
Trusted Digital System Design:
Verilog Fundamentals I

Prof. Michel A. Kinsy & Mishel Paul

CSE/CEN 598
Hardware Security & Trust

Computer System Description
§ A system is a set of related components that works as a whole to

achieve a goal.
§ A system contains:

§ Inputs
§ Behavior
§ Outputs

§ Behavior is a function that translates inputs to outputs

Behaviorinputs outputs
: :

Integrated Circuit Based Designs

§ Complex digital integrated circuits (ICs) are manufactured with
the advent of Microelectronics Technology
§ The number of components fitted into a standard size IC represents

its integration scale, also called density

Digital System Design

§ Characteristics of digital systems
§ Synchronous vs. Asynchronous
§ Sequential vs. Combinational
§ Design parameters

Digital Circuit

Digital Design Flow
HDL Coding

Functional/Gate
 Simulation/Verification

Logic Synthesis

Clock Tree Insertion

Final Layout

Final Design Check
DRC/LVS

Test-Insertion

Static Timing Analysis

Floorplanning/
Place & Route

scr

test.scr

_pre.sdf

_post.sdf

techfile.lef
techfile.gcf
*.lef
*.tlf
*.def

ctgen.con

gds2

Synopsys - StarRXT
Cadence - Pearl

Timing Extraction

Cadence - Assura, Dracula
Mentor – Callibre

DRC/ANT Checking

Synopsys - TetraMax
Mentor - Fastscan

Test Insertion

Synopsys - Primetime Static Timing Anal.

Cadence - Sensemble/
SOC Encounter
Synopsys - Apolllo

Place & Route

Cadence - CTgen Clock Tree Insertion

Cadence - Assura, Dracula
Mentor – Callibre

LVS

Synposys - Design Compiler Synthesis

Mentor - Modelsim SE
Synopsys - Leda

Verification

Text Editor
Emacs, Nedit, Vi

HDL Design (Verilog,
VHDL, Bluespec)

Tools Design Stage Verilog
RTL

Verilog test
bench

Verilog
Netlist

Timing Extraction

Digital Design Flow: FPGA Design
§ FPGA-based design as a sub-domain of digital design

Detailed (RTL)
Design

Design
Ideas

(Specifications)

Device
Programming

Timing
Simulation

Synthesis &
Implementation

Functional
Simulation

tpd=22.1ns
fmax=47.1MHz

FPGA
CPLD

RTL Design Tools
§ In this class, we will learn the principles of RTL (register level

transfer) coding for synthesis tools through the Verilog hardware
description language (HDL) for the design and documentation of
out electronic systems.
§ Verilog allows designers to design at various levels of abstraction.
§ It is the most widely used HDL

Programmable Logics
§ Field Programmable Gate Arrays (more on it later)

§ Each cell in array contains a programmable logic function

Logic Block

I/O Block

Interconnect

Programmable Logics
§ Field Programmable Gate Arrays (more on it later)

§ Array has programmable interconnect between logic functions

Verilog Fundamentals
§ Data types
§ Structural Verilog
§ Functional Verilog

§ Gate level
§ Register transfer level
§ High-level behavioral

Primary Verilog data type
§ Primary Verilog data type is a bit-vector where bits can take

Value Meaning
0 Logic zero
1 Logic one
X Unknown logic value
Z High impedance, floating

An X bit might be a 0, 1, Z, or in transition. We can
set bits to be X in situations where we don’t care
what the value is. This can help catch bugs and
improve synthesis quality

Verilog wire
§ The Verilog keyword wire is used to denote a standard

hardware net
wire [15:0] instruction;
wire [15:0] memory_req;
wire [7:0] small_net;

in
st

ru
ct

io
n

m
em

or
y_

re
q

in
st

ru
ct

io
n

sm
al

l_
ne

t

?

Absolutely no type safety
when connecting nets!

Verilog bit literals
§ Verilog includes ways to specify bit literals in various bases

4’b10_11
Underscores
are ignored

Base format
(d,b,o,h)

Decimal number
representing size in bits

§ Binary literals
§ 8’b0000_0000
§ 8’b0xx0_1xx1

§ Hexadecimal literals
§ 32’h0a34_def1
§ 16’haxxx

§ Decimal literals
§ 32’d42

Verilog module specification
§ A Verilog module includes a module name and a port list

module adder(A, B, cout, sum);
 input [3:0] A;
 input [3:0] B;
 output cout;
 output [3:0] sum;

 // HDL modeling of
 // adder functionality

endmodule

Note the semicolon at
the end of the port list!

