
Secure Hardware Primitives: 
Oblivious RAM (ORAM) & Rowhammer

Prof. Michel A. Kinsy

CSE/CEN 598 
Hardware Security & Trust



Oblivious Random Access Machine (ORAM)

§ Users may store their 
data encrypted so the 
data itself is safe

§ But the address is 
transmitted plaintext in 
commodity DRAM

§ So the memory access 
pattern can leak 
information to 
malicious actor 

R 0xF008 (High – Faculty 
Data)
R 0xF004 (High – Crypto Key)
…
R 0x0008 (Low – Student 
Data)
R 0x0004 (Low – Device Map)

External Memory

Processor



Oblivious Random Access Machine (ORAM)

§ Threat Model
• Trusted processor
• Untrusted external 

memory/storage
• An attacker may snoop 

the communication 
between memory and 
processor

R 0xF008 (High – Faculty 
Data)
R 0xF004 (High – Crypto Key)
…
R 0x0008 (Low – Student 
Data)
R 0x0004 (Low – Device Map)

External Memory

Processor



Oblivious Random Access Machine (ORAM)

§ Encryption cannot hide 
memory access pattern

§ E.g., read/write 
intensities, frequencies, 
etc.

§ Information may leak 
through the side-
channel

R 0xF008 (High – Faculty 
Data)
R 0xF004 (High – Crypto Key)
…
R 0x0008 (Low – Student 
Data)
R 0x0004 (Low – Device Map)

External Memory

Processor



Oblivious RAM (ORAM)

§ Encryption protect the data itself 
§ But data access patterns can still be 

learned
§ Solution

• Oblivious RAM 
§ Any two access patterns of the same 

length are computational indistinguishable 
by anyone other than the client  

§ Obfuscate the data access patterns 

§ Oblivious RAM is a cryptographic 
primitive for provably obfuscating 
access patterns to data

External Memory

Processor

Untrusted Environment



Oblivious RAM (ORAM)
§ Access patterns of 

binary search leaks 
the rank of the 
number being 
search

binary_search (val, s, t) mid = 
(s+t)/2
 if val < mem[mid]
  binary_search (val, 0, mid)
 else 
  binary_search (val, mid+1, t)

External Memory

Processor

ORAM

Read Address 
0r Write Address, Data

Multiple Physical Reads and Writes



Oblivious RAM (ORAM)
§ What to hide?

• Which data is being accessed
• How old it is when it was last accessed
• Whether the same data is being accessed
• Whether it is sequentially accessed or randomly accessed
• Whether the access is read or write

§ ORAM algorithmic properties 
• Correctness

§ The construction is correct, i.e., it returns data consistent with the request sequence
• Obliviousness

§ For any two request sequences x and y, we have about the same access time
• Performance



Oblivious RAM (ORAM)

§ Oblivious RAM is a cryptographic primitive for provably 
obfuscating access patterns to data

Memory Bus

Data Encrypted
Address Plaintext 

memory controller

Request an address?

main memory



Oblivious RAM (ORAM)

§ Oblivious RAM is a cryptographic primitive for provably 
obfuscating access patterns to data

Memory Bus

Data Encrypted
Address Plaintext 

memory controller

Request an address?
main memory

ORAM Controller

ORAM Metadata/Tree



Oblivious RAM (ORAM)

§ Oblivious RAM is a cryptographic primitive for provably 
obfuscating access patterns to data

Memory Bus

Data Encrypted
Address Plaintext 

memory controller

Request an address?
main memory

ORAM Controller

ORAM Metadata/Tree

Untrusted 
Environment



Oblivious RAM (ORAM)
§ One approach 

• On each processor read or write bring the whole external memory to on-chip 
(i.e., client side) 

