
Secure Computation Approaches:
Security Protocols

Prof. Michel A. Kinsy

CSE/CEN 598
Hardware Security & Trust

Foundations of Secure Computing
§ Security protocols

• Multi-party computation, zero-knowledge, oblivious transfer, security models,
etc.

§ Homomorphic encryption (HE)
• Hardware and software implementations

§ Design and implementation of trusted platform modules (TPMs)
• TPM-based anonymous authentication, signature, encryption, identity

management, etc.

§ Trusted execution environments (TEEs)
• TEE-based security and privacy techniques, vulnerability and countermeasures of

TEE, distributed TEE, decentralized TEE, etc.

Foundations of Secure Computing
§ Security protocols

• Multi-party computation, zero-knowledge, oblivious transfer, security models,
etc.

§ Homomorphic encryption (HE)
• Hardware and software implementations

§ Design and implementation of trusted platform modules (TPMs)
• TPM-based anonymous authentication, signature, encryption, identity

management, etc.

§ Trusted execution environments (TEEs)
• TEE-based security and privacy techniques, vulnerability and countermeasures of

TEE, distributed TEE, decentralized TEE, etc.

Threshold Secret Sharing Scheme
§ Select

• p a large prime number and
• S as the secret value
• s1,…,sk-1 a set of randomly numbers from [0, p-1]

§ A (k, n) threshold polynomial can be written by
s(x) ≡ S+s1x+s2x2+…+sk-1xk-1 (mod p)

§ Send (xi,s(xi)) to the i-th participant
§ Secret sharing in distributed systems provides

• Fault-tolerant
• Multi-factor authentication
• Multi-party authorization

Threshold Secret Sharing Scheme

§ Secret Reconstruction
• To reconstruct the secret S, one needs to collect at least k partial secrets
• The secret can then be reconstructed using Lagrange interpolation

§ The scheme can be extended to support share renewal and share
recovery

!
""
"""#"#

$

%

$

%&& &%

&
% !"#$%$%

& '&
∑ ∏
= ≠=

−
−

≡

Oblivious Transfer
§ Oblivious Transfer refers to the technique of transferring a specific

piece of data based on the receiver's selection

• Alice does not know which one of the two Bob has selected
• Bob is also oblivious to the content of the non-selected message

Alice Bob{M0, M1}

Alice sends two messages to Bob Bob elects to see one of them and only one

s ∈ {0,1}Ms with

Oblivious Transfer
§ Oblivious Transfer refers to the technique of transferring a specific

piece of data based on the receiver's selection

• Alice does not know which one of the n Bob has selected
• Bob is also oblivious to the content of the non-selected message

Alice Bob{M0, M1 , …, Mn-1}

Alice sends two messages to Bob Bob elects to see one of them and only one

s ∈ {0,1, … , 𝑛 − 1}Ms with

Oblivious Transfer
§ Oblivious Transfer refers to the technique of transferring a specific

piece of data based on the receiver's selection

• There are algorithms for optimizing these straightforward
implementations

{M2
0, M2

1}Alice Bob

Alice sends two-k messages to Bob Bob elects to see one-k of them

s ∈ 0,1 𝑘Mk
s with

{M1
0, M1

1}

{Mk
0, Mk

1}

…

Oblivious Transfer
§ Oblivious transfer is the necessary and sufficient condition for

multiparty computation
§ How can one practically perform this oblivious transfer?
• For that let us introduce garbled circuits

§ Garbling is a process by means of which the Boolean gate truth table is obfuscated