Ports must have a
direction (or be
bidirectional) and a
bitwidth

adder

A B

sumcout

4 4

4

Verilog module specification
§ A Verilog module includes a module name and a port list

Traditional Verilog-1995 Syntax

module adder(A, B, cout, sum);
 input [3:0] A;
 input [3:0] B;
 output cout;
 output [3:0] sum;

ANSI C Style Verilog-2001 Syntax
module adder(input [3:0] A,
 input [3:0] B,
 output cout,
 output [3:0] sum);

adder

A B

sumcout

4 4

4

Module composition
§ A module can instantiate other modules creating a module

module FA(input a, b, cin
 output cout, sum
);

 // HDL modeling of 1 bit
 // adder functionality

endmodule

FA

ba

c

cin

cout

Module composition

module adder(input [3:0] A, B,
 output cout,
 output [3:0] S);

 wire c0, c1, c2;
 FA fa0(...);
 FA fa1(...);
 FA fa2(...);
 FA fa3(...);

endmodule

adder

A B

Scout

FA FA FA FA

module adder(input [3:0] A, B,
 output cout,
 output [3:0] S);

 wire c0, c1, c2;
 FA fa0(A[0], B[0], 1’b0, c0, S[0]);
 FA fa1(A[1], B[1], c0, c1, S[1]);
 FA fa2(A[2], B[2], c1, c2, S[2]);
 FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule Carry Chain

Module composition

adder

A B

Scout

FA FA FA FA

§ Verilog supports connecting ports by position and by name

Connecting ports by ordered list

FA fa0(A[0], B[0], 1’b0, c0, S[0]);

Connecting ports by name (compact)

 FA fa0(.a(A[0]), .b(B[0]),
 .cin(1’b0), .cout(c0), .sum(S[0]));
Connecting ports by name

 FA fa0
 (
 .a (A[0]),
 .b (B[0]),
 .cin (1’b0),
 .cout (c0),
 .sum (S[0])
);

For all but the smallest modules,
connecting ports by name yields clearer
and less buggy code.

Module composition

Functional Verilog
§ Functional Verilog can roughly be divided into three abstraction

levels
Behavioral
Algorithm

Register
Transfer Level

Gate Level

Manual

Logic Synthesis

Auto Place + Route

V

V

V Abstract algorithmic description

Describes how data flows between
state elements for each cycle

Low-level netlist
of primitive gates

module mux4(input a, b, c, d, input [1:0] sel, output out);

 wire [1:0] sel_b;
 not not0(sel_b[0], sel[0]);
 not not1(sel_b[1], sel[1]);

 wire n0, n1, n2, n3;
 and and0(n0, c, sel[1]);
 and and1(n1, a, sel_b[1]);
 and and2(n2, d, sel[1]);
 and and3(n3, b, sel_b[1]);

 wire x0, x1;
 nor nor0(x0, n0, n1);
 nor nor1(x1, n2, n3);

 wire y0, y1;
 or or0(y0, x0, sel[0]);
 or or1(y1, x1, sel_b[0]);
 nand nand0(out, y0, y1);

endmodule

Gate-level Verilog

sel[0]sel[1]cadb

out

Continuous Assignments
§ Continuous assignment statements assign one net to another or

to a literal

Explicit continuous assignment
wire [15:0] netA;
wire [15:0] netB;

assign netA = 16’h3333;
assign netB = netA;

Implicit continuous assignment
wire [15:0] netA = 16’h3333;
wire [15:0] netB = netA;

Continuous Assignments
§ Using continuous assignments to implement an RTL four input

multiplexer

module mux4(input a, b, c, d
 input [1:0] sel,
 output out);

 wire out, t0, t1;
 assign out = ~((t0 | sel[0]) & (t1 | ~sel[0])
);
 assign t1 = ~((sel[1] & d) | (~sel[1] & b));
 assign t0 = ~((sel[1] & c) | (~sel[1] & a));

module mux4(input a, b, c, d
 input [1:0] sel,
 output out);

 wire out, t0, t1;

 assign t0 = ~((sel[1] & c) | (~sel[1] & a));
 assign t1 = ~((sel[1] & d) | (~sel[1] & b));
 assign out = ~((t0 | sel[0]) & (t1 | ~sel[0]));

endmodule
The order of these continuous assignment statements
does not matter. They essentially happen in parallel!

