CSE/CEN 598
Hardware Security & Trust

Trusted Digital System Design:
Verilog Fundamentals |

Prof. Michel A. Kinsy & Mishel Paul

3/11/25

STAM Center

Computer System Description

= Asystem is a set of related components that works as a whole to
achieve a goal.
= A system contains:
= Inputs

— ——
= Behavior inputs ——»| Behavior [—— outputs
= Outputs — —

= Behavior is a function that translates inputs to outputs

Integrated Circuit Based Designs

= Complex digital integrated circuits (ICs) are manufactured with
the advent of Microelectronics Technology

= The number of components fitted into a standard size IC represents
its integration scale, also called density

s wewus wsi tartvwe

tonconaity
G T i dversy
e Teseband’ SERA
erocormecing . video daia
e ooy

apolcation- olue logic

system on a chip (SoC) *

STAM Center Engincering

M0 AssURO MCRORICTRGHICS State University

Digital System Design

Detector
otion | @ " R Detector | Detector
Digital —— F
System -
b
- 7]
Digital Gircuit

= Characteristics of digital systems
= Synchronous vs. Asynchronous
= Sequential vs. Combinational
= Design parameters

3/11/25

STAM Center

; [Design Stage| Tools
HDL Design (Verilog, | Text Editor

VHDL, Bluespec) Emacs, Nedit, Vi
Verfcaton Wentor Hodelim SE
Sopsys - Leda
o Simbess Symposys - Design Complr
e Test Inerion | Synopys - Teraex

Mentor - Fastscan

Static Timing Anal. _| Synopsys - Primetime.

Place & Route Cadence - Sensemble/

S0C Encounter

Synopsys - Apollo

Clock Tree Insertion_| Cadence - CTgen

Timing Extraction | Synopsys - StarRXT
Cadence - Pearl

DRC/ANT Checking | Cadence - Assura, Dracula

Mentor - Callbre

ws Cadence - Assura, Dracula

Mentor _ Calibre.

Final Desin Check.
DRGLYS

STAM Center Engincering

SLCURE, TRUSTHD, AND ASSURRO MCRORLICTROHICS State University

Digital Design Flow: FPGA Design
= FPGA-based design as a sub-domain of digital design

Design Detailed (RTL) Functional
as Do o Simulation

(Specifications)

Device. Timing
Programming Simulation

3/11/25

RTL Design Tools

® In this class, we will learn the principles of RTL (register level
transfer) coding for synthesis tools through the Verilog hardware
description language (HDL) for the design and documentation of
out electronic systems.
= Verilog allows designers to design at various levels of abstraction.
= It is the most widely used HDL

STAM Center

Programmable Logics

= Field Programmable Gate Arrays (more on it later)

= Each cell in array contains a programmable logic function

LI TN TTCE L LTIV
EEEE
Sl
1 [
o o

Programmable Logics

= Field Programmable Gate Arrays (more on it later)

= Array has programmable interconnect between logic functions
Touting wires
— S — Ly
logc ogio ogic
black biock 404 | blook
»:Ejj_
Bl
logic logic logic e
=)
ree-sta
=
‘ ‘ ‘ =
ogic ogc ogic —

memory bits

e

STAM Center

Verilog Fundamentals

* Data types
= Structural Verilog

Functional Verilog

= Gate level

= Register transfer level
= High-level behavioral

3/11/25

10

Primary Verilog data type

= Primary Verilog data type is a bit-vector where bits can take

Value |M g
0 Logic zero
1 Logic one
<) X Unknown logic value
V4 High impedance, floating
An X bit might be a 0, 1, Z, or in transition. We can
set bits to be X in situations where we don’ t care

what the value is. This can help catch bugs and
improve synthesis quality

11

STAM Center

Verilog wire

= The Verilog keyword wire is used to denote a standard
hardware net
wire [15:0] instruction;
wire [15:0] memory_req;
wire [7:0] small_net;

Absolutely no type safety
when connecting nets!

instruction
instruction
small_net

memory_req

12

STAM Center

Verilog bit literals

= Verilog includes ways to specify bit literals in various bases

= Binary literals

4 ’ bl10 11 = 8'b0000_0000

= 8'b0xx0_1xx1

TUndEr‘scares = Hexadecimal literals
areignored * 32'h0a34_defl
Base format = 16'haxxx

(dboh)

) = Decimal literals
Decimal number .
representing size in bits = 32'd42

3/11/25

13

STAM Center

Verilog module specification
= A Verilog module includes a module name and a port list

