

CSE/CEN 598 Hardware Security & Trust

Secure Computation Approaches: Security Protocols

Prof. Michel A. Kinsy

Foundations of Secure Computing

- Security protocols
 - Multi-party computation, zero-knowledge, oblivious transfer, security models, etc.
- Homomorphic encryption (HE)
 - Hardware and software implementations
- Design and implementation of trusted platform modules (TPMs)
 - TPM-based anonymous authentication, signature, encryption, identity management, etc.
- Trusted execution environments (TEEs)
 - TEE-based security and privacy techniques, vulnerability and countermeasures of TEE, distributed TEE, decentralized TEE, etc.

Foundations of Secure Computing

- Security protocols
 - Multi-party computation, zero-knowledge, oblivious transfer, security models, etc.
- Homomorphic encryption (HE)
 - Hardware and software implementations
- Design and implementation of trusted platform modules (TPMs)
 - TPM-based anonymous authentication, signature, encryption, identity management, etc.
- Trusted execution environments (TEEs)
 - TEE-based security and privacy techniques, vulnerability and countermeasures of TEE, distributed TEE, decentralized TEE, etc.

Threshold Secret Sharing Scheme

- Select
 - *p* a large prime number and
 - S as the secret value
 - s_1, \ldots, s_{k-1} a set of randomly numbers from [0, p-1]
- A (k, n) threshold polynomial can be written by

 $s(x) \equiv S + s_1 x + s_2 x^2 + \dots + s_{k-1} x^{k-1} \pmod{p}$

- Send (x_i, s(x_i)) to the *i*-th participant
- Secret sharing in distributed systems provides
 - Fault-tolerant
 - Multi-factor authentication
 - Multi-party authorization

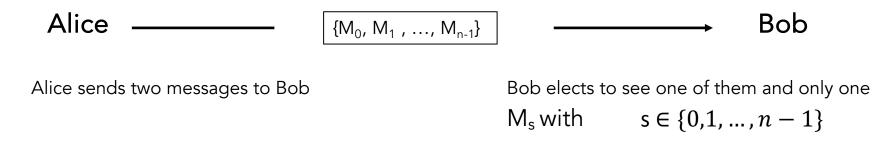
Threshold Secret Sharing Scheme

- Secret Reconstruction
 - To reconstruct the secret S, one needs to collect at least k partial secrets
 - The secret can then be reconstructed using Lagrange interpolation


$$s(x) \equiv \sum_{j=1}^{k} \left[s(x_j) \prod_{i=1, i \neq j}^{k} \frac{x - x_i}{x_j - x_i} \right] \mod p$$

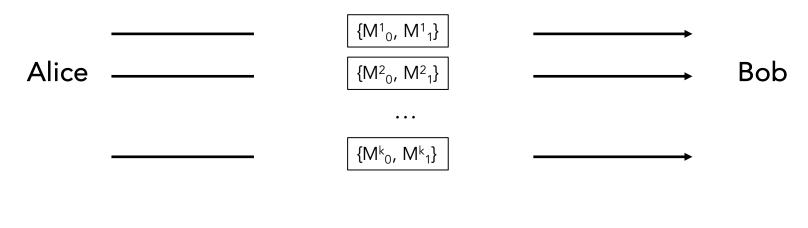
The scheme can be extended to support share renewal and share recovery

 Oblivious Transfer refers to the technique of transferring a specific piece of data based on the receiver's selection



- Alice does not know which one of the two Bob has selected
- Bob is also oblivious to the content of the non-selected message

 Oblivious Transfer refers to the technique of transferring a specific piece of data based on the receiver's selection

