CSE/CEN 598
Hardware Security & Trust

Secure Hardware Primitives:
Oblivious RAM (ORAM) & Rowhammer

Prof. Michel A. Kinsy

STAM Center

Oblivious Random Access Machine (ORAM)

= Users may store their

data encrypted so the
data itself s safe : wovsocs pigh-racoy
But the address is § i

transmitted plaintext in -
H R 0x0008 (Low — Student
commodity DRAM | | v oo

So the memory access e { R0x0004 (tow - Device Map
pattern can leak ez Processor

information to
malicious actor

Data)
R 0xFO04 (High — Crypto Key)

Oblivious Random Access Machine (ORAM)

= Threat Model

[rusted processor :}
* Untrusted external | ROXFOOS (High

~ Faculty
Data
memory/storage C§ Rowmoos (High - Crypto Key)
* An attacker may snoop [| $ R 0x0008 (Low — Student
the communication i Data)
between memory and F— R 0x0004 (Low - Device Map) |
processor ez Processor

3/22/25

STAM Center

* Encryption cannot hide
memory access pattern

E.g., read/write
intensities, frequencies,
etc.

channel

- v

Information may leak o

Oblivious Random Access Machine (ORAM)

FOO8 (High - Faculty
ata)
0xF004 (High - Crypto Key)

0x0008 (Low — Student
ata)

3/22/25

STAM Center

Encryption protect the data itself

learned
Solution

* Oblivious RAM
= Any two access patterns of the same

by anyone other than the client
= Obfuscate the data access patterns
Oblivious RAM is a cryptographic
primitive for provably obfuscating
access patterns to data

But data access patterns can still be

length are computational indistinguishable

Oblivious RAM (ORAM)

Untrusted Environment

(B i

| | v

ez Processor

STAM Center

Access patterns of
binary search leaks
the rank of the
number being

search
| | 4

Oblivious RAM (ORAM)

Multiple Physical Reads and Writes

AVAVAV/

ORAM

Read Address
Qr Write Address Data

STAM Center

Engulxeerllng

Aizona State University

Oblivious RAM (ORAM)

= What to hide?
* Which data is being accessed
* How old it is when it was last accessed
* Whether the same data is being accessed

* Whether it is sequentially accessed or randomly accessed

* Whether the access is read or write
= ORAM algorithmic properties

« Correctness

= The construction is correct, i.e., it returns data consistent with the request sequence

+ Obliviousness

= For any two request sequences x and y, we have about the same access time

« Performance

3/22/25

STAM Center

obfuscating access patterns to data

<)

Data Encrypted

Request an address? Address Plaintext

Oblivious RAM (ORAM)
= Oblivious RAM is a cryptographic primitive for provably

e
-~ coan

STA

obfuscating access patterns to data

ory con

ORAM Controller
=z

Data Encrypted
Request an address? Address Plaintext

Oblivious RAM (ORAM)

= Oblivious RAM is a cryptographic primitive for provably

main memory

Engulxeerllng

Aizona State University

STAM Center Engineering

Oblivious RAM (ORAM)

= Oblivious RAM is a cryptographic primitive for provably
obfuscating access patterns to data

Untrusted
Environment

O oooo
& =

Data Encrypted

ORAM Metadata/Tree

main memory

Request an address? Address Plaintext

3/22/25

10

STAM Center

Oblivious RAM (ORAM)

= One approach
+ On each processor read or write bring the whole external memory to on-chip
(i.e., client side)
* More specifically
= Encrypt all data, send to the untrusted environment, i.e., server side
= On read or write bring all back, decrypt all, then pick the one that you want

= Note that you can just pick and decrypt the one that you need and keep the rest
unchanged

11

Engulxeerllng

Aizona State University

STA

Oblivious RAM (ORAM)

It is obvious that this is very expensive or even dreadfully inefficient
So most of the research on ORAM is to find more efficient structures
with comparable obfuscation capabilities
The square-root algorithm

« For each sqrt(N) accesses, permute the first N+ sqrt(N) memory locations

« k steps of original RAM access can be simulated with k+sqrt(N) steps in the

ORAM

Hierarchical ORAM

« Use a hierarchy of buffers, i.e., hash tables of different sizes scheme

* General ideal

= Server
+ logN levels for N items, where level i contains 2i buckets and each bucket contains log N slots

= Client
+ Pseudo Random Permutation (PRP) key i for each level

12

ST.

eerl‘ng

Aizona State University

T

Oblivious RAM (ORAM)