A

B
C

D

E M
Garbled Circuit

Garbled Circuit
A

B
C

D

E M
Garbled Circuit

Garbled Circuit
A

B
C

D

E M

Garbled Circuit

F

G

H

I

J

K

L
M

A

B
C

D

E

F

G

H

I

J

K

L
M

B C F

0 0 1

0 1 1

1 0 1

1 1 0

A

B
C

D

E

Garbled Circuit

F

G

H

I

J

K

L
M

A F H

0 0 0

0 1 1

1 0 1

1 1 1

B C F

0 0 1

0 1 1

1 0 1

1 1 0

A

B
C

D

E

Garbled Circuit

F

G

H

I

J

K

L
M

F D I

0 0 1

0 1 0

1 0 0

1 1 0

A F H

0 0 0

0 1 1

1 0 1

1 1 1

B C F

0 0 1

0 1 1

1 0 1

1 1 0

A

B
C

D

E

Garbled Circuit

Garbled Circuit

F

G

H

I

J

K

L
M

B C J

0 0 1

0 1 0

1 0 0

1 1 0

G J K

0 0 0

0 1 1

1 0 1

1 1 0

I E G

0 0 1

0 1 1

1 0 1

1 1 0

H K L

0 0 0

0 1 0

1 0 0

1 1 1

L K M

0 0 0

0 1 1

1 0 1

1 1 0

B C F

0 0 1

0 1 1

1 0 1

1 1 0

F D I

0 0 1

0 1 0

1 0 0

1 1 0

A F H

0 0 0

0 1 1

1 0 1

1 1 1

A

B
C

D

E

F

G

H

I

J

K

L
M

B C J

0 0 1

0 1 0

1 0 0

1 1 0

G J K

0 0 0

0 1 1

1 0 1

1 1 0

I E G

0 0 1

0 1 1

1 0 1

1 1 0

H K L

0 0 0

0 1 0

1 0 0

1 1 1

L K M

0 0 0

0 1 1

1 0 1

1 1 0

B C F

0 0 1

0 1 1

1 0 1

1 1 0

F D I

0 0 1

0 1 0

1 0 0

1 1 0

A F H

0 0 0

0 1 1

1 0 1

1 1 1

EL0,K0 (M0)

EL0,K1 (M1)

EL1,K0 (M1)

EL1,K1 (M0)

EH0,K0 (L0)

EH0,K1 (L0)

EH1,K0 (L0)

EH1,K1 (L1)

EG0,J0 (K0)

EG0,J1 (K1)

EG1,J0 (K1)

EG1,J1 (K0)

EI0,E0 (G1)

EI0,E1 (G1)

EI1,E0 (G1)

EI1,E1 (G0)

EB0,C0 (J1)

EB0,C1 (J0)

EB1,C0 (J0)

EB1,C1 (J0)

EF0,D0 (I1)

EF0,D1 (I0)

EF1,D0 (I0)

EF1,D1 (I0)

EA0,F0 (H0)

EA0,F1 (H1)

EA1,F0 (H1)

EA1,F1 (H1)

EB0,C0 (F1)

EB0,C1 (F1)

EB1,C0 (F1)

EB1,C1 (F0)

A

B
C

D

E

Garbled Circuit

A

B
C

D

E

F0
G

H

I

J

K

L
M

B C J

0 0 1

0 1 0

1 0 0

1 1 0

G J K

0 0 0

0 1 1

1 0 1

1 1 0

I E G

0 0 1

0 1 1

1 0 1

1 1 0

H K L

0 0 0

0 1 0

1 0 0

1 1 1

L K M

0 0 0

0 1 1

1 0 1

1 1 0

B C F

0 0 1

0 1 1

1 0 1

1 1 0

F D I

0 0 1

0 1 0

1 0 0

1 1 0

A F H

0 0 0

0 1 1

1 0 1

1 1 1

EL0,K0 (M0)

EL0,K1 (M1)

EL1,K0 (M1)

EL1,K1 (M0)

EH0,K0 (L0)

EH0,K1 (L0)

EH1,K0 (L0)

EH1,K1 (L1)

EG0,J0 (K0)

EG0,J1 (K1)

EG1,J0 (K1)

EG1,J1 (K0)

EI0,E0 (G1)

EI0,E1 (G1)

EI1,E0 (G1)

EI1,E1 (G0)

EB0,C0 (J1)

EB0,C1 (J0)

EB1,C0 (J0)

EB1,C1 (J0)

EF0,D0 (I1)

EF0,D1 (I0)

EF1,D0 (I0)

EF1,D1 (I0)

EA0,F0 (H0)

