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Computer System Description
§ A system is a set of related components that works as a whole to 

achieve a goal. 
§ A system contains: 

§ Inputs 
§ Behavior
§ Outputs 

§ Behavior is a function that translates inputs to outputs

Behaviorinputs outputs
: :



Integrated Circuit Based Designs

§ Complex digital integrated circuits (ICs) are manufactured with 
the advent of Microelectronics Technology
§ The number of components fitted into a standard size IC represents 

its integration scale, also called density



Digital System Design

§ Characteristics of digital systems 
§ Synchronous vs. Asynchronous 
§ Sequential vs. Combinational  
§ Design parameters

Digital Circuit
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Digital Design Flow: FPGA Design
§ FPGA-based design as a sub-domain of digital design

Detailed (RTL)
Design

Design
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Device
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Timing
Simulation

Synthesis &
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Functional
Simulation
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RTL Design Tools
§ In this class, we will learn the principles of RTL (register level 

transfer) coding for synthesis tools through the Verilog hardware 
description language (HDL) for the design and documentation of 
out electronic systems. 
§ Verilog allows designers to design at various levels of abstraction. 
§ It is the most widely used HDL



Programmable Logics
§ Field Programmable Gate Arrays (more on it later)

§ Each cell in array contains a programmable logic function

Logic Block

I/O Block

Interconnect



Programmable Logics
§ Field Programmable Gate Arrays (more on it later)

§ Array has programmable interconnect between logic functions 



Verilog Fundamentals
§ Data types
§ Structural Verilog
§ Functional Verilog

§ Gate level
§ Register transfer level
§ High-level behavioral



Primary Verilog data type 
§ Primary Verilog data type is a bit-vector where bits can take 

Value Meaning
0 Logic zero
1 Logic one
X Unknown logic value
Z High impedance, floating

An X bit might be a 0, 1, Z, or in transition. We can 
set bits to be X in situations where we don’t care 
what the value is. This can help catch bugs and 
improve synthesis quality



Verilog wire
§ The Verilog keyword wire is used to denote a standard 

hardware net
wire [15:0] instruction;
wire [15:0] memory_req;
wire [  7:0] small_net; 
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Absolutely no type safety 
when connecting nets!



Verilog bit literals
§ Verilog includes ways to specify bit literals in various bases

4’b10_11
Underscores 
are ignored

Base format
(d,b,o,h)

Decimal number 
representing size in bits

§ Binary literals
§ 8’b0000_0000
§ 8’b0xx0_1xx1

§ Hexadecimal literals
§ 32’h0a34_def1
§ 16’haxxx

§ Decimal literals
§ 32’d42



Verilog module specification
§ A Verilog module includes a module name and a port list

module adder( A, B, cout, sum );
  input  [3:0] A;
  input  [3:0] B;
  output       cout;
  output [3:0] sum;

  // HDL modeling of 
  // adder functionality

endmodule 

Note the semicolon at 
the end of the port list!

Ports must have a 
direction (or be 
bidirectional) and a 
bitwidth

adder

A B

sumcout

4 4

4



Verilog module specification
§ A Verilog module includes a module name and a port list

Traditional Verilog-1995 Syntax

module adder( A, B, cout, sum );
  input  [3:0] A;
  input  [3:0] B;
  output       cout;
  output [3:0] sum;

ANSI C Style Verilog-2001 Syntax
module adder( input  [3:0] A,
              input  [3:0] B,
              output       cout,
              output [3:0] sum );

adder

A B

sumcout

4 4

4



Module composition
§ A module can instantiate other modules creating a module 

module FA( input  a, b, cin
           output cout, sum 
);