How does it work?
« Data are organized in blocks and each block is paired with a unique ID forming
an item
= Item = {block, id}
* System capacity
= The total number of items in the system
* Server
= Used to perform the general key-value storage service
* Functions
= get(k) to get a value to a specific key
= put(k, v) to put a value to a specific key
= getRange(ki, k2, d) to return the first d items with keys in range [k, k2]
= delRange(k1, kz) : remove all items with keys within range [k1, k2]
« Client
= Has a private memory

3/22/25

13

STA

Center

Oblivious RAM (ORAM)

= Tree-based ORAM
» Organize data blocks on the server as a full binary tree
= log N levels and N leaf nodes
+ Each node in the tree is a bucket of Z items
« Each item is assigned to a random leaf node of the tree
* There is a position map to track which leaf node is assigned to a data item

N leaf nodes

[000000 0000 [am] | |
5 LY N7 7 71 | Posiionmap 1
EI i 1 1 1 A j
1 0 Nl o | .
H ' 1 I Cache '
5 N v ;
" | Server i iClient]
14
ST r Engui:eerllng

Aizona State University

Oblivious RAM (ORAM)
= Tree-based ORAM
= Item iis stored in the path starting from the tree root to leaf node
position map [i]
= Get the whole path that may contain the item
= Putall items on the path in the cache on the client side

N leaf nodes

- [00 0D o000 mam] | o E
s | TRX7Z N7 N7 N7 7 Postionmap
< J 111 111 . am .]
>] \Hm/' r\[lm/1] | 7 1
< | 1 1 Cache 4
> ‘ ! \[lm/ D)

" | Server i iClient]

15

Oblivious RAM (ORAM)

= Intuition
* 1.Move blocks around
« 2. For every single access to memory block, access many blocks

Detailed steps
1. Read the entire path which contains the block requested

2. Update the block if necessary
3. Remap the block to a new position randomly
4. Re-encrypt the block with a different key
5. Writeback the whole path
16
STAM Cente

ORAM lllustrative Example

Processor side slock No. [FRNIERNER NIRRT TR TN
posiion |2 |4 |3 |4 |3 |1 |2 |2 [1 |1 |4 |3 |2 |1

e [@[@] [[[[[[]

17

= Write Block 7

Processor side slockNo. [FRIERERER I A O e
Position 2 4 3 4 3 1 2 2 1 1 4 3 2 1

coe [®B]@] [[[[[[]

18

3/22/25

STAM Center

ORAM lllustrative Example
= Write Block 7

1 2 3 4
= Get Bock 7's EHEl EHEl
N/ \/

position index

Processor Side

Block No. 12 3 4 5 6 7 8 9 10 1 12 13 14
Positon |2 |4 |3 |4 |3 |1 02,12 |1 |1 |4 |3 |2 |1

O I

3/22/25

19

STAM Center

ORAM lllustrative Example

Write Block 7

1 2
Get Bock 7's position index IE' El
\/

Read entire path

Associated data is

decrypted and stored in the IE'
cache \

Processor Side

Block No. [ERIP RS SRR A SR S T ER P R E T S
Positon |2 |4 |3 |4 |3 |1 {212 |1 |1 |4 |3 |2 |1

ahe (@] @] 0|60 |6]

20

STAM Center

ORAM lllustrative Example
= Write Block 7 1 2 3 4
= Get Bock 7’s position index
Read entire path El El El El
= Associated data is \ / \ /

d d and stored in th
C:;:);pte and stored in the El El
N/

Write Block 7

Processor Side

Block No. 12 3 4 5 6 7 8 9 10 1 12 13 14
Positon |2 |4 |3 |4 |3 |1 02,12 |1 |1 |4 |3 |2 |1

e (@] 0] @06 |8 @]

21

STAM Center

Write Block 7 1 2

3 4
Get Bock 7's position inde;
Read entire pathI o El ;El El: |;E|
N

Associated data is decrypted \
and stored in the cache

Write Block 7

Assign a new random position

P Sid
rocessor side glock No. [FRNIEINIE IR TR TR TN
Position 2 4 1 2 1 1 4 3 2 1

ahe @ @|@][@[@E[@ [@] []

3/22/25

22

STAM Center

ORAM lllustrative Example

= Write Block 7 1 2 3 4

= Get Bock 7's position index

= Read entire path IE' El El El

= Associated data is decrypted '\ / '\ /
and stored in the cache

= Write Block 7

= Assign a new random position \ /

Processor Side Z
Block No. [ERIP RS SRR A SR S T ER P R E T S
Position 2 |4 |3 |4 |3 |14102 |1 |1 |4 |3 |2 |1
1