EA0,F1 (H1)

EA1,F0 (H1)

EA1,F1 (H1)

EB0,C0 (F1)

EB0,C1 (F1)

EB1,C0 (F1)

EB1,C1 (F0)

0

1
1

0

1

Garbled Circuit

A

B
C

D

E

F0
G

H0

I1

J0

K

L
M

B C J

0 0 1

0 1 0

1 0 0

1 1 0

G J K

0 0 0

0 1 1

1 0 1

1 1 0

I E G

0 0 1

0 1 1

1 0 1

1 1 0

H K L

0 0 0

0 1 0

1 0 0

1 1 1

L K M

0 0 0

0 1 1

1 0 1

1 1 0

B C F

0 0 1

0 1 1

1 0 1

1 1 0

F D I

0 0 1

0 1 0

1 0 0

1 1 0

A F H

0 0 0

0 1 1

1 0 1

1 1 1

EL0,K0 (M0)

EL0,K1 (M1)

EL1,K0 (M1)

EL1,K1 (M0)

EH0,K0 (L0)

EH0,K1 (L0)

EH1,K0 (L0)

EH1,K1 (L1)

EG0,J0 (K0)

EG0,J1 (K1)

EG1,J0 (K1)

EG1,J1 (K0)

EI0,E0 (G1)

EI0,E1 (G1)

EI1,E0 (G1)

EI1,E1 (G0)

EB0,C0 (J1)

EB0,C1 (J0)

EB1,C0 (J0)

EB1,C1 (J0)

EF0,D0 (I1)

EF0,D1 (I0)

EF1,D0 (I0)

EF1,D1 (I0)

EA0,F0 (H0)

EA0,F1 (H1)

EA1,F0 (H1)

EA1,F1 (H1)

EB0,C0 (F1)

EB0,C1 (F1)

EB1,C0 (F1)

EB1,C1 (F0)

0

1
1

0

1

Garbled Circuit

A

B
C

D

E

F0
G0

H0

I1

J0

K

L
M

B C J

0 0 1

0 1 0

1 0 0

1 1 0

G J K

0 0 0

0 1 1

1 0 1

1 1 0

I E G

0 0 1

0 1 1

1 0 1

1 1 0

H K L

0 0 0

0 1 0

1 0 0

1 1 1

L K M

0 0 0

0 1 1

1 0 1

1 1 0

B C F

0 0 1

0 1 1

1 0 1

1 1 0

F D I

0 0 1

0 1 0

1 0 0

1 1 0

A F H

0 0 0

0 1 1

1 0 1

1 1 1

EL0,K0 (M0)

EL0,K1 (M1)

EL1,K0 (M1)

EL1,K1 (M0)

EH0,K0 (L0)

EH0,K1 (L0)

EH1,K0 (L0)

EH1,K1 (L1)

EG0,J0 (K0)

EG0,J1 (K1)

EG1,J0 (K1)

EG1,J1 (K0)

EI0,E0 (G1)

EI0,E1 (G1)

EI1,E0 (G1)

EI1,E1 (G0)

EB0,C0 (J1)

EB0,C1 (J0)

EB1,C0 (J0)

EB1,C1 (J0)

EF0,D0 (I1)

EF0,D1 (I0)

EF1,D0 (I0)

EF1,D1 (I0)

EA0,F0 (H0)

EA0,F1 (H1)

EA1,F0 (H1)

EA1,F1 (H1)

EB0,C0 (F1)

EB0,C1 (F1)

EB1,C0 (F1)

EB1,C1 (F0)

0

1
1

0

1

Garbled Circuit

A

B
C

D

E

F0
G0

H0

I1

J0

K0

L0
M0

B C J

0 0 1

0 1 0

1 0 0

1 1 0

G J K

0 0 0

0 1 1

1 0 1

1 1 0

I E G

0 0 1

0 1 1

1 0 1

1 1 0

H K L

0 0 0

0 1 0

1 0 0

1 1 1

L K M

0 0 0

0 1 1

1 0 1

1 1 0

B C F

0 0 1

0 1 1

1 0 1

1 1 0

F D I

0 0 1

0 1 0

1 0 0

1 1 0

A F H

0 0 0

0 1 1

1 0 1

1 1 1

EL0,K0 (M0)

