
Trusted Digital System Design:
Verilog Fundamentals II

Prof. Michel A. Kinsy & Mishel Paul

CSE/CEN 598
Hardware Security & Trust

Computer System Description
§ A system is a set of related components that works as a whole to

achieve a goal.
§ A system contains:

§ Inputs
§ Behavior
§ Outputs

§ Behavior is a function that translates inputs to outputs

Behaviorinputs outputs
: :

Verilog Fundamentals
§ Data types
§ Structural Verilog
§ Functional Verilog

§ Gate level
§ Register transfer level
§ High-level behavioral

Verilog Test Bench Basics
§ Test Bench – A wrapper module to apply test inputs to a “Device

Under Test”
• Also written in Verilog

§ Three main components
• Device Under Test Instantiation
• Test Inputs
• Output Checking

Example Test Bench
§ Declare test bench module
• No inputs/output

Example Test Bench
§ Declare test bench module
• No inputs/output

§ Declare parameters for module/DUT

Example Test Bench
§ Declare test bench module
• No inputs/output

§ Declare parameters for module/DUT
§ Declare test inputs/outputs
• “reg” means input for a test bench
• “wire” means output for a test bench

Example Test Bench
§ Declare test bench module
• No inputs/output

§ Declare parameters for module/DUT
§ Declare test inputs/outputs
• “reg” means input for a test bench
• “wire” means output for a test bench

§ Some reg/wires are more than 1 bit
• readData is DATA_BITS large

Example Test Bench
§ Instantiate Device Under Test

Example Test Bench
§ Instantiate Device Under Test
§ Connect DUT inputs/outputs

to test bench signals
• DUT I/O after “.”
• Test bench signals inside

parenthesis
• Names are frequently identical

Example Test Bench
§ Test Stimulus
• Apply inputs at given times of

simulation

Example Test Bench
§ Test Stimulus
• Apply inputs at given times of

simulation

§ Clock Setup
• Toggle ”clock” signal every 5

simulation timesteps
• “Always” block – repeats in a

loop

Example Test Bench
§ DUT test inputs
• “Initial” Block – Apply test

inputs once

Example Test Bench
§ DUT test inputs
• “Initial” Block – Apply test

inputs once

§ Use “Tasks” to apply specific
test inputs
• Initialize, inactive, test_tx,

test_rx, and test_exit are tasks
• A task groups a set of inputs for

re-use

Example Test Bench
§ Initialize task
• $display writes to console

Example Test Bench
§ Initialize task
• $display writes to console
• Set inputs to specific values

§ All set at the same simulation time

Example Test Bench
§ Initialize task
• $display writes to console
• Set inputs to specific values

§ All set at the same simulation time

§ Repeat statement waits for 3
clock cycles
• Reset signal stays high for 3

clock cycles

Example Test Bench
§ Initialize task
• $display writes to console
• Set inputs to specific values

§ All set at the same simulation time

§ Repeat statement waits for 3
clock cycles
• Reset signal stays high for 3

clock cycles

§ Apply new inputs after waiting
• Reset signal lowered

Additional Resources
§ Asic-world.com
• Verilog Tutorial – “Art of Writing Test Benches”
• Additional info on Verilog syntax
• Getting started examples

§ yosyshq.net/yosys/
• Documentation for open-source synthesis tool
• Used in Project 3

Obfuscated Netlists
§ Verilog Obfuscated with Yosys
• Read in Verilog
• Parse to internal representation
• Write out to plain Verilog again

§ Obfuscation
• Parsed Verilog is already hard to

read/understand
• Renamed wires, regs, and

modules

§ Top-level ports still the same

Take away points
§ Structural Verilog enables us to describe a hardware schematic

textually
§ Verilog can model hardware at three levels of abstraction

§ Gate level, register transfer level, and behavioral

§ Understanding the Verilog execution semantics is critical for
understanding blocking + non-blocking assignments

§ Designers must have the hardware they are trying to create in
mind when they write their Verilog