  // HDL modeling of 1 bit
  // adder functionality

endmodule 

FA

ba

c

cin

cout



Module composition

module adder( input  [3:0] A, B,
              output       cout,
              output [3:0] S );

 wire c0, c1, c2;
 FA fa0( ... );
 FA fa1( ... );
 FA fa2( ... );
 FA fa3( ... );

endmodule 

adder

A B

Scout

FA FA FA FA



module adder( input  [3:0] A, B,
              output       cout,
              output [3:0] S );

 wire c0, c1, c2;
 FA fa0( A[0], B[0], 1’b0, c0,   S[0] );
 FA fa1( A[1], B[1], c0,   c1,   S[1] );
 FA fa2( A[2], B[2], c1,   c2,   S[2] );
 FA fa3( A[3], B[3], c2,   cout, S[3] );

endmodule Carry Chain

Module composition

adder

A B

Scout

FA FA FA FA



§ Verilog supports connecting ports by position and by name

Connecting ports by ordered list

FA fa0( A[0], B[0], 1’b0, c0, S[0] );

Connecting ports by name (compact)

  FA fa0( .a(A[0]), .b(B[0]), 
          .cin(1’b0), .cout(c0), .sum(S[0]) );
Connecting ports by name 

  FA fa0
  ( 
    .a    (A[0]), 
    .b    (B[0]), 
    .cin  (1’b0), 
    .cout (c0), 
    .sum  (S[0]) 
  );

For all but the smallest modules, 
connecting ports by name yields clearer 
and less buggy code.

Module composition



Functional Verilog
§ Functional Verilog can roughly be divided into three abstraction 

levels
Behavioral
Algorithm

Register
Transfer Level

Gate Level

Manual

Logic Synthesis

Auto Place + Route

V

V

V Abstract algorithmic description

Describes how data flows between 
state elements for each cycle

Low-level netlist 
of primitive gates



module mux4( input a, b, c, d, input [1:0] sel, output out );

  wire [1:0] sel_b;
  not not0( sel_b[0], sel[0] );
  not not1( sel_b[1], sel[1] );

  wire n0, n1, n2, n3;
  and and0( n0, c, sel[1]   );
  and and1( n1, a, sel_b[1] );
  and and2( n2, d, sel[1]   );
  and and3( n3, b, sel_b[1] );

  wire x0, x1;
  nor nor0( x0, n0, n1 );
  nor nor1( x1, n2, n3 );

  wire y0, y1;
  or or0( y0, x0, sel[0]   );
  or or1( y1, x1, sel_b[0] );
  nand nand0( out, y0, y1 );

endmodule 

Gate-level Verilog

sel[0]sel[1]cadb

out



Continuous Assignments
§ Continuous assignment statements assign one net to another or 

to a literal

Explicit continuous assignment
wire [15:0] netA;
wire [15:0] netB;

assign netA = 16’h3333;
assign netB = netA;

Implicit continuous assignment
wire [15:0] netA = 16’h3333;
wire [15:0] netB = netA;



Continuous Assignments
§ Using continuous assignments to implement an RTL four input 

multiplexer

module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );

  wire out, t0, t1;
  assign out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) 
);
  assign t1  = ~( (sel[1] & d) | (~sel[1] & b) );
  assign t0  = ~( (sel[1] & c) | (~sel[1] & a) );

module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );

  wire out, t0, t1;

  assign t0  = ~( (sel[1] & c) | (~sel[1] & a) );
  assign t1  = ~( (sel[1] & d) | (~sel[1] & b) );
  assign out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );

endmodule 
The order of these continuous assignment statements 
does not matter. They essentially happen in parallel!



Other Verilog Operators
§ Verilog RTL includes many operators in addition to basic boolean 

logic
// Four input multiplexer
module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );

  assign out = ( sel == 0 ) ? a :
               ( sel == 1 ) ? b :
               ( sel == 2 ) ? c :
               ( sel == 3 ) ? d : 1’bx;

Endmodule 
// Simple four bit adder
module adder( input  [3:0] op1, op2,
              output [3:0] sum );

  assign sum = op1 + op2;

endmodule

If input is undefined, 
we want to propagate 
that information



Verilog RTL operators
Arithmetic + - * / % **

Logical ! && ||

Relational > < >= <=

Equality == != === !===

Bitwise ~ & | ^ ^~

wire [ 3:0] net1 = 4’b00xx;
wire [ 3:0] net2 = 4’b1110;
wire [11:0] net3 = { 4’b0, net1, net2 };