EL0,K1 (M1)

EL1,K0 (M1)

EL1,K1 (M0)

EH0,K0 (L0)

EH0,K1 (L0)

EH1,K0 (L0)

EH1,K1 (L1)

EG0,J0 (K0)

EG0,J1 (K1)

EG1,J0 (K1)

EG1,J1 (K0)

EI0,E0 (G1)

EI0,E1 (G1)

EI1,E0 (G1)

EI1,E1 (G0)

EB0,C0 (J1)

EB0,C1 (J0)

EB1,C0 (J0)

EB1,C1 (J0)

EF0,D0 (I1)

EF0,D1 (I0)

EF1,D0 (I0)

EF1,D1 (I0)

EA0,F0 (H0)

EA0,F1 (H1)

EA1,F0 (H1)

EA1,F1 (H1)

EB0,C0 (F1)

EB0,C1 (F1)

EB1,C0 (F1)

EB1,C1 (F0)

0

1
1

0

1

Garbled Circuit

Secure Computation Approaches
Trusted Execution
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing

software
Cons
§ Weaker security guarantees
§ Cannot stop determined

adversaries
§ Historically plagued by

vulnerabilities and breaches
§ Long term deployment is

difficult – TEE’s can ‘run out’ of
entropy / CRP’s, etc.

Fully Homomorphic
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of

communications, i.e., “fire and
forget”

§ Useful when one side is limited
in compute / memory / storage

§ Provably secure – relies on
strength of PKE

Cons
§ Very high computational

requirements
§ Harder to accelerate
§ Mapping existing algorithms to

FHE may be difficult

Multi-Party
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat

models
§ Easy to map existing

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic

proofs are weaker than
PKE ones

Secure Computation Approaches
Trusted Execution
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing

software
Cons
§ Weaker security guarantees
§ Cannot stop determined

adversaries
§ Historically plagued by

vulnerabilities and breaches
§ Long term deployment is

difficult – TEE’s can ‘run out’ of
entropy / CRP’s, etc.

Fully Homomorphic
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of

communications, i.e., “fire and
forget”

§ Useful when one side is limited
in compute / memory / storage

§ Provably secure – relies on
strength of PKE

Cons
§ Very high computational

requirements
§ Harder to accelerate
§ Mapping existing algorithms to

FHE may be difficult

Multi-Party
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat

models
§ Easy to map existing

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic

proofs are weaker than
PKE ones

Secure Multiparty Computation
§ For the Two-party secure multiparty computation
§ Assume
• Alice has x, Bob has y, and they want to compute two functions fA(x,y) and

fB(x,y)
§ It could be the same function f(x,y)

• The desired outcome is that at the end of the protocol
§ Alice learns the result of her function fA(x,y) and not Bob’s input y
§ Bob learns the result of his function fB(x,y) and not Alice’s input x

Secure Multiparty Computation
§ For the Two-party secure multiparty computation
§ Assume
• Alice has x, Bob has y, and they want to compute two functions fA(x,y) and

fB(x,y)
§ It could be the same function f(x,y)

§ Illustration
• Alice represents the function f(x,y) as a garbled circuit
• She then sends the circuit and values corresponding to her input bits to

Bob
• Bob evaluates the circuits using the sent Alice’s bits and his own input bits
• He then transfers the result to Alice

Secure Multiparty Computation
§ For the Two-party secure multiparty computation
§ Assume
• Alice has x, Bob has y, and they want to compute two functions fA(x,y) and

fB(x,y)
§ It could be the same function

§ The set up for the n-party secure multiparty computation makes
the same assumptions
• Here instead of just Alice and Bob, there are n parties
• Each party with a private input
• And they want to jointly compute the function
 fXi=(x1, …, xn)

Secure Multiparty Computation
§ Validity
• Secure function evaluation (SFE) system must be able to correctly

computed
§ For example, result must be computed with inputs from at least all correct parties

§ Privacy
• P1 and P2 cannot know each others input ip1, ip2

§ Agreement
• Result must be same for all parties (P1 and P2)

§ Termination
• All active parties (P1 and P2) eventually receive final result

§ Fairness
• P1 should not be able to learn the result while denying it to P2

Secure Multiparty Computation

§ Construction of the
computation
• Let us have 8 parties P1, .