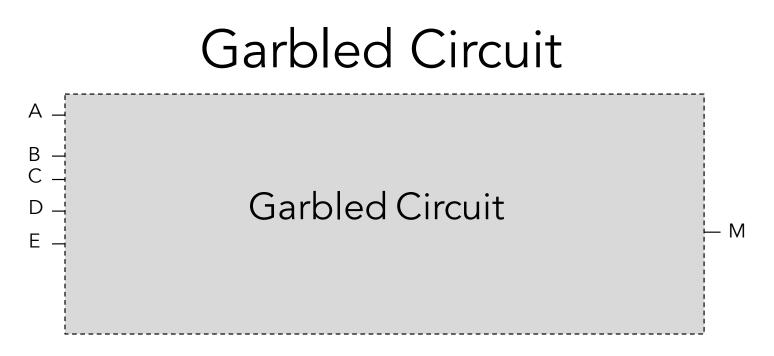


- Alice does not know which one of the *n* Bob has selected
- Bob is also oblivious to the content of the non-selected message

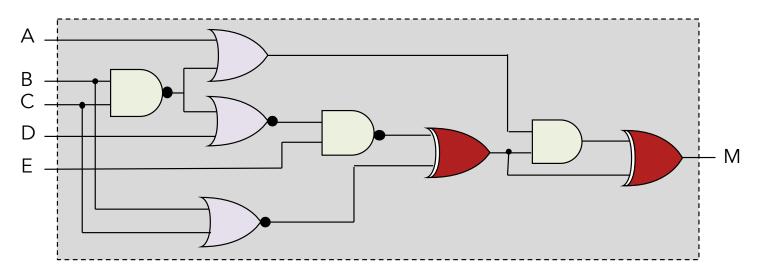
 Oblivious Transfer refers to the technique of transferring a specific piece of data based on the receiver's selection

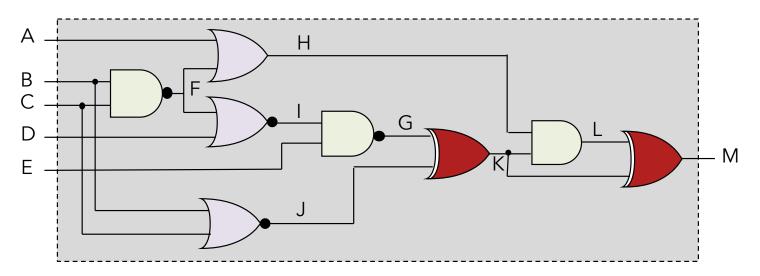
Alice sends two-k messages to Bob Bob elects to see one-k of them M_{s}^{k} with $s \in \{0,1\}^{k}$

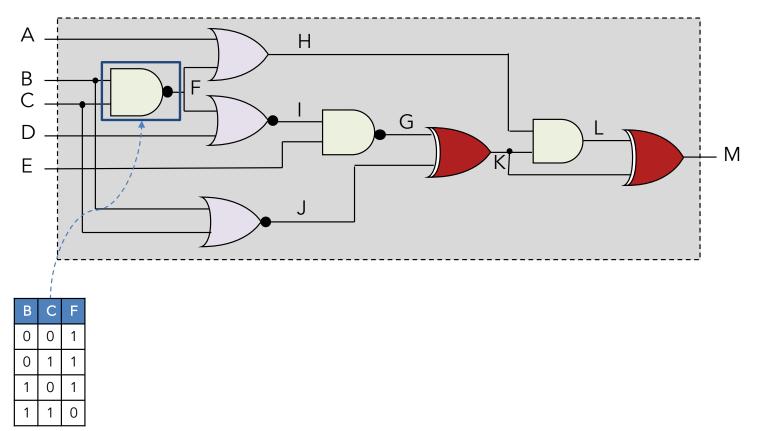
• There are algorithms for optimizing these straightforward implementations