2, B, cout, sum O

module adder (

input [3:0] A;
A 8 input [3:0] B;
s s output cout;
ut [3:0] sum;
// HDL modeling of
adder

7/ adder functionalit:
endmodule
cout SUM Ports must have a

direction (or be Note the semicolon at

bidirectional) and a the end of the port list!
bitwidth

14

STAM Center

Verilog module specification
= A Verilog module includes a module name and a port list

Traditional Verilog-1995 Syntax

A B module adder(A, B, cout, sum);
4 4
output
output [3:0]
adder
ANSI C Style Verilog-2001 Syntax
){4 module adder (input [3:0] A,
input [3:0] B,
cout sum output cout,
output [3:0] sum);

15

STAM Center cering

SLCURE, TRUSTHD, AND ASSURSO MCRORLICTROHICS Arizona tate University

Module composition

= A module can instantiate other modules creating a module

al lb module FA(input a, b, cin
output cout, sum

cin

o)i

coue | FA
L

// HDL modeling of 1 bit
// adder functionality

endmodule

3/11/25

16

STAM Center

Module composition

A B
cout lS

module adder (input [3:0] A, B,
cout,
[3:0] S)
wire c0, cl, c2;
FA faO(...);
FA fal(...);
FA fa2(...);
FA fa3(...);
endmodule
STAM Center M Engincering

Module composition

wire c0, cl, c2

FA £a0(A[0], BIO], 1'b0,(c0, S[0]);
FA fal(A[1], B[1], <0, s11);
FA fa2(A[2], B[2], cl, s[21 s
FA fa3(A[3], B3], c2, Cout) S(3]);
endnodule Carry Chain

18

Module composition
= Verilog supports connecting ports by position and by name

Connecting ports by ordered list
FA fa0(A[0], B[0], 1’b0, cO, S[0]);
Connecting ports by name (compact)

FA faO(.a(A[0]), .b(B[O]),
.cin(1'b0), .cout(cO), .sum(S[0]));:
Connecting ports by name

FA fal
(
.a (ar01),
b (B101), For all but the smallest modules,
Lcin (1'b0), connecting ports by name yields clearer
.cout (c0), and less buggy code

.sum (S[0])

STAM Center Pttt

3/11/25

19

STAM Center

Functional Verilog
= Functional Verilog can roughly be divided into three abstraction

levels
Behavioral
Algorithm Abstract algorithmic description
Manual
Register Describes how data flows between

Transfer Level state elements for each cycle

Logic Synthesis l

Low-level netlist

Gate Level of primitive gates

Auto Place + Route l

20

STAM Center

Gate-level Verilog

muxd (input a, b, ¢, d, 0] sel, output out);

vire [1:0] sel_b;
not not0(sel b[0], sel(0]);
not notl(sel b[l], sel(l]);
wire n0, nl, n2, n3;
and and0(no0, ¢, sel(l]
and andl(nl, a, sel b

and and2(n2, d, sel[l])i
and and3(n3, b, sel b

wire x0, x1;
nor nor0(x0, n0, nl);
nor norl(x1, n2, n3);
wire yo, yl;

or or0(y0, x0, sel(0]);
or orl(yl, x1, sel_b(0]);
nand nand0 (out, y0, yl);

endmodule

21

STAM Center Engineering

SLCURE, TRUSTHD, AND ASSURSO MCRORLICTROHICS Arizona tate University

Continuous Assignments

= Continuous assignment statements assign one net to another or
to a literal
Explicit continuous assignment

netA;
netB;

sign netA = 16 'h3333;
sign netB = netA;

Implicit continuous assignment
wire [15:0] netA = 16 h3333;
= neth;

3/11/25

22

STAM Center

Continuous Assignments
= Using continuous assignments to implement an RTL four input
multiplexer

module mux4(input a, b, c, d
input [1:0] sel,
output out);

wire out, t0, tl;

ign t0 ((sel[l] & c) | (~sel[l] & a));
((sel[l] & d) | (~sel[l] & b));

= ~((€0 | sel[0]) & (£l | ~sel[0]));

14

The order of these continuous assignment statements
does not matter. They essentially happen in parallel!