. . , P7 that want to
perform a joint
computation

P0

P4

P6 P2

P7

P3P5

P1

P0

P4

P6 P2

P7

P3P5

P1

x0

x1

x2

x3
x4

x5

x6

x7

Secure Multiparty Computation

§ Construction of the
computation
• Let us have 8 parties P0, .

. . , P7 that want to
perform a joint
computation

• Each party Pi with i ∈
[0..7], has private input xi

P0

P4

P6 P2

P7

P3P5

P1

x0

x1

x2

x3
x4

x5

x6

x7

Secure Multiparty Computation

§ Construction of the
computation
• Let us have 8 parties P0, .

. . , P7 that want to
perform a joint
computation

• Each party Pi with i ∈
[0..7], has private input xi

Communication
channels are

deemed secure
and authenticated

Secure Multiparty Computation

§ Construction of the
computation
• r is a random number

P0

P4

P6 P2

P7

P3P5

P1

x0

x1

x2

x3
x4

x5

x6

x7

r y’=x0 - r
y’=

y’ +
 x

1

y’
=

y’
 +

 x
2

y’=y’ + x3y’=y’ + x4

y’=
y’ +

 x
5

y’
=

y’
 +

 x
6

y’=
y’ +

 x7

Secure Multiparty Computation

P0

P4

P6 P2

P7

P3P5

P1

x0

x1

x2

x3
x4

x5

x6

x7

r y’=x0 - r

y=y’ + r

y’=
y’ +

 x
1

y’
=

y’
 +

 x
2

y’=y’ + x3y’=y’ + x4

y’=
y’ +

 x
5

y’
=

y’
 +

 x
6

y’=
y’ +

 x7

y

y

yy

y

y

y

§ Construction of the
computation
• r is a random number

Secure Multiparty Computation

§ Construction of the
computation
• r is a random number
• If any Pi is semi-honest or

malicious, then these
messages may not be
passed along properly or
be modified in a way that
break the protocol

