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Foundations of Secure Computing
§ Security protocols 

• Multi-party computation, zero-knowledge, oblivious transfer, security models, 
etc.

§ Homomorphic encryption (HE)
• Hardware and software implementations 

§ Design and implementation of trusted platform modules (TPMs)
• TPM-based anonymous authentication, signature, encryption, identity 

management, etc.

§ Trusted execution environments (TEEs)
• TEE-based security and privacy techniques, vulnerability and countermeasures of 

TEE, distributed TEE, decentralized TEE, etc.
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Threshold Secret Sharing Scheme
§ Select 

• p a large prime number and 
• S as the secret value
• s1,…,sk-1 a set of randomly numbers from [0, p-1]

§ A (k, n) threshold polynomial can be written by
s(x) ≡ S+s1x+s2x2+…+sk-1xk-1 (mod p)

§ Send (xi,s(xi)) to the i-th participant
§ Secret sharing in distributed systems provides 

• Fault-tolerant 
• Multi-factor authentication
• Multi-party authorization



Threshold Secret Sharing Scheme

§ Secret Reconstruction 
• To reconstruct the secret S, one needs to collect at least k partial secrets
• The secret can then be reconstructed using Lagrange interpolation 

§ The scheme can be extended to support share renewal and share 
recovery
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Oblivious Transfer
§ Oblivious Transfer refers to the technique of transferring a specific 

piece of data based on the receiver's selection

• Alice does  not know which one of the two Bob has selected 
• Bob is also oblivious to the content of the non-selected message

Alice Bob{M0, M1}

Alice sends two messages to Bob Bob elects to see one of them and only one 

s ∈ {0,1}Ms with 
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Oblivious Transfer
§ Oblivious Transfer refers to the technique of transferring a specific 

piece of data based on the receiver's selection

• There are algorithms for optimizing these straightforward 
implementations 

{M2
0, M2

1}Alice Bob

Alice sends two-k messages to Bob Bob elects to see one-k of them

s ∈ 0,1 𝑘Mk
s with 
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Oblivious Transfer
§ Oblivious transfer is the necessary and sufficient condition for 

multiparty computation
§ How can one practically perform this oblivious transfer? 
• For that let us introduce garbled circuits 

§ Garbling is a process by means of which the Boolean gate truth table is obfuscated
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Secure Computation Approaches
Trusted Execution 
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing 

software
Cons
§ Weaker security guarantees
§ Cannot stop determined 

adversaries
§ Historically plagued by 

vulnerabilities and breaches
§ Long term deployment is 

difficult – TEE’s can ‘run out’ of 
entropy / CRP’s, etc.

Fully Homomorphic 
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of 

communications, i.e., “fire and 
forget”

§ Useful when one side is limited 
in compute / memory / storage

§ Provably secure – relies on 
strength of PKE

Cons
§ Very high computational 

requirements
§ Harder to accelerate
§ Mapping existing algorithms to 

FHE may be difficult 

Multi-Party 
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat 

models
§ Easy to map existing 

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic 

proofs are weaker than 
PKE ones
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Secure Multiparty Computation
§ For the Two-party secure multiparty computation
§ Assume 
• Alice has x, Bob has y, and they want to compute two functions fA(x,y) and 

fB(x,y)
§ It could be the same function f(x,y)

• The desired outcome is that at the end of the protocol 
§ Alice learns the result of her function fA(x,y) and not Bob’s input y
§ Bob learns the result of his function fB(x,y) and not Alice’s input x



Secure Multiparty Computation
§ For the Two-party secure multiparty computation
§ Assume 
• Alice has x, Bob has y, and they want to compute two functions fA(x,y) and 

fB(x,y)
§ It could be the same function f(x,y)

§ Illustration 
• Alice represents the function f(x,y) as a garbled circuit
• She then sends the circuit and values corresponding to her input bits to 

Bob
• Bob evaluates the circuits using the sent Alice’s bits and his own input bits 
• He then transfers the result to Alice



Secure Multiparty Computation
§ For the Two-party secure multiparty computation
§ Assume 
• Alice has x, Bob has y, and they want to compute two functions fA(x,y) and 

fB(x,y)
§ It could be the same function 

§ The set up for the n-party secure multiparty computation makes 
the same assumptions 
• Here instead of just Alice and Bob, there are n parties 
• Each party with a private input
• And they want to jointly compute the function 
      fXi=(x1, …, xn)



Secure Multiparty Computation
§ Validity
• Secure function evaluation (SFE) system must be able to correctly 

computed
§ For example, result must be computed with inputs from at least all correct parties

§ Privacy
• P1 and P2 cannot know each others input ip1, ip2

§ Agreement
• Result must be same for all parties (P1 and P2)

§ Termination
• All active parties (P1 and P2 ) eventually receive final result

§ Fairness
• P1 should not be able to learn the result while denying it to P2



Secure Multiparty Computation

§ Construction of the 
computation 
• Let us have 8 parties P1, . 