23

ineering

Aizona State University

STA

Other Verilog Operators
= Verilog RTL includes many operators in addition to basic boolean
logic

[/ r input multiplexer
module mux4 (input a

input

assign out =

aaoa

©

If input is undefined,

Simp: . four bit adder we want to propagate
module adder (input [3:0] opl, op2, that information
output [3:0] sum);

assign sum = opl + op2;

endmodule

24

STAM Center PO Engincering

Verilog RTL operators

Arithmetic |+ - * / & ** Reduction & ~& | ~| A A~
Logical ' oss || Shift >> << >>> <<<
Relational > < >= <= Concatenation | { }
Equality Conditional 2:
Bitwise
3:0] netl = 4'b00xx;

> 3:0] net2 = 4'b1110;

e [11:0] net3 = { 4'b0, netl, net2 };
wire equal = (net3 === 12"b0000_ 1110 00xx);

Avoid (/ % **) since the usually synthesize poorly

3/11/25

25

STAM Center

Procedural Assignments
= Always blocks have parallel inter-block and sequential intra-block
semantics
module mux4(input a, b, ¢, d
input [1:0] sel,

output out);
reg out, t0, tl;

always @(a or b or c or d or sel)
begin
€0 = ~((sel[l] & c) | (~sel[l] & a));

€l = ~((sel[l] & d) | (~sel[l] & D)); The always block is
out = ~((t0 | sel[0]) & (t1 | ~sel[0]))i ronvalumted whenover a
end signal in its sensitivity
endmodule list changes

26

eerl‘ng

Procedural Assignments
= Always blocks have parallel inter-block and sequential intra-block
semantics

module mux4 (input a, b, ¢, d
input 1 sel,
output out);

reg out, t0, tl;

always €(a or b or ¢ or d or sel)

begin
t0 = ~((sel[l] & c) | (~sel[l] & a))i
tl ~((sel[l] & d) | (~sel[l] & b));
out = ~((t0 | sel[0]) & (tl1 | ~sel[0]));
end The order of these procedural assignment
endmodule statements does matter.

They essentially happen in sequentially!

27

STAM Center Engincering

SLCURE, TRUSTHD, AND ASSURSO MCRORLICTROHICS Arizona tate University

Procedural Assignments
= Always blocks have parallel inter-block and sequential intra-block
semantics
module mux4 (input a, b, ¢, d

)] sel,
out);

el

output
reg out, t0, tl;

always @(a or b or ¢ or d or sel)
begin
€0 = ~((sell[l] & c) | (~sel[l] & a));
tl ~((sel[l] & d) | (~sel[l] & b));
out = ~((t0 | sel[0]) & (t1 | ~sel[0]));
end
endmodule

LHS of procedural assignments must be
declared as a reg type. Verilog reg is not

necessarily a hardware register!

3/11/25

28

STAM Center

Procedural Assignments
= Always blocks have parallel inter-block and sequential intra-block
semantics

module mux4 (input a, b, ¢, d
[1:0] sel,
t out);

@(aorborc oxXo: sel)

t0 = ~((sel[l] & c) | (~sel[l] & a));
~((sel[l] & d) | (~selll] & b));
~((€0 | sel[0]) & (tl | ~sel[0]));

out
end

endmodule What happens if we accidentally forget a

signal on the sensitivity list?

29

STA

ineering

Aizona State University

Procedural Assignments

= Always blocks have parallel inter-block and sequential intra-block
semantics

module mux4(input a, b, ¢, d
1 sel,

output out);
reg out, t0, tl;

always €(a or b or ¢ or d or sel)

begin
t0 = ~((sel[l] & c) | (~sel[l] & a))i
tl ~((sel[l] & d) | (~sel[l] & b));
out = ~((t0 | sel[0]) & (t1 | ~sel[O]));
end

Verilog-2001 provides special syntax to

endmodule automatically create a sensitivity list for all

signals read in the always block

30

10

ineering

State Universty

STAM Center

Assignments
= Continuous and procedural assignment statements are very different

Continuous assignments are for naming and thus we cannot have multiple
assignments for the same wire

gn out = ~((£0 | sell0]) & (el | ~s

Procedural assignments hold a value semantically, but it is important to distinguish
this from hardware state

out, t0, t1, temp;
()

temp = ~((selll] & c) | (-sell1] & a));

£ = temps

temp = ~((selll] & d) | (=sel(1] & b));

€1 = temps

out = ~((£0 | sell0]) & (t1 | ~sell0]));

31

3/11/25

STAM Center
Always Blocks
= Always blocks can contain more advanced control constructs
I o
2o
32
ST. r Engineering

Case Statements
= What happens if the case statement is not complete?

mod

e mux3(input a, b, ¢
input [1:0] sel,
output out);

reg out;

always @(*)

begin

case (sel)