P0

P4

P6 P2

P7

P3P5

P1

x0

x1

x2

x3
x4

x5

x6

x7

r y’=x0 - r

y=y’ + r

y’=
y’ +

 x
1

y’
=

y’
 +

 x
2

y’=y’ + x3y’=y’ + x4

y’=
y’ +

 x
5

y’
=

y’
 +

 x
6

y’=
y’ +

 x7

y

y

yy

y

y

y

Secure Multiparty Computation

§ Construction of the
computation
• Result distribution could be

faster

x2

P0

P4

P6 P2

P7

P3P5

P1

x0

x1

x3
x4

x5

x6

x7

r

y=y’ + r y’=
y’ +

 x
1

y’
=

y’
 +

 x
2

y’=y’ + x3y’=y’ + x4

y’=
y’ +

 x
5

y’
=

y’
 +

 x
6

y’=
y’ +

 x7 y’=x0 - r

Secure Multiparty Computation

§ Construction of the
computation
• Even fast compute

P0

P4

P2

P7

P5

P6

P3

P1

x0

x1

x2

x3
x4

x5

x6

x7

Secure Multiparty Computation

§ Construction of the
computation
• The parties can use a linear

secret sharing scheme to
create a distributed state of
their inputs

• For each party, the random
variables ri are different

P0

P4

P2

P7

P5

P6

P3

P1

x0

x1

x2

x3
x4

x5

x6

x7

x00=x0 – r0
x01=x0 – r1

x02=x0 – r2 x03=x0 – r3
x04=x0 – r4 x05=x0 – r5
x06=x0 – r6 x07=x0 – r7

Secure Multiparty Computation
P0

P4

P2

P7

P5

P6

P3

P1

x0

x1

x2

x3
x4

x5

x6

x7

x40=x4 – r0
x41=x4 – r1
x42=x4 – r2

x43=x4 – r3
x44=x4 – r4
x45=x4 – r5

x46=x4 – r6 x47=x4 – r7

§ Construction of the
computation
• The parties can use a linear

secret sharing scheme to
create a distributed state of
their inputs

• For each party, the random
variables ri are different

Secure Multiparty Computation

P0

P4

P2

P7

P5

P6

P3

P113

11

12

8

15

9

10

7

§ Construction of the
computation
• Let us have 8 parties P1, .

. . , P7 that want to
perform a joint
computation

• Let us do summation

Secure Multiparty Computation
Private
Inputs

P0 P1 P2 P3 P4 P5 P6

11 P0

12 P1

8 P2

15 P3

9 P4

10 P5

7 P6

13 P7

Local Total

Secure Multiparty Computation
Private
Inputs

P0 P1 P2 P3 P4 P5 P6

11 P0 -1 1 4 3 1 0 3 0

12 P1

8 P2

15 P3

9 P4

10 P5

7 P6

13 P7

Local Total

Secure Multiparty Computation
Private
Inputs

P0 P1 P2 P3 P4 P5 P6

11 P0 -1 1 4 3 1 0 3 0

12 P1 3 -5 1 2 4 0 2 5

8 P2 1 0 0 0 2 3 1 1

15 P3 4 3 1 -4 3 2 2 4

9 P4 1 1 3 0 2 0 1 1

10 P5 2 4 0 1 2 -2 3 0

7 P6 1 0 5 2 0 1 -5 3

13 P7 1 2 3 2 1 1 3 0

Local Total

Secure Multiparty Computation
Private
Inputs

P0 P1 P2 P3 P4 P5 P6

11 P0 -1 1 4 3 1 0 3 0

12 P1 3 -5 1 2 4 0 2 5

8 P2 1 0 0 0 2 3 1 1

15 P3 4 3 1 -4 3 2 2 4

9 P4 1 1 3 0 2 0 1 1

10 P5 2 4 0 1 2 -2 3 0

7 P6 1 0 5 2 0 1 -5 3

13 P7 1 2 3 2 1 1 3 0

85 12 5 17 6 15 5 10 14
Local Total

Secure Multiparty Computation
§ There are two major adversary models for secure computation
• Semi-honest/passive model

§ Follows all required steps
§ Looks for all advantageous information leaked
§ Assumed to be selfish

• Fully malicious/active model
§ Arbitrarily deviates from the protocol
§ Aborts the protocol at anytime
§ Takes any step that runs counter to the desirable outcome

Secure Multiparty Computation
§ The multiparty computation is secure if it emulates the trusted

central party model to a negligible error range
• If the two are shown to be indistinguishable
• Trusted party/Ideal/Simulated model

P0

P4

P2

P7

P5

P6

P3

P1

x0

x1

x2

x3
x4

x5

x6

x7

P0

P4

P6 P2

P7

P3P5

P1

Trusted
Party≈

Secure Multiparty Computation
§ The security multiparty computation protocol is also evaluated

though the simulated model
• For example, the assumption that parties communicate through secure

and authenticated channels holds for both settings

P0

P4

P2

P7

P5

P6

P3

P1

x0

x1

x2

x3
x4

x5

x6

x7

P0

P4

P6 P2

P7

P3P5

P1

Trusted
Party≈

Secure Multiparty Computation
§ Dealing with semi-honest and

malicious
P0

P4

P6 P2

P7

P3P5

P1

P0

P4

P6 P2

P7

P3P5

P1

D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure
protocols. In Proceedings of the twentieth annual ACM symposium on Theory
of computing (STOC '88)

M. Ben-Or, S. Goldwasser, and A. Wigderson Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the
twentieth annual ACM symposium on Theory of computing (STOC '88)