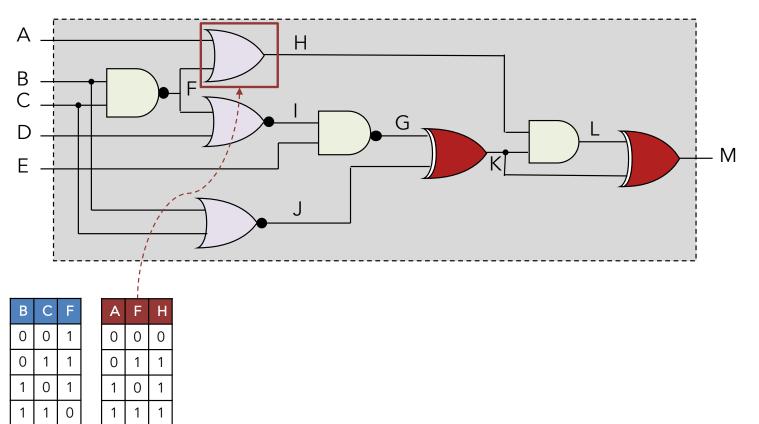


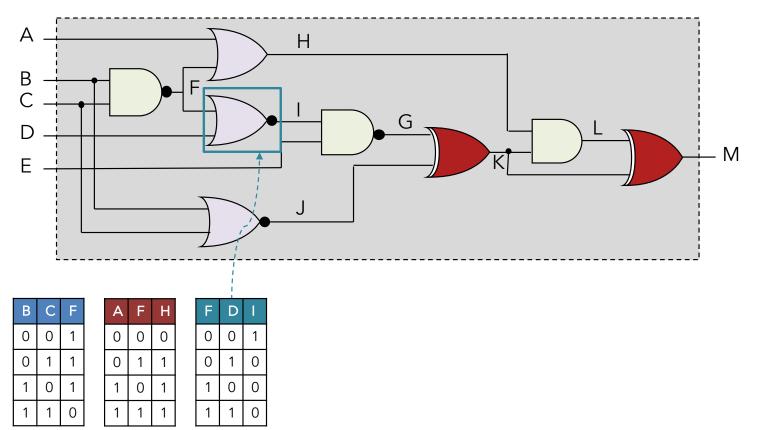
- Oblivious transfer is the necessary and sufficient condition for multiparty computation
- How can one practically perform this oblivious transfer?
 - For that let us introduce garbled circuits
 - Garbling is a process by means of which the Boolean gate truth table is obfuscated