Other Verilog Operators
§ Verilog RTL includes many operators in addition to basic boolean

logic
// Four input multiplexer
module mux4(input a, b, c, d
 input [1:0] sel,
 output out);

 assign out = (sel == 0) ? a :
 (sel == 1) ? b :
 (sel == 2) ? c :
 (sel == 3) ? d : 1’bx;

Endmodule
// Simple four bit adder
module adder(input [3:0] op1, op2,
 output [3:0] sum);

 assign sum = op1 + op2;

endmodule

If input is undefined,
we want to propagate
that information

Verilog RTL operators
Arithmetic + - * / % **

Logical ! && ||

Relational > < >= <=

Equality == != === !===

Bitwise ~ & | ^ ^~

wire [3:0] net1 = 4’b00xx;
wire [3:0] net2 = 4’b1110;
wire [11:0] net3 = { 4’b0, net1, net2 };

Reduction & ~& | ~| ^ ^~

Shift >> << >>> <<<

Concatenation { }

Conditional ?:

Avoid (/ % **) since the usually synthesize poorly

wire equal = (net3 === 12’b0000_1110_00xx);

Procedural Assignments
§ Always blocks have parallel inter-block and sequential intra-block

semantics
module mux4(input a, b, c, d
 input [1:0] sel,
 output out);
 reg out, t0, t1;

 always @(a or b or c or d or sel)
 begin
 t0 = ~((sel[1] & c) | (~sel[1] & a));
 t1 = ~((sel[1] & d) | (~sel[1] & b));
 out = ~((t0 | sel[0]) & (t1 | ~sel[0]));
 end
endmodule

The always block is
reevaluated whenever a
signal in its sensitivity
list changes

Procedural Assignments

module mux4(input a, b, c, d
 input [1:0] sel,
 output out);
 reg out, t0, t1;

 always @(a or b or c or d or sel)
 begin
 t0 = ~((sel[1] & c) | (~sel[1] & a));
 t1 = ~((sel[1] & d) | (~sel[1] & b));
 out = ~((t0 | sel[0]) & (t1 | ~sel[0]));
 end
endmodule

The order of these procedural assignment
statements does matter.
They essentially happen in sequentially!

§ Always blocks have parallel inter-block and sequential intra-block
semantics

Procedural Assignments

module mux4(input a, b, c, d
 input [1:0] sel,
 output out);
 reg out, t0, t1;

 always @(a or b or c or d or sel)
 begin
 t0 = ~((sel[1] & c) | (~sel[1] & a));
 t1 = ~((sel[1] & d) | (~sel[1] & b));
 out = ~((t0 | sel[0]) & (t1 | ~sel[0]));
 end
endmodule

LHS of procedural assignments must be
declared as a reg type. Verilog reg is not
necessarily a hardware register!

§ Always blocks have parallel inter-block and sequential intra-block
semantics

Procedural Assignments

module mux4(input a, b, c, d
 input [1:0] sel,
 output out);
 reg out, t0, t1;

 always @(a or b or c or d or sel)
 begin
 t0 = ~((sel[1] & c) | (~sel[1] & a));
 t1 = ~((sel[1] & d) | (~sel[1] & b));
 out = ~((t0 | sel[0]) & (t1 | ~sel[0]));
 end
endmodule What happens if we accidentally forget a

signal on the sensitivity list?

§ Always blocks have parallel inter-block and sequential intra-block
semantics

Procedural Assignments

module mux4(input a, b, c, d
 input [1:0] sel,
 output out);
 reg out, t0, t1;

 always @(a or b or c or d or sel)
 begin
 t0 = ~((sel[1] & c) | (~sel[1] & a));
 t1 = ~((sel[1] & d) | (~sel[1] & b));
 out = ~((t0 | sel[0]) & (t1 | ~sel[0]));
 end
endmodule

Verilog-2001 provides special syntax to
automatically create a sensitivity list for all
signals read in the always block

