%‘ Ira A.Fulton Schools of
STAM Center Engineering
:::::: . TRUSTED, AND ASSURED MICROELECTRONICS Arizona State University

CSE/CEN 598
Hardware Security & Trust

Secure Hardware Primitives:
Oblivious RAM (ORAM) & Rowhammer

Prof. Michel A. Kinsy

“lraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

EE

Oblivious Random Access Machine (ORAM)

= Users may store their
data encrypted so the
data itself is safe

= But the address is
transmitted plaintext in

commodity DRAM

» So the memory access
pattern can leak
information to
malicious actor

__

. R OxFOO8 (High — Faculty
. Data) i
' R 0xF004 (High — Crypto Key) !

' R 0x0008 (Low — Student
' Data) |
i R 0x0004 (Low — Device Map) !

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“IraA. Ful_ton Schools of
% Engineering

Arizona State University

Oblivious Random Access Machine (ORAM)

» Threat Model

* Trusted processor

 Untrusted external
memory/storage

* An attacker may snoop

the communication
between memory and
processor

v

Processor

__

' R OXFOO8 (High — Faculty :
' Data)
' R 0xF004 (High — Crypto Key) !

' R 0x0008 (Low — Student
' Data) |
i R 0x0004 (Low — Device Map) !

“lraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious Random Access Machine (ORAM)

= Encryption cannot hide
memory access pattern [

__

. R OxFO08 (High — Faculty |
' Data)
' R 0xF004 (High — Crypto Key) !

» E.g., read/write
intensities, frequencies,

etc. - ‘ ' EOXOOOS(Low—Student
. ' Data) i
= Information may leak — R 0x0004 (Low — Device Map) |

through the side- m)g Processor |
channel

“lraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

= Encryption protect the data itself

= But data access patterns can stillbe
learned Untrusted Environment

= Solution { J
 Oblivious RAM 5 5

= Any two access patterns of the same
length are computational indistinguishable
by anyone other than the client

= Obfuscate the data access patterns — v
= Oblivious RAM is a cryptographic prTTTg
porimitive for provably obfuscating vz Processor

access patterns to data

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

%’ IraA. Ful_ton Schools of
Engineering

Arizona State University

Oblivious RAM (ORAM)

= Access patterns of binary search (val, s, t) mid =
. (s+t) /2
binary search leaks) < e imia
the rank Of the binary search (val, 0, mid)
b b . else
numoer elng binary search (val, mid+1l, t)
search
[J Multiple Physical Reads and Writes
- v ORAM
al - P
- TJC'TUJE rocessor Read Address

Or Write Address, Data

%‘ IraA. Ful_ton Schools of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

= \WWhat to hide?

Which data is being accessed

How old it is when it was last accessed

Whether the same data is being accessed

Whether it is sequentially accessed or randomly accessed
Whether the access is read or write

= ORAM algorithmic properties
* Correctness
= The construction is correct, i.e., it returns data consistent with the request sequence

* Obliviousness
= For any two request sequences x and y, we have about the same access time

e Performance

“IraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

= Oblivious RAM is a cryptographic primitive for provably
obfuscating access patterns to data

[memory controller }

ﬂ ﬂ main memory

Data Encrypted
Request an address? Address Plaintext

%‘ IraA. Ful.ton Schools of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

= Oblivious RAM is a cryptographic primitive for provably
obfuscating access patterns to data

{ memory controller J
ORAM Controller ﬂ ﬂ

Data Encrypted
Request an address? Address Plaintext

main memory

%‘ IraA. Ful.ton Schools of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

= Oblivious RAM is a cryptographic primitive for provably

Untrusted |
Environment

{ memory controller J
ORAM Controller ﬂ ﬂ
s

| Data Encrypted
Request an address? . Address Plaintext

“lraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

= One approach

* On each processor read or write bring the whole external memory to on-chip
(i.e., client side)

« More specifically
= Encrypt all data, send to the untrusted environment, i.e., server side
= On read or write bring all back, decrypt all, then pick the one that you want

= Note that you can just pick and decrypt the one that you need and keep the rest
unchanged

[0 001 0710 0010 001 000 070 0110 :

[0 0110 070 07110 (0 0 0110 0110 | CICCP OO OO0 COCC) COTT) CECE) LD |
I
|
|

T 17 0110 070 011 000 017 01170 EEIIIEEEEIEEIIIEEIIIEEIIIEEEEIEEIII

: Client I

“IraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

= |t is obvious that this is very expensive or even dreadfully inefficient

= So most of the research on ORAM is to find more efficient structures
with comparable obfuscation capabilities

= The square-root algorithm
* For each sqgrt(N) accesses, permute the first N+ sqrt(N) memory locations

« k steﬁ/ls of original RAM access can be simulated with k+sqgrt(N) steps in the
ORA