2'd0 : out = a;

2'dl : out = b; - i
ShL iy If se\. 3, mux will output the
endca previous value. What have we
end created?

endmodule

33

11

STAM Center Engincering

SLCURE, TRUSTHD, AND ASSURSO MCRORLICTROHICS Arizona tate University

Case Statements
* What happens if the case statement is not complete?

module mux3(input a, b, ¢
input [] sel,
output out);

reg out;

always @(*)
begin

(sel)
2°d0 : out = a;

We can prevent creating state

24l : out = br with a default statement
2'd2 : out = c;
default : out = 1'bx;

endcase

end

endmodule

3/11/25

34

STAM Center

Latches and Flip-flops

module latch module flipflop
((

input clk,
input d,
output reg q
)i

clk,

@(clk)

endmodule Edge-triggered

dmodule
endneds always block

35

STA

ineering

izona State Universty

More Verilog Semantics

re A_in, B in, C_in;
eg A out, B out, C_out;

always @(po: clk)
A out = A_in; A 8 ¢
assign B in = A out + 1;
- - +1 +1
always @(po. o
B out = B_in; o o o

assign C_in = B out + 1;

always @(po
C out = C_in;

36

12

STAM Center

wire A in, B in, C_in;
reg A out, B out, C_out;

always @(po: e clk)

A out = A in;

g

assign B_in = A out + 1;

always @(po:
B out = B in

assign C_in = B out + 1;

always @(po.
C out = C_in;

Engui:eerllng

Aizona State University

More Verilog Semantics

Active Event Queue

On clock edge all those
events which are sensitive
to the clock are added to
the active event queue in
any order!

3/11/25

37

STAM Center

re A in, B_in, C_in;
g A out, B out, C out;

s @(posedge clk)
A out = A in;

assign B_in = A out + 1;

always @(posedge clk)

B out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)

C out = C in;

More Verilog Semantics

.&Event Queue

38

re A_in, B in, C_in;
eg A out, B out, C_out;

always @(po: clk)

A out = A in;

assign B_in = A out + 1;

always @(po. 3
B out = B _in;

assign C_in = B out + 1;

always @(po
C out = C_in;

eerl‘ng

More Verilog Semantics

Active Event Queue

39

13

STAM Center

wire A in, B in, C_in;
reg A out, B out, C_out;

always @(po: e clk)

A out = A in;

g

assign B_in = A out + 1;

always @(po:
B out = B in

assign C_in = B out + 1;

always @(po.
C out = C_in;

Engui:eerllng

Aizona State University

More Verilog Semantics

Active Event Queue

3/11/25

40

STAM Center

re A in, B_in, C_in;
g A out, B out, C out;

s @(posedge clk)
A out = A in;

assign B_in = A out + 1;

always @(posedge clk)

B out = B_in;

assign C_in = B_out + 1;

always @(posedge clk)

C out = C in;

More Verilog Semantics

Active Event Queue

A evaluates and as a
consequence 1 is added to
the event queue

41

re A_in, B in, C_in;
eg A out, B out, C_out;

always @(po: clk)

A out = A in;

assign B_in = A out + 1;

always @(po. 3
B out = B _in;

assign C_in = B out + 1;

always @(po
C out = C_in;

More Verilog Semantics

eerl‘ng

Active Event Queue

Event queue is emptied
before we go to next clock
cycle

42

14

STAM Center Engincering

SLCURE, TRUSTHD, AND ASSURSO MCRORLICTROHICS Arizona tate University

More Verilog Semantics

wire A in, B_in, C_in;

reg A out, B out, C out; Active Event Queue

always @(po
A out = A in;

e clk)

g

assign B_in = A out + 1;

ge oLk)

assign C_in = B out + 1;

always @(po:
B out = B in

Event queue is emptied
before we go to next clock
cycle

always @(po.
C out = C_in;

3/11/25

43

STAM Center

More Verilog Semantics

re A in, B_in, C_in;
g A out, B out, C out;

s @(posedge clk)
A out = A in;

assign B_in = A out + 1;

al

s @(posedge clk)
B out = B in;

assign C_in = B_out + 1;

al

s @(posedge clk)
C out = C_in;

N

44

eerl‘ng

Non-Blocking Assignments

Non-blocking procedural assignments

re A in, B in, C in;
v B . add an extra event queue

eg A out, B out, C_out;

always @(po.
A out <= A :

clk) Active Event Queue

n;

assign B_in = A out + 1;

always @(po.
B out <= B

Non-Blocking Queue

assign C_in = B out + 1;

always @(po:

ge clk)
C_out <= C_in;