• More specifically 
§ Encrypt all data, send to the untrusted environment, i.e., server side
§ On read or write bring all back, decrypt all, then pick the one that you want 
§ Note that you can just pick and decrypt the one that you need and keep the rest 

unchanged

Server Client



Oblivious RAM (ORAM)
§ It is obvious that this is very expensive or even dreadfully inefficient
§ So most of the research on ORAM is to find more efficient structures 

with comparable obfuscation capabilities  
§ The square-root algorithm

• For each sqrt(N) accesses, permute the first N+ sqrt(N) memory locations 
• k steps of original RAM access can be simulated with k+sqrt(N) steps in the 

ORAM 
§ Hierarchical ORAM 

• Use a hierarchy of buffers, i.e., hash tables of different sizes scheme
• General ideal 

§ Server
• logN levels for N items, where level i contains 2i buckets and each bucket contains log N slots

§ Client
• Pseudo Random Permutation (PRP) key i for each level



Oblivious RAM (ORAM)
§ How does it work? 

• Data are organized in blocks and each block is paired with a unique ID forming 
an item 
§ Item = {block, id} 

• System capacity
§ The total number of items in the system 

• Server 
§ Used to perform the general key-value storage service 

• Functions 
§ 𝑔𝑒𝑡(𝑘) to get a value to a specific key
§ 𝑝𝑢𝑡(𝑘, 𝑣)  to put a value to a specific key
§ 𝑔𝑒𝑡𝑅𝑎𝑛𝑔𝑒(𝑘1, 𝑘2, d) to return the first d items with keys in range [𝑘1, 𝑘2]
§ 𝑑𝑒𝑙𝑅𝑎𝑛𝑔𝑒(𝑘1, 𝑘2) : remove all items with keys within range [𝑘1, 𝑘2]

• Client
§ Has a private memory



Oblivious RAM (ORAM)
§ Tree-based ORAM

• Organize data blocks on the server as a full binary tree 
§ log 𝑁 levels and 𝑁 leaf nodes

• Each node in the tree is a bucket of 𝒁 items
• Each item is assigned to a random leaf node of the tree
• There is a position map to track which leaf node is assigned to a data item

Server

𝑁 leaf nodes

log
𝑁

 levels

Client

Position map

Cache



Oblivious RAM (ORAM)
§ Tree-based ORAM
§ Item i is stored in the path starting from the tree root to leaf node 

position map [i]
§ Get the whole path that may contain the item 
§ Put all items on the path in the cache on the client side

Server

𝑁 leaf nodes

log
𝑁

 levels

Client

Position map

Cache



Oblivious RAM (ORAM)
§ Intuition 
• 1.Move blocks around
• 2. For every single access to memory block, access many blocks

§ Detailed steps 
1. Read the entire path which contains the block requested
2. Update the block if necessary
3. Remap the block to a new position randomly
4. Re-encrypt the block with a different key
5. Writeback the whole path 



ORAM Illustrative Example 

3 41 2
14 3 121 7 4 11

13 2 5

10 6

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 2 2 1 1 4 3 2 1

Cache 8 9

Memory Side

Processor Side



ORAM Illustrative Example 
§ Write Block 7 3 41 2

14 3 121 7 4 11

13 2 5

10 6

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 2 2 1 1 4 3 2 1

Cache 8 9

Memory Side

Processor Side



ORAM Illustrative Example 
§ Write Block 7
§ Get Bock 7’s 

position index

3 41 2
14 3 121 7 4 11

13 2 5

10 6

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 2 2 1 1 4 3 2 1

Cache 8 9

Memory Side

Processor Side



ORAM Illustrative Example 
§ Write Block 7
§ Get Bock 7’s position index
§ Read entire path
§ Associated data is 

decrypted and stored in the 
cache

3 41 2
14 3 121 7 4 11

13 2 5

10 6

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 2 2 1 1 4 3 2 1

Cache

Memory Side

Processor Side

8 1 7 13 10 69



ORAM Illustrative Example 
§ Write Block 7
§ Get Bock 7’s position index
§ Read entire path
§ Associated data is 