Reduction & ~& | ~| ^ ^~

Shift >> << >>> <<<

Concatenation { }

Conditional ?:

Avoid ( / % ** ) since the usually synthesize poorly

wire equal = ( net3 === 12’b0000_1110_00xx );



Procedural Assignments 
§ Always blocks have parallel inter-block and sequential intra-block 

semantics 
module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );
  reg out, t0, t1;

  always @( a or b or c or d or sel )
  begin
    t0  = ~( (sel[1] & c) | (~sel[1] & a) );
    t1  = ~( (sel[1] & d) | (~sel[1] & b) );
    out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );
  end
endmodule 

The always block is 
reevaluated whenever a 
signal in its sensitivity 
list changes



Procedural Assignments 

module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );
  reg out, t0, t1;

  always @( a or b or c or d or sel )
  begin
    t0  = ~( (sel[1] & c) | (~sel[1] & a) );
    t1  = ~( (sel[1] & d) | (~sel[1] & b) );
    out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );
  end
endmodule 

The order of these procedural assignment 
statements does matter.
They essentially happen in sequentially!

§ Always blocks have parallel inter-block and sequential intra-block 
semantics 



Procedural Assignments 

module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );
  reg out, t0, t1;

  always @( a or b or c or d or sel )
  begin
    t0  = ~( (sel[1] & c) | (~sel[1] & a) );
    t1  = ~( (sel[1] & d) | (~sel[1] & b) );
    out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );
  end
endmodule 

LHS of procedural assignments must be 
declared as a reg type. Verilog reg is not 
necessarily a hardware register!

§ Always blocks have parallel inter-block and sequential intra-block 
semantics 



Procedural Assignments 

module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );
  reg out, t0, t1;

  always @( a or b or c or d or sel )
  begin
    t0  = ~( (sel[1] & c) | (~sel[1] & a) );
    t1  = ~( (sel[1] & d) | (~sel[1] & b) );
    out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );
  end
endmodule What happens if we accidentally forget a 

signal on the sensitivity list?

§ Always blocks have parallel inter-block and sequential intra-block 
semantics 



Procedural Assignments 

module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );
  reg out, t0, t1;

  always @( a or b or c or d or sel )
  begin
    t0  = ~( (sel[1] & c) | (~sel[1] & a) );
    t1  = ~( (sel[1] & d) | (~sel[1] & b) );
    out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );
  end
endmodule 

Verilog-2001 provides special syntax to 
automatically create a sensitivity list for all 
signals read in the always block

§ Always blocks have parallel inter-block and sequential intra-block 
semantics 



Assignments
§ Continuous and procedural assignment statements are very different

Continuous assignments are for naming and thus we cannot have multiple 
assignments for the same wire

 wire out, t0, t1;
 assign t0  = ~( (sel[1] & c) | (~sel[1] & a) );
 assign t1  = ~( (sel[1] & d) | (~sel[1] & b) );
 assign out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );

Procedural assignments hold a value semantically, but it is important to distinguish 
this from hardware state

 reg out, t0, t1, temp;
 always @( * )
 begin
   temp = ~( (sel[1] & c) | (~sel[1] & a) );
   t0   = temp;
   temp = ~( (sel[1] & d) | (~sel[1] & b) );
   t1   = temp;
   out  = ~( (t0 | sel[0]) & (t1 | ~sel[0]) );
 end