» Hierarchical ORAM

* Use a hierarchy of buffers, i.e., hash tables of different sizes scheme

e General ideal

= Server
* logN levels for N items, where level i contains 2i buckets and each bucket contains log N slots

= Client
» Pseudo Random Permutation (PRP) key i for each level

“IraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

* How does it work?
- Data are organized in blocks and each block is paired with a unique ID forming

an 1tem

» [tem = {block, id}
System capacity

* The total number of items in the system
Server

= Used to perform the general key-value storage service
Functions

= get(k) to get a value to a specific key

= put(k, v) to put a value to a specific key

= getRange(k, k,, d) to return the first d items with keys in range [k;, k)]

» delRange(k,, k) : remove all items with keys within range [k, k5]
Client

* Has a private memory

“lraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

» Tree-based ORAM

« Organize data blocks on the server as a full binary tree
* log N levels and N leaf nodes

e Each node in the tree is a bucket of Z items
« Each item is assigned to a random leaf node of the tree
* There is a position map to track which leaf node is assigned to a data item

N leaf nodes

z | N/ N/ N/ N7 | i Position map E
AL WL WO s
é; i \ / E i Cache E

~ | Server 1 Client i

“lIraA. Ful_ton Schools of
Engineering

Arizona State University

STAM Center

EE

Oblivious RAM (ORAM)
* Tree-based ORAM
= [tem iis stored in the path starting from the tree root to leaf node
position map |[i]
= Get the whole path that may contain the item
= Put all items on the path in the cache on the client side

N leaf nodes

I 1

| |

GCT : : i Position map :

|

>l L N A R 11117
< : | | ache

_ | | . '

. Server 1 Client :

* Ira A.Fulton Schools of
Engineering
Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Oblivious RAM (ORAM)

" |ntuition
 1.Move blocks around
2. For every single access to memory block, access many blocks

= Detailed steps
1. Read the entire path which contains the block requested
2. Update the block if necessary
3. Remap the block to a new position randomly
4. Re-encrypt the block with a different key
5. Writeback the whole path

%‘ IraA. Ful.ton Schools of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ORAM lllustrative Example
1 2 3 4

\/ \/
N/

Processor Side Block No.

Memory Side

Position

Cache (9]

ORAM lllustrative Example

= Write Block 7 1 2 3 4

\ / \/

Memory Side

Processor Side Block No.

Position

Cache (9]

* Ira A.Fulton Schools of
Engineering
Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ORAM lllustrative Example

» Write Block 7 1 2 3 4

» Get Bock 7' oolon @0 @
position index

Memory Side

Processor Side Block No.

Position

Cache (9]

* Ira A.Fulton Schools of
Engineering
Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ORAM lllustrative Example
= Write Block 7 1 2 3 4

= Get Bock 7's position index |mml|@ .‘ B2 @

= Read entire path r\/ r\/

= Associated data is
decrypted and stored in the

cache \ /

Memory Side

Processor Side Block No.

Position

Cache 9] (6)

* Ira A.Fulton Schools of
Engineering
Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ORAM lllustrative Example

= Write Block 7 1 2 3 4

= Get Bock 7's position index aal@ .‘ a2 s @
= Read entire path

= Associated data is '\ /‘ '\ /‘
3

decrypted and stored in the
cache

= Write Block 7

Memory Side

Processor Side Block No.

Position

Cache 9] (6)

* Ira A.Fulton Schools of
Engineering
Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ORAM lllustrative Example

= Write Block 7 1 2 3 4

= Get Bock 7's position index

. TICEREENE

= Read entire path

= Associated data is decrypted \ / \ /

and stored in the cache
= Write Block 7
= Assign a new random position \ /
Memory Side
" Processor Side _E;o_ck_ N_O __
Position

Cache 9] (6)

“IraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ORAM lllustrative Example

= Write Block 7 1 2 3 4

= Get Bock 7's position index

. TICEREENE

= Read entire path

= Associated data is decrypted \ / \ /

and stored in the cache
= Write Block 7
= Assign a new random position \ /
Memory Side
" Processor Side _E;o_ck_ N_O __
Position

Cache B 1 0|08 0 B8 @0 @®

“IraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ORAM lllustrative Example

= Write Block 7
= Get Bock 7’s position index 1 2 3 4
= Read entire path @ 0O & .‘ R @@
» Associated data is decrypted and
stored in the cache P \ / \ /1
= Write Block 7 oln 2] 5)

= Assign a new random position

= Remapping of the blocks \ /
Memory Side
~ ProcessorSide o\ FEERERIOESTE TR
Position

Cache 9] (6)

“IraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

ORAM lllustrative Example

= Write Block 7
= Get Bock 7’s position index 1 2 3 4
= Read entire path @ 0O & .‘ R @@
» Associated data is decrypted and
stored in the cache P \ / \ /1
= Write Block 7 ala 2] 5)