decrypted and stored in the 
cache

§ Write Block 7

3 41 2
14 3 121 7 4 11

13 2 5

10 6

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 2 2 1 1 4 3 2 1

Cache

Memory Side

Processor Side

8 1 7 13 10 69



ORAM Illustrative Example 
§ Write Block 7
§ Get Bock 7’s position index
§ Read entire path
§ Associated data is decrypted 

and stored in the cache
§ Write Block 7
§ Assign a new random position 

3 41 2
14 3 121 7 4 11

13 2 5

10 6

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 1 2 1 1 4 3 2 1

Cache

Memory Side

Processor Side

8 1 7 13 10 69



ORAM Illustrative Example 
§ Write Block 7
§ Get Bock 7’s position index
§ Read entire path
§ Associated data is decrypted 

and stored in the cache
§ Write Block 7
§ Assign a new random position 

3 41 2
14 3 121 7 4 11

13 2 5

10 6

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 1 2 1 1 4 3 2 1

Cache

Memory Side

Processor Side

8 1 7 13 10 69

2 1           2          1          2 1           1



ORAM Illustrative Example 
§ Write Block 7
§ Get Bock 7’s position index
§ Read entire path
§ Associated data is decrypted and 

stored in the cache
§ Write Block 7
§ Assign a new random position
§ Remapping of the blocks 

3 41 2
14 3 128 13 4 11

1 2 5

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 1 2 1 1 4 3 2 1

Cache

Memory Side

Processor Side

8 1 7 13 10 69

2 1           2          1          2 1           1



ORAM Illustrative Example 
§ Write Block 7
§ Get Bock 7’s position index
§ Read entire path
§ Associated data is decrypted and 

stored in the cache
§ Write Block 7
§ Assign a new random position
§ Remapping of the blocks 

3 41 2
14 3 128 13 4 11

1 2 5

Block No.

Position
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 4 3 4 3 1 1 2 1 1 4 3 2 1

Cache

Memory Side

Processor Side

10

7

69



Oblivious RAM (ORAM)



Memory Vulnerabilities 
§ Data confidentiality 
• Encryption 

§ Data access side-channel leakage 
• Oblivious RAM

§ Memory corruption 
• Rowhammer



RowHammer
§ Another memory-

centric 
vulnerability

§ What is 
rowhammering 
• Repeatedly 

opening 
(activating) and 
closing 
(precharging) a 
DRAM row causes 
bit flips in nearby 
cells 

Row	0

Row	1

Row	2

Row	3

Row	4

Row	2open
Row	1

Row	3

Row	2closed Row	2open
Row	1

Row	3

Row	0

Row	4

Victim	Row

Victim	Row

Victim	Row

Victim	Row

Aggressor	RowRow	2open Row	2closed



RowHammer
§ When this code snippet is executed, it forces two rows to 

repeatedly open and close one after the other 
§ Over time, it induces bit fliting errors in the memory module

loop:
  mov (X), %eax
  mov (Y), %ebx
  clflush (X)  
  clflush (Y)
  mfence
  jmp loop

Y

X

Y

X



RowHammer
§ Causes 

• Electromagnetic coupling
§ Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
§ Slightly opens adjacent rows 

• Charge leakage
• Conductive bridges
• Hot-carrier injection

§ Solutions 
• Throttle accesses to same row

§ Limit access-interval: ≥500ns
§ Limit number of accesses: ≤128K (=64ms/500ns)

• Refresh more frequently
§ Shorten refresh-interval by ~7x

• Both naive solutions introduce significant overhead in performance and power



Rowhammer Issues in the Wild
§ Double refresh rate
• Lessens time to 

produce bit flips
§ e.g., HP, Lenovo 
§ Shown to be 

ineffective 

§ Disallow CLFLUSH 
instruction
• No quick access to 

DRAM due to caches
§ e.g., Google Chrome



Upcoming Lectures
§ Secure Hardware Primitives
• Hardware Trojans
• Anti-Tamper