§ Always blocks have parallel inter-block and sequential intra-block
semantics

Assignments
§ Continuous and procedural assignment statements are very different

Continuous assignments are for naming and thus we cannot have multiple
assignments for the same wire

 wire out, t0, t1;
 assign t0 = ~((sel[1] & c) | (~sel[1] & a));
 assign t1 = ~((sel[1] & d) | (~sel[1] & b));
 assign out = ~((t0 | sel[0]) & (t1 | ~sel[0]));

Procedural assignments hold a value semantically, but it is important to distinguish
this from hardware state

 reg out, t0, t1, temp;
 always @(*)
 begin
 temp = ~((sel[1] & c) | (~sel[1] & a));
 t0 = temp;
 temp = ~((sel[1] & d) | (~sel[1] & b));
 t1 = temp;
 out = ~((t0 | sel[0]) & (t1 | ~sel[0]));
 end

Always Blocks
§ Always blocks can contain more advanced control constructs

module mux4(input a, b, c, d
 input [1:0] sel,
 output out);

 reg out;

 always @(*)
 begin
 if (sel == 2’d0)
 out = a;
 else if (sel == 2’d1)
 out = b
 else if (sel == 2’d2)
 out = c
 else if (sel == 2’d3)
 out = d
 else
 out = 1’bx;
 end

endmodule

module mux4(input a, b, c, d
 input [1:0] sel,
 output out);

 reg out;

 always @(*)
 begin
 case (sel)
 2’d0 : out = a;
 2’d1 : out = b;
 2’d2 : out = c;
 2’d3 : out = d;
 default : out = 1’bx;
 endcase
 end

endmodule

Case Statements
§ What happens if the case statement is not complete?

module mux3(input a, b, c
 input [1:0] sel,
 output out);

 reg out;

 always @(*)
 begin
 case (sel)
 2’d0 : out = a;
 2’d1 : out = b;
 2’d2 : out = c;
 endcase
 end

endmodule

If sel = 3, mux will output the
previous value. What have we
created?

Case Statements
§ What happens if the case statement is not complete?

module mux3(input a, b, c
 input [1:0] sel,
 output out);

 reg out;

 always @(*)
 begin
 case (sel)
 2’d0 : out = a;
 2’d1 : out = b;
 2’d2 : out = c;
 default : out = 1’bx;
 endcase
 end

endmodule

We can prevent creating state
with a default statement

Latches and Flip-flops

module latch
(
 input clk,
 input d,
 output reg q
);

 always @(clk)
 begin
 if (clk)
 d = q;
 end

endmodule

module flipflop
(
 input clk,
 input d,
 output q
);

 always @(posedge clk)
 begin
 d = q;
 end

endmodule Edge-triggered
always block

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

+1

A

+1

B C

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

Active Event Queue
A

1

B

2

C

On clock edge all those
events which are sensitive
to the clock are added to
the active event queue in
any order!

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

Active Event Queue
A

1

B

2

C

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

Active Event Queue
A

1

B

2

C

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

Active Event Queue
A

1

B

2

C

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

Active Event Queue
A

1

B

2

C
A evaluates and as a
consequence 1 is added to
the event queue

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

Active Event Queue
A

1

B

2

C
Event queue is emptied
before we go to next clock
cycle

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

Active Event Queue
A

1

B

2

C
Event queue is emptied
before we go to next clock
cycle

More Verilog Semantics
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out = A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out = C_in;

A

1

B

2

C

+1

A

+1

B C

+1 +1

Non-Blocking Assignments
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out <= A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out <= B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out <= C_in;

Non-blocking procedural assignments
add an extra event queue

Active Event Queue

Non-Blocking Queue

A

1

B

2

C

A
R

B
R

C
R12

A
L

B
L

C
L

Non-Blocking Assignments
wire A_in, B_in, C_in;
reg A_out, B_out, C_out;

always @(posedge clk)
 A_out <= A_in;

assign B_in = A_out + 1;

always @(posedge clk)
 B_out <= B_in;

assign C_in = B_out + 1;

always @(posedge clk)
 C_out <= C_in;

Non-blocking procedural assignments
add an extra event queue

A

1

B

2

C

+1

A

+1

B C

Non-Blocking Assignments
Non-blocking procedural assignments add an extra event queue

wire A_in, B_in, C_in;
reg A_out, B_out,
C_out;

always @(posedge clk)
begin
 A_out <= A_in;
 B_out <= B_in;
 C_out <= C_in;
end

assign B_in = A_out + 1;
assign C_in = B_out + 1;

wire A_in, B_in, C_in;
reg A_out, B_out,
C_out;

always @(posedge clk)
begin
 C_out <= C_in;
 B_out <= B_in;
 A_out <= A_in;
end

assign B_in = A_out + 1;
assign C_in = B_out + 1;

The order of non-blocking assignments does not matter!