Always Blocks
§ Always blocks can contain more advanced control constructs 

module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );

  reg out;

  always @( * )
  begin
    if ( sel == 2’d0 )
      out = a;
    else if ( sel == 2’d1 )
      out = b
    else if ( sel == 2’d2 )
      out = c
    else if ( sel == 2’d3 )
      out = d
    else
      out = 1’bx;
  end 

endmodule 

module mux4( input  a, b, c, d
             input [1:0] sel,
             output out );

  reg out;

  always @( * )
  begin
    case ( sel )
      2’d0 : out = a;
      2’d1 : out = b;
      2’d2 : out = c;
      2’d3 : out = d;
      default : out = 1’bx;
    endcase
  end 

endmodule 



Case Statements
§ What happens if the case statement is not complete?

module mux3( input  a, b, c
             input [1:0] sel,
             output out );

  reg out;

  always @( * )
  begin
    case ( sel )
      2’d0 : out = a;
      2’d1 : out = b;
      2’d2 : out = c;
    endcase
  end 

endmodule 

If sel = 3, mux will output the 
previous value. What have we 
created?



Case Statements
§ What happens if the case statement is not complete?

module mux3( input  a, b, c
             input [1:0] sel,
             output out );

  reg out;

  always @( * )
  begin
    case ( sel )
      2’d0 : out = a;
      2’d1 : out = b;
      2’d2 : out = c;
      default : out = 1’bx;
    endcase
  end 

endmodule 

We can prevent creating state 
with a default statement



Latches and Flip-flops

module latch
( 
  input  clk, 
  input  d, 
  output reg q 
);

  always @( clk )
  begin
    if ( clk )
      d = q;
  end 

endmodule 

module flipflop
( 
  input  clk, 
  input  d, 
  output q 
);

  always @( posedge clk )
  begin
    d = q;
  end 

endmodule Edge-triggered 
always block



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

+1

A

+1

B C



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

Active Event Queue
A

1

B

2

C

On clock edge all those 
events which are sensitive 
to the clock are added to 
the active event queue in 
any order!



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

Active Event Queue
A

1

B

2

C



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

Active Event Queue
A

1

B

2

C



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

Active Event Queue
A

1

B

2

C



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

Active Event Queue
A

1

B

2

C
A evaluates and as a 
consequence 1 is added to 
the event queue



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

Active Event Queue
A

1

B

2

C
Event queue is emptied 
before we go to next clock 
cycle



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

Active Event Queue
A

1

B

2

C
Event queue is emptied 
before we go to next clock 
cycle



More Verilog Semantics
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out = A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out = B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out = C_in;

A

1

B

2

C

+1

A

+1

B C

+1 +1



Non-Blocking Assignments
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out <= A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out <= B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out <= C_in;

Non-blocking procedural assignments 
add an extra event queue

Active Event Queue

Non-Blocking Queue

A

1

B

2

C

A
R

B
R

C
R12

A
L
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L

C
L



Non-Blocking Assignments
wire A_in, B_in, C_in;
reg  A_out, B_out, C_out;

always @( posedge clk )
  A_out <= A_in;

assign B_in = A_out + 1;

always @( posedge clk )
  B_out <= B_in;

assign C_in = B_out + 1;

always @( posedge clk )
  C_out <= C_in;

Non-blocking procedural assignments 
add an extra event queue

A

1

B

2

C

+1

A

+1

B C



Non-Blocking Assignments
Non-blocking procedural assignments add an extra event queue

wire A_in, B_in, C_in;
reg  A_out, B_out, 
C_out;

always @( posedge clk )
begin
  A_out <= A_in;
  B_out <= B_in;
  C_out <= C_in;
end

assign B_in = A_out + 1;
assign C_in = B_out + 1;

wire A_in, B_in, C_in;
reg  A_out, B_out, 
C_out;

always @( posedge clk )
begin
  C_out <= C_in;
  B_out <= B_in;
  A_out <= A_in;
end

assign B_in = A_out + 1;
assign C_in = B_out + 1;

The order of non-blocking assignments does not matter!