45

15

ineering

State Universty

STAM Center

Non-Blocking Assignments

re A in, B_in, C_in; Non-blocking procedural assignments
reg A out, B out, Cout; addan extraevent queue

always @(p e clk)

A out <= A _in;

assign B_in = A out + 1;

always @(p clk)

B out <= B_in;

assign C_in = B out + 1;

always @(p clk)

C_out <= C_in;

3/11/25

46

STAM Center

Non-Blocking Assignments

Non-blocking procedural assignments add an extra event queue

wire A in, B in, C_in; wire A in, B in, C_in;
reg A out, B out, reg A out, B out,
C out; C_out;

@(posedge clk)

A out <= A in; C out <= C_in;

B out <= B_in; B_out <= B_in;
C out <= C_in; A out <= A in;
end end

ign B in = A out + 1; gn B in = A out + 1;

ign C_in = B out + 1; assign C_in = B_out + 1;

The order of non-blocking assignments does not matter!

47

STAM Center PSEngineering

SLCURE, TRUSTHD, AND ASSURRO MCRORLICTROHICS State University

Common Patterns
= Common patterns for latch and flip-flop inference

always @(clk)

next_X X
begin —
£ (clk) clk
D<= 0;

end
always @(posedge clk) next X X
begin -
D <= Q; clk -
end

always @(posedge clk)

begin next_X X
f (enable)
b <o clk s

end

48

16

STAM Center

Blocking vs. Non-blocking

= Guidelines for using blocking and non-blocking assignment
statements

= Flip-flops should use non-blocking
= Latches should use non-blocking
= Combinational logic should use blocking

= Do not mix combinational and sequential logic in the same always
block

= Do not assign to the same variable from more than one always
block

3/11/25

49

Behavioral Verilog Usage

= Behavioral Verilog is used to model the abstract function of a
hardware module

= Characterized by heavy use of sequential blocking statements in large
always blocks

= Many constructs are not synthesizable but can be useful for behavioral
modeling

= Data dependent for and while loops
= Additional behavioral datatypes : integer, real
* Magic initialization blocks :

initial
* Magic delay statements:

#<delay>

50

STAM Center

High-level Behavior

= Verilog can be used to model the high-level behavior of a
hardware block

module factorial(input [7:0] in, output reg
[15:0] out);

integer num_call

 calls; Initial statement
initial nuncalls = 0 |
integer multiplier;] Variables of type

integer result; integer
always @(%)
begin

multip}

result

while (multiplier >0)

begin) Data dependent
Zesult = result * miltiplier;) y
multiplier = miltiplier - 1; while loop

end

out = result;

fum_calls = num_calls + 1;

51

17

eerl‘ng

STAM Center

SLCURE, TRUSTHD, AND ASSURSO MCRORLICTROHICS Arizona tate University

Delay Statements
= Delay statements should only be used in test

module mux4

(

input a,
input b,
input c,
input d, Although this will add a delay for
sel, simulation, these are ignored in synthesis
#10 £t0 = ~((sel[l] & c) | (~sel[l]l & a));

#10 t1
#10 out

~((sel[l] & d) | (~sel[l] & b));
~((t0 | sel[0]) & (t1 | ~sel[0])

endmodule

3/11/25

52

STAM Center

Synthesizable Blocks

= Even synthesizable blocks can be more behavioral

- Although this module is synthesizable, it is
e unlikely to produce the desired hardware

53

STAM Center Engincering

SLCURE, TRUSTHD, AND ASSURRO MCRORLICTROHICS Arizona tate University

System Testing

exe_filename;

svedpluson (0) ;

(svaluesp

$readmenh (

sdisplay()i
$finish;

54

18

3/11/25

Which abstraction is the right one?

. - = Designers usually use a mix
Desionees

ﬂ ® Early in the design process
they might use mostly

behavioral models.
Register Transfer Level . . .
= As the design is refined, the

behavioral models begin to
ﬂ be replaced by dataflow

el
Calar] = Finally, the designers use

automatic tools to synthesize
a low-level gate-level model

55

STAM Center

Take away points

Structural Verilog enables us to describe a hardware schematic
textually

Verilog can model hardware at three levels of abstraction

= Gate level, register transfer level, and behavioral

Understanding the Verilog execution semantics is critical for
understanding blocking + non-blocking assignments

Designers must have the hardware they are trying to create in
mind when they write their Verilog

56

19