= Assign a new random position

= Remapping of the blocks \ /
Memory Side
~ ProcessorSide o\ FEERERITIESTSEOROOTOETO T
Position

Cache

%‘ IraA. Ful_ton Schools of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Oblivious RAM (ORAM)

. Computation Overhead ¢ Communication Round .
ORAM Construction Amortized Worst-Case Cloud Storage Amortized Worst-Case Client Storage
. O(nlog n) O(VNlogN) O(N log N) O(N) O(VNlogN) | O(NlogN) | O(1)
Basic-SR ..
Oblivious Sort
O(nlog” n) O(VN log® N) O(N log” N) O(N) O(VNlog”N)| O(Nlog®N) | O(1)
Oblivious Sort
IBS-SR O(VN) O(N) O(N) o(1) O(VN) O(VN)
. O(nlogn) 0(log3 N) O(N log2 N) O(NlogN) 0(log3 N) O(N log2 N) | o)?®
Basic-HR ..
Oblivious Sort
O(nlog” n) O(log” N) O(N log’ N) O(N log N) O(log” N) O(Nlog’ N) | O(1)
Oblivious Sort
BE-ORAM Non-Recursive O(log” N) O(log” N) O(N log N) O(log” N) O(log” N) 0(%)
Recursive O(log” N) O(log” N) O(N log N) O(log” N) O(log” N) o(1)
Non-Recursive, | O(log N) O(VN) O(N) o(1) o(l) O(VN +)
TP-ORAM Non-Concurrent
Non-Recursive, O(log N) O(log N) O(N) o(l) o(l) O(VN + %)
Concurrent
Recursive, Non- | O(E4) O(VN) O(N) OGER) OGER) O(VN)
Concurrent ¢
Recursive, O(T) OCER) O(N) OGER) OGER) O(VN)
Concurrent ¢
loglog N log N loglog N loglog N
Recursive, Non- | O(N 1eb) o(NTeEB 0Dy | (N ON ey | oV =8) | o(VN)
Concurrent ¢
loglog Vv loglog NV Toglog N Toglog N'
Recursive, O(N log B) O(N fog B) O(N) O(N log &) | ON log &) | O(VN)
Concurrent ¢
Path-ORAM Non-Recursive O(log N) O(log N) O(N) o(1) o(1) O(log N)-w(1)+0O(%)
ath- . log” N log= N log N log N

* Ira A.Fulton Schools of
Engineering
Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Memory Vulnerabilities

= Data confidentiality
* Encryption

» Data access side-channel leakage
* Oblivious RAM

= Memory corruption

e Rowhammer

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

“lraA. Ful_ton Schools of
% Engineering

Arizona State University

RowHammer

* Another memory-
centric /
vulnerability

» What is

rowhammering x Row 1 x Victim Row
* Repeated|
g closed Row 2

N

Victim Row

opening
(activating) and
closing x Row 3 x Victim Row

(precharging) a

DRAM row causes Row 4 Victim Row
bit flips in nearby \ x /

cells

STAM Center

EE

“lraA. Ful_ton Schools of
% Engineering

Arizona State University

RowHammer

= When this code snippet is executed, it forces two rows to
repeatedly open and close one after the other

= Over time, it induces bit fliting errors in the memory module

loop:
mov (
mov | X = X =
clflush

clflush
e Y = Y =

Jjmp loop

%‘ IraA. Ful_ton Schools of
Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

RowHammer

= Causes

* Electromagnetic coupling

* Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
= Slightly opens adjacent rows
* Charge leakage

« Conductive bridges
* Hot-carrier injection
= Solutions

* Throttle accesses to same row
= Limit access-interval: =500ns
* Limit number of accesses: <128K (=64ms/500ns)
* Refresh more frequently
» Shorten refresh-interval by ~7x
 Both naive solutions introduce significant overhead in performance and power

“IraA. Ful_ton Schools of
% Engineering

Arizona State University

STAM Center

SECURE, TRUSTED, AND ASSURED MICROELECTRONICS

Rowhammer Issues in the Wild

» Double refresh rate
* Lessens time to

produce bit flips

= e.g., HP, Lenovo

« EFI

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5

= Shown to be Impact: A malicious application may induce memory corruption to escalate privileges
ineffective Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could
. have led to memory corruption. This issue was mitigated by increasing memory refresh rates.
= Disallow CLFLUSH
. . CVE-ID
INnstruction

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by
* No quick access to Yoongu Kim et al (2014)

DRAM due to caches

» e.g., Google Chrome

* Ira A.Fulton Schools of
Engineering
Arizona State University

STAM Center

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Upcoming Lectures

» Secure Hardware Primitives
* Hardware Trojans
* Anti-Tamper