Common Patterns
§ Common patterns for latch and flip-flop inference

always @( clk )
begin
  if ( clk )
    D <= Q;
end

always @( posedge clk )
begin
  D <= Q;
end

always @( posedge clk )
begin
  if ( enable )
    D <= Q;
end

D Q Xnext_X

clk

D Q Xnext_X

clk

D Q Xnext_X

clk

enable



Blocking vs. Non-blocking
§ Guidelines for using blocking and non-blocking assignment 

statements
§ Flip-flops should use non-blocking 
§ Latches should use non-blocking
§ Combinational logic should use blocking 
§ Do not mix combinational and sequential logic in the same always 

block
§ Do not assign to the same variable from more than one always 

block



Behavioral Verilog Usage
§ Behavioral Verilog is used to model the abstract function of a 

hardware module
§ Characterized by heavy use of sequential blocking statements in large 

always blocks
§ Many constructs are not synthesizable but can be useful for behavioral 

modeling
§ Data dependent for and while loops
§ Additional behavioral datatypes :  integer, real
§ Magic initialization blocks :            initial
§ Magic delay statements:                #<delay>



High-level Behavior
§ Verilog can be used to model the high-level behavior of a 

hardware block
module factorial( input [ 7:0] in, output reg 
[15:0] out );

  integer num_calls;
  initial num_calls = 0;

  integer multiplier;
  integer result;  
  
always @(*)
  begin
    multiplier = in;
    result = 1;
    while ( multiplier > 0 )
    begin
      result = result * multiplier;
      multiplier = multiplier - 1;
    end

    out = result;
    num_calls = num_calls + 1;
  end
endmodule

Data dependent 
while loop

Variables of type 
integer

Initial statement



Delay Statements
§ Delay statements should only be used in test 

module mux4
( 
  input       a, 
  input       b, 
  input       c, 
  input       d,             
  input [1:0] sel,
  output      out 
);
  wire #10 t0  = ~( (sel[1] & c) | (~sel[1] & a) );
  wire #10 t1  = ~( (sel[1] & d) | (~sel[1] & b) );
  wire #10 out = ~( (t0 | sel[0]) & (t1 | ~sel[0]) 
);

endmodule 

Although this will add a delay for 
simulation, these are ignored in synthesis



Synthesizable Blocks
§ Even synthesizable blocks can be more behavioral 

module ALU
(
  input  [31:0] in0,
  input  [31:0] in1,
  input  [ 1:0] fn,
  output [31:0] out
);

  assign out 
    = ( fn == 2'd0  ) ? ( in0 +   in1 )
    : ( fn == 2'd1  ) ? ( in0 -   in1 )
    : ( fn == 2'd9  ) ? ( in1 >>  in0 )
    : ( fn == 2'd10 ) ? ( in1 >>> in0 )
    : 32'bx;
  
endmodule

Although this module is synthesizable, it is 
unlikely to produce the desired hardware

+ 

– 

>> 

>>> 



System Testing
reg [ 1023:0 ] exe_filename; 

initial
begin

  // This turns on VCD (plus) output
  $vcdpluson(0);

  // This gets the program to load into memory from the command line
  if ( $value$plusargs( "exe=%s", exe_filename ) )
       $readmemh( exe_filename, mem.m );
  else
  begin
    $display( "ERROR: No executable specified! (use +exe=<filename>)" );
    $finish;
  end

  // Stobe reset
  #0  reset = 1;
  #38 reset = 0;

end



Which abstraction is the right one?
§ Designers usually use a mix 

of all three
§ Early in the design process 

they might use mostly 
behavioral models. 

§ As the design is refined, the 
behavioral models begin to 
be replaced by dataflow 
models. 

§ Finally, the designers use 
automatic tools to synthesize 
a low-level gate-level model

High-Level Behavioral

Register Transfer Level 

Gate Level 



Take away points
§ Structural Verilog enables us to describe a hardware schematic 

textually
§ Verilog can model hardware at three levels of abstraction

§ Gate level, register transfer level, and behavioral

§ Understanding the Verilog execution semantics is critical for 
understanding blocking + non-blocking assignments

§ Designers must have the hardware they are trying to create in 
mind when they write their Verilog