. . , P7 that want to 
perform a joint 
computation
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• Each party Pi with i ∈ 
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Secure Multiparty Computation

§ Construction of the 
computation 
• Let us have 8 parties P0, . 

. . , P7 that want to 
perform a joint 
computation

• Each party Pi with i ∈ 
[0..7], has private input xi

Communication 
channels are 

deemed secure 
and authenticated



Secure Multiparty Computation

§ Construction of the 
computation 
• r is a random number 
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Secure Multiparty Computation

§ Construction of the 
computation 
• r is a random number 
• If any Pi is semi-honest or 

malicious, then these 
messages may not be 
passed along properly or 
be modified in a way that 
break the protocol 
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Secure Multiparty Computation

§ Construction of the 
computation 
• Result distribution could be 

faster
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Secure Multiparty Computation

§ Construction of the 
computation 
• Even fast compute
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Secure Multiparty Computation

§ Construction of the 
computation 
• The parties can use a linear 

secret sharing scheme to 
create a distributed state of 
their inputs 

• For each party, the random 
variables ri are different
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Secure Multiparty Computation
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§ Construction of the 
computation 
• The parties can use a linear 

secret sharing scheme to 
create a distributed state of 
their inputs 

• For each party, the random 
variables ri are different



Secure Multiparty Computation
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§ Construction of the 
computation 
• Let us have 8 parties P1, . 

. . , P7 that want to 
perform a joint 
computation

• Let us do summation 



Secure Multiparty Computation
Private 
Inputs

P0 P1 P2 P3 P4 P5 P6

11 P0

12 P1

8 P2

15 P3

9 P4

10 P5

7 P6

13 P7

Local Total



Secure Multiparty Computation
Private 
Inputs

P0 P1 P2 P3 P4 P5 P6

11 P0 -1 1 4 3 1 0 3 0

12 P1

8 P2

15 P3

9 P4

10 P5

7 P6

13 P7

Local Total



Secure Multiparty Computation
Private 
Inputs

P0 P1 P2 P3 P4 P5 P6

11 P0 -1 1 4 3 1 0 3 0

12 P1 3 -5 1 2 4 0 2 5

8 P2 1 0 0 0 2 3 1 1

15 P3 4 3 1 -4 3 2 2 4

9 P4 1 1 3 0 2 0 1 1

10 P5 2 4 0 1 2 -2 3 0

7 P6 1 0 5 2 0 1 -5 3

13 P7 1 2 3 2 1 1 3 0

Local Total



Secure Multiparty Computation
Private 
Inputs

P0 P1 P2 P3 P4 P5 P6

11 P0 -1 1 4 3 1 0 3 0

12 P1 3 -5 1 2 4 0 2 5

8 P2 1 0 0 0 2 3 1 1

15 P3 4 3 1 -4 3 2 2 4

9 P4 1 1 3 0 2 0 1 1

10 P5 2 4 0 1 2 -2 3 0

7 P6 1 0 5 2 0 1 -5 3

13 P7 1 2 3 2 1 1 3 0

85 12 5 17 6 15 5 10 14
Local Total



Secure Multiparty Computation
§ There are two major adversary models for secure computation
• Semi-honest/passive model

§ Follows all required steps
§ Looks for all advantageous information leaked
§ Assumed to be selfish 

• Fully malicious/active model
§ Arbitrarily deviates from the protocol
§ Aborts the protocol at anytime
§ Takes any step that runs counter to the desirable outcome



Secure Multiparty Computation
§ The multiparty computation is secure if it emulates the trusted 

central party model to a negligible error range
• If the two are shown to be indistinguishable
• Trusted party/Ideal/Simulated model  
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Secure Multiparty Computation
§ The security multiparty computation protocol is also evaluated 

though the simulated model 
• For example, the assumption that parties communicate through secure 

and authenticated channels holds for both settings 
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Secure Multiparty Computation
§ Dealing with semi-honest and 

malicious 
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D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure 
protocols. In Proceedings of the twentieth annual ACM symposium on Theory 
of computing (STOC '88)