Common Patterns
§ Common patterns for latch and flip-flop inference

always @(clk)
begin
 if (clk)
 D <= Q;
end

always @(posedge clk)
begin
 D <= Q;
end

always @(posedge clk)
begin
 if (enable)
 D <= Q;
end

D Q Xnext_X

clk

D Q Xnext_X

clk

D Q Xnext_X

clk

enable

Blocking vs. Non-blocking
§ Guidelines for using blocking and non-blocking assignment

statements
§ Flip-flops should use non-blocking
§ Latches should use non-blocking
§ Combinational logic should use blocking
§ Do not mix combinational and sequential logic in the same always

block
§ Do not assign to the same variable from more than one always

block

Behavioral Verilog Usage
§ Behavioral Verilog is used to model the abstract function of a

hardware module
§ Characterized by heavy use of sequential blocking statements in large

always blocks
§ Many constructs are not synthesizable but can be useful for behavioral

modeling
§ Data dependent for and while loops
§ Additional behavioral datatypes : integer, real
§ Magic initialization blocks : initial
§ Magic delay statements: #<delay>

High-level Behavior
§ Verilog can be used to model the high-level behavior of a

hardware block
module factorial(input [7:0] in, output reg
[15:0] out);

 integer num_calls;
 initial num_calls = 0;

 integer multiplier;
 integer result;

always @(*)
 begin
 multiplier = in;
 result = 1;
 while (multiplier > 0)
 begin
 result = result * multiplier;
 multiplier = multiplier - 1;
 end

 out = result;
 num_calls = num_calls + 1;
 end
endmodule

Data dependent
while loop

Variables of type
integer

Initial statement

Delay Statements
§ Delay statements should only be used in test

module mux4
(
 input a,
 input b,
 input c,
 input d,
 input [1:0] sel,
 output out
);
 wire #10 t0 = ~((sel[1] & c) | (~sel[1] & a));
 wire #10 t1 = ~((sel[1] & d) | (~sel[1] & b));
 wire #10 out = ~((t0 | sel[0]) & (t1 | ~sel[0])
);

endmodule

Although this will add a delay for
simulation, these are ignored in synthesis

Synthesizable Blocks
§ Even synthesizable blocks can be more behavioral

module ALU
(
 input [31:0] in0,
 input [31:0] in1,
 input [1:0] fn,
 output [31:0] out
);

 assign out
 = (fn == 2'd0) ? (in0 + in1)
 : (fn == 2'd1) ? (in0 - in1)
 : (fn == 2'd9) ? (in1 >> in0)
 : (fn == 2'd10) ? (in1 >>> in0)
 : 32'bx;

endmodule

Although this module is synthesizable, it is
unlikely to produce the desired hardware

+

–

>>

>>>

System Testing
reg [1023:0] exe_filename;

initial
begin

 // This turns on VCD (plus) output
 $vcdpluson(0);

 // This gets the program to load into memory from the command line
 if ($value$plusargs("exe=%s", exe_filename))
 $readmemh(exe_filename, mem.m);
 else
 begin
 $display("ERROR: No executable specified! (use +exe=<filename>)");
 $finish;
 end

 // Stobe reset
 #0 reset = 1;
 #38 reset = 0;

end

Which abstraction is the right one?
§ Designers usually use a mix

of all three
§ Early in the design process

they might use mostly
behavioral models.

§ As the design is refined, the
behavioral models begin to
be replaced by dataflow
models.

§ Finally, the designers use
automatic tools to synthesize
a low-level gate-level model

High-Level Behavioral

Register Transfer Level

Gate Level

Take away points
§ Structural Verilog enables us to describe a hardware schematic

textually
§ Verilog can model hardware at three levels of abstraction

§ Gate level, register transfer level, and behavioral

§ Understanding the Verilog execution semantics is critical for
understanding blocking + non-blocking assignments

§ Designers must have the hardware they are trying to create in
mind when they write their Verilog