Secure Multiparty Computation
§ Dealing with semi-honest and

malicious
• Any function 𝑓(x1, ..., xn) can be

securely computed in a semi-honest
setting if the majority is honest
§ The passive adversary controls less than

n/2 of the parties

• Any function 𝑓(x1, ..., xn) can be
securely computed if the adversary
actively controls less than n/3 of the
parties

P0

P4

P6 P2

P7

P3P5

P1

P0

P4

P6 P2

P7

P3P5

P1

Secure Multiparty Computation
§ It is a rich area of research
• Secure multiparty computation over

groups, fields, rings
• Authentication of the communication

channels
• Synchronous versus asynchronous

messaging
• And many more sub-topics

P0

P4

P6 P2

P7

P3P5

P1

P0

P4

P6 P2

P7

P3P5

P1

Secure Multiparty Computation
§ Commitment
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp*
• A secret s from Zp such that y=gs mod p
• Where the values p,q,g, and y are public
• There is only one secret s in the system residing with Bob

Alice Bob
{M}

Alice commits to some x∈Zq
Then selects a random r ∈Zq

M = gxyr mod
p Bob now has M

Secure Multiparty Computation
§ Commitment
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp*
• A secret s from Zp such that y=gs mod p
• Where the values p,q,g, and y are public
• There is only one secret s in the system residing with Bob

Alice Bob
{M}

Alice commits to some x∈Zq
Then selects a random r ∈Zq

Bob can verify that
M= gx(gs)r=gx+sr mod p

{ x, r }

M = gxyr mod p

Alice reveals x and r

Bob now has M

Secure Multiparty Computation
§ Zero-Knowledge
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp*

Alice Bob{U= gr mod p }

Alice knows a number s such
that M = gs mod p
and wants to prove it to Bob

Bob also know M r is random number ∈ [1..q]

Secure Multiparty Computation
§ Zero-Knowledge
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp*

Alice Bob{U= gr mod p }

Alice knows a number s such
that M = gs mod p
and wants to prove it to Bob

Bob also know M r is random number ∈ [1..q]

a is random number ∈ [1..q]

{a}

Secure Multiparty Computation
§ Zero-Knowledge
• Let p and q be two large prime numbers such that q divides p-1
• Generator g of the order-q subgroup of Zp*

Alice Bob{U= gr mod p }

Alice knows a number s such
that M = gs mod p
and wants to prove it to Bob

Bob can verify that
U= gxM-a

 = gr+sa(M)-a
 = gr+sa(gs)-a mod p
 =gr mod p

{x}

Alice now shows that she knows
s without revealing the value

Bob also know M r is random number ∈ [1..q]

x = r + sa

a is random number ∈ [1..q]

{a}

Secure Multiparty Computation
§ Use Case
• In order to analyze the economic situation of an industrial sector, a secure

system is needed for jointly collecting and analyzing sensitive financial
data

• The financial data should be kept
§ Confidential
§ Anonymous

Deploying secure multi-party computation for financial data
analysis
D. Bogdanov, R. Talviste and J. Willemson

Secure Multiparty Computation
§ Use Case
• Improved version

§ Data stored/sorted separately on three servers
§ No single party has access to original data
§ Anonymous to the board members

Deploying secure multi-party computation for financial data
analysis
D. Bogdanov, R. Talviste and J. Willemson

Secure Computation Approaches
Trusted Execution
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing

software
Cons
§ Weaker security guarantees
§ Cannot stop determined

adversaries
§ Historically plagued by

vulnerabilities and breaches
§ Long term deployment is

difficult – TEE’s can ‘run out’ of
entropy / CRP’s, etc.

Fully Homomorphic
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of

communications, i.e., “fire and
forget”

§ Useful when one side is limited
in compute / memory / storage

§ Provably secure – relies on
strength of PKE

Cons
§ Very high computational

requirements
§ Harder to accelerate
§ Mapping existing algorithms to

FHE may be difficult

Multi-Party
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat

models
§ Easy to map existing

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic

proofs are weaker than
PKE ones

Upcoming Lectures
§ Secure Computation Approaches
• Trusted Execution Environment (TEE)
• Homomorphic Encryption