M. Ben-Or, S. Goldwasser, and A. Wigderson Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the 
twentieth annual ACM symposium on Theory of computing (STOC '88)



Secure Multiparty Computation
§ Dealing with semi-honest and 

malicious 
• Any function 𝑓(x1, ..., xn) can be 

securely computed in a semi-honest 
setting if the majority is honest 
§ The passive adversary controls less than 

n/2 of the parties

• Any function 𝑓(x1, ..., xn) can be 
securely computed if the adversary 
actively controls less than n/3 of the 
parties
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Secure Multiparty Computation
§ It is a rich area of research 
• Secure multiparty computation over 

groups, fields, rings
• Authentication of the communication 

channels
• Synchronous versus asynchronous 

messaging 
• And many more sub-topics 
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Secure Multiparty Computation
§ Commitment
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp*
• A secret s from Zp such that y=gs mod p
• Where the values p,q,g, and y are public
• There is only one secret s in the system residing with Bob 

Alice Bob
{M} 

Alice commits to some x∈Zq
Then selects a random r ∈Zq 

M = gxyr mod 
p Bob now has M 



Secure Multiparty Computation
§ Commitment
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp*
• A secret s from Zp such that y=gs mod p
• Where the values p,q,g, and y are public
• There is only one secret s in the system residing with Bob 

Alice Bob
{M} 

Alice commits to some x∈Zq
Then selects a random r ∈Zq 

Bob can verify that 
M= gx(gs)r=gx+sr mod p
 

{ x, r }

M = gxyr mod p 

Alice reveals x and r

Bob now has M 



Secure Multiparty Computation
§ Zero-Knowledge
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp* 

Alice Bob{U= gr mod p } 

Alice knows a number s such 
that M = gs mod p 
and wants to prove it to Bob 

Bob also know M r is random number ∈ [1..q]



Secure Multiparty Computation
§ Zero-Knowledge
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp* 

Alice Bob{U= gr mod p } 

Alice knows a number s such 
that M = gs mod p 
and wants to prove it to Bob 

Bob also know M r is random number ∈ [1..q]

a is random number ∈ [1..q]

{a}



Secure Multiparty Computation
§ Zero-Knowledge
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp* 

Alice Bob{U= gr mod p } 

Alice knows a number s such 
that M = gs mod p 
and wants to prove it to Bob 

Bob can verify that 
U= gxM-a

    = gr+sa(M)-a
   = gr+sa(gs)-a mod p 
   =gr mod p

{x}

Alice now shows that she knows 
s without revealing the value

Bob also know M r is random number ∈ [1..q]

x = r + sa

a is random number ∈ [1..q]

{a}



Secure Multiparty Computation
§ Use Case 
• In order to analyze the economic situation of an industrial sector, a secure 

system is needed for jointly collecting and analyzing sensitive financial 
data

• The financial data should be kept
§ Confidential
§ Anonymous

Deploying secure multi-party computation for financial data 
analysis
D. Bogdanov,  R. Talviste and  J. Willemson



Secure Multiparty Computation
§ Use Case
• Improved version

§ Data stored/sorted separately on three servers
§ No single party has access to original data
§ Anonymous to the board members 

Deploying secure multi-party computation for financial data 
analysis
D. Bogdanov,  R. Talviste and  J. Willemson



Secure Computation Approaches
Trusted Execution 
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing 

software
Cons
§ Weaker security guarantees
§ Cannot stop determined 

adversaries
§ Historically plagued by 

vulnerabilities and breaches
§ Long term deployment is 

difficult – TEE’s can ‘run out’ of 
entropy / CRP’s, etc.

Fully Homomorphic 
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of 

communications, i.e., “fire and 
forget”

§ Useful when one side is limited 
in compute / memory / storage

§ Provably secure – relies on 
strength of PKE

Cons
§ Very high computational 

requirements
§ Harder to accelerate
§ Mapping existing algorithms to 

FHE may be difficult 

Multi-Party 
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat 

models
§ Easy to map existing 

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic 

proofs are weaker than 
PKE ones



Upcoming Lectures
§ Secure Computation Approaches
• Trusted Execution Environment (TEE)
• Homomorphic Encryption


