection of those mechanisms to ensure their correctness, and the correct input of parameters

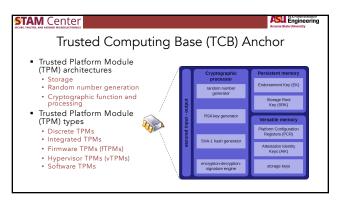
related to the security policy."

16

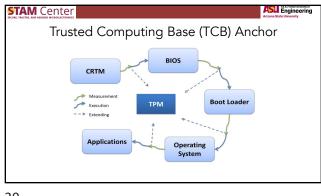
Contract Content Contract Contract Contract Contract Contract Contract Contract

17

STAM Center

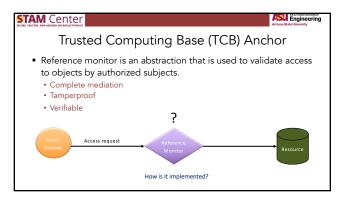

ASU Engineering

Trusted Computing Base (TCB) Anchor

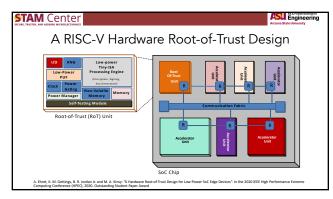

- At the heart of the Trusted Computing Base (TCB) is the Trusted Platform Module (TPM)
- The TPM provides hardware-based authentication, integrity, and attestation to the TCB

• It is designed as a small tamper-resistant chip that provides the following

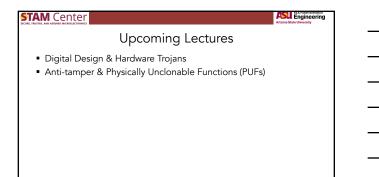
- functions
- A root-of-trust for reporting and storage
- Measurement and attestation of platform integrity
 Platform identification and authentication
- Platform identification and authentication
 Core and highly constrained cryptographic functions







						Arizona State University	
Trusted Computing Base (TCB) Anchor							
Store columnCapabilityAllow user to	 Access control list (ACL) Store column of matrix with the resource. Capability Allow user to hold a "ticket" for each resource. Store row of matrix with the user. 						
		File 1	File 2	File 3			
	User 1	read/write	write	-	-		
	User 2	write	read	read	-		
	User 3	-	-	write	read		
	User n	write	read	write	_		


Access Control List vs. Capability Access control list Associates list with each object Checks user/group against list Relies on authentication Capability Is unforgeable "ticket" Can be passed from one process to another Checks ticket without requiring the identity of user/process		Arizona State University
 Associates list with each object Checks user/group against list Relies on authentication Capability Is unforgeable "ticket" Can be passed from one process to another 	Access Control List vs. Capab	ility
 Checks user/group against list Relies on authentication Capability Is unforgeable "ticket" Can be passed from one process to another 	 Access control list 	
 Relies on authentication Capability Is unforgeable "ticket" Can be passed from one process to another 	 Associates list with each object 	
 Capability Is unforgeable "ticket" Can be passed from one process to another 	 Checks user/group against list 	
 Is unforgeable "ticket" Can be passed from one process to another 	Relies on authentication	
Can be passed from one process to another	 Capability 	
	Is unforgeable "ticket"	
Checks ticket without requiring the identity of user/process	 Can be passed from one process to another 	
	 Checks ticket without requiring the identity of user/proce 	ess