1 2 2 1 1
che [@@][D[B[@[@[8] [|

23

STAM(:e nter Engineering

o mcromscrmowcs Arizona tate University

ORAM lllustrative Example

Write Block 7

Get Bock 7’s position index 1 2 3 4
Read entire path El IE' El El
\/ \/

Associated data is decrypted and
stored in the cache

Write Block 7 El El
Assign a new random position
Remapping of the blocks \ /'

P Sid
rocessor side glock No. [FRNIERNIE NIRRT T RN
Position 2 4 3 4 3 1 ! 1/ 2 1 1 4 3 2 1
2 1 1

2 1 2 1
ahe (@[@] 0] @[@[@ [@ []

24

STAM Center

ORAM lllustrative Example

= Write Block 7 1 2 4
= Get Bock 7's position index 3
= Read entire path El IE' El El
= Associated data is decrypted and
stored in the cache \ / \ /
= Write Block 7 El El
= Assign a new random position
= Remapping of the blocks \ /'

CICEREA 1 23 a5 6 (789 10 11 12 43 14
Positon |2 |4 |3 |4 |3 |1 |1 |2 |1 |1 |4 |3 |2 |1

Cache I

3/22/25

25

s Compuation Overhead™ [Communication Round —
ORAM Comstrction o e] Cloud Storage | Communealob R T e toruge
P Oluiogn) (VN0 | OWlogN) | O O(VRlog Ny | O log) | O
RIS Oblivious Sort
Olrlog'n | OLVNRE N | OV ™| 00 GVR o)| OV Iog™) | 01
Obivious Sort.
TSR L) o [0} 0w o0
P Glaiogn) Otiog" 7 ONIoF N | OWIogN) | Oog')| O] | 0
psic Oblivious Sort
ClogT | 0oz Ny GV Ny | 0N Tog)| Oog' N7 | OWIog) | 01
Oblvious Sort
Recusive | 0oz’ N) [0 [0NloeN) | 00 oa o
BB-ORAM Recurs [Otor ™) [otoe M | 1) i)
Ollog N) (VN £ o o) oV)
TPORAM
Olos ¥ ol o) o o oW T
oED o o o= olEh | oo
oD oD o) oGz oGED o(VN)
Concureat*
Recursive, Non- | OV E#7) o) oy oW o)
Conou
o) oWEE) oy o' EF) | o' EF) | ovm)
Concurrent ¢
o | NorRecue | 00050 owogm | om o o0 [olesmeso)
Recurive oEY) oD om o) | o) | odesN-en
STAM Center Engineering
SHCURS, THUSTO,ANDASSOTD CRGRLGTRGHIE AvizonaState University

Memory Vulnerabilities

= Data confidentiality
* Encryption

= Data access side-channel leakage
+ Oblivious RAM

= Memory corruption
* Rowhammer

27

STAM Center jincering

SLCURE, TRUSTHD, AND ASSURSO MCRORLICTROHICS Arizona tate University

RowHammer

= Another memory-

centric
vulnerability x Row 0 Victim Row e
Y:Jl\ljvitai mering “ Row 1 x Victim Row ==
' EZZ:;{;M closed Row 2 —
E:algts‘\vnag: nelend x Row 3 “ Victim Row =

(precharging) a
DRAM row causes
bit flips in nearby
cells

x Row 4 Victim Row =

3/22/25

28

STAM Center

RowHammer

* When this code snippet is executed, it forces two rows to
repeatedly open and close one after the other

Over time, it induces bit fliting errors in the memory module

X X
¥ ¥->

29

STAM Center o Engincering
RowHammer

= Causes
* Electromagnetic coupling
= Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
= Slightly opens adjacent rows
+” Charge leakage
+ Conductive bridges
* Hot-carrier injection
= Solutions
* Throttle accesses to same row
= Limit access-interval: 2500ns
= Limit number of accesses: <128K (=64ms/500ns)
« Refresh more frequently
= Shorten refresh-interval by ~7x
« Both naive solutions introduce significant overhead in performance and power

30

10

ineering

State Universty

STAM Center

Rowhammer Issues in the Wild

Double refresh rate
* Lessens time to
produce bit flips

= e.g., HP, Lenovo
= Shown to be Impact: A malicious application may induce memory corruption to escalate privileges

. Bl

Available for: OS X Mountain Lion v10.85, 0S X Mavericks v0.95

ineffective Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could
. have led to memory corruption. Thisissue was mitigated by increasing memory refresh rates.
Disallow CLFLUSH

instruction
CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by
* No quick access to Yoongu Kim et al (2014)
DRAM due to caches

= e.g., Google Chrome

CVE-D

3/22/25

31

STAM Center

Upcoming Lectures

= Secure Hardware Primitives
* Hardware Trojans
* Anti-Tamper

32

11