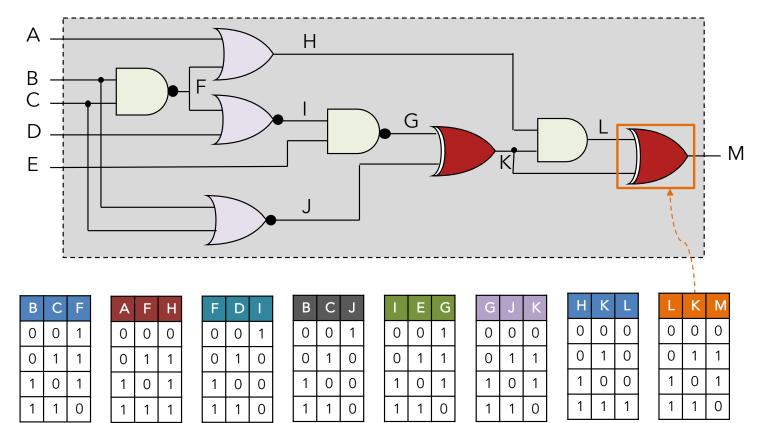


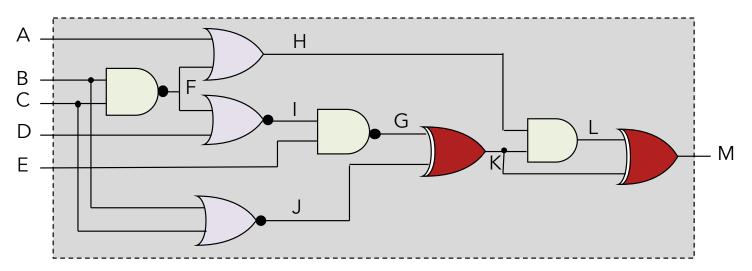


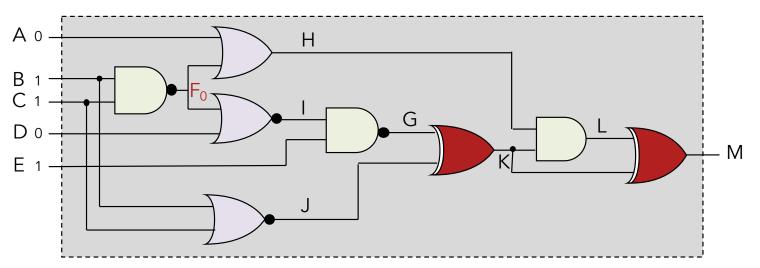




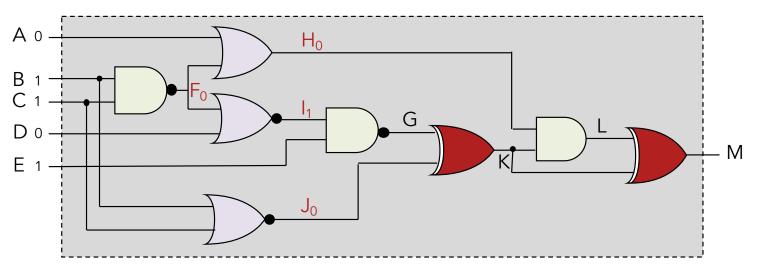




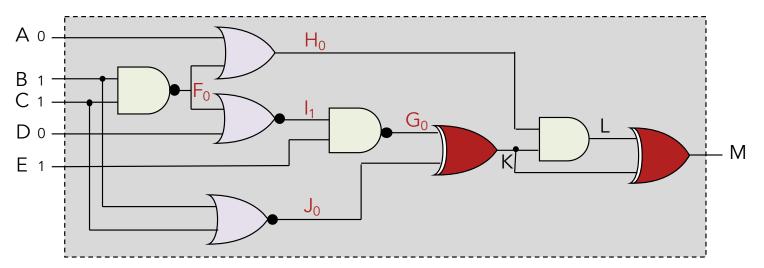




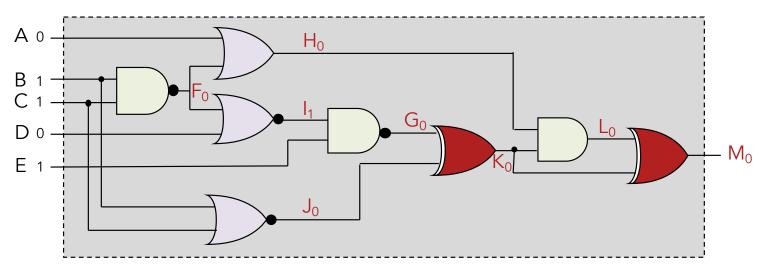
В	С	F		А	F	Н	F	D	I	В	С	J	I	Е	G	G	J	Κ	Н	Κ	L		L	K	Μ
0	0	1		0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0		0	0	0
0	1	1		0	1	1	0	1	0	0	1	0	0	1	1	0	1	1	0	1	0		0	1	1
1	0	1		1	0	1	1	0	0	1	0	0	1	0	1	1	0	1	1	0	0		1	0	1
1	1	0		1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1		1	1	0
Ево	EB ₀ ,C ₀ (F ₁)			EA	₀,F₀ (I	H₀)	EFa	,D₀ (I	1)	Ев	₀,C₀ (J₁)	Eι₀	,E₀ (G	i ₁)	EG	io,Jo (K₀)	EH	l₀,K₀ ((L _o)	1	EL	₀,K₀ (N	Mo)
EBo	EB ₀ ,C ₁ (F ₁)		EA	₀,F₁ (I	H₁)	EFo	,D₁ (I	6)	Ев	0,C1 (1⁰)	El₀	,E₁ (G	i ₁)	EG	i₀,J₁ (K1)	EF	l₀,K₁ (՝ ե)		EL	₀,K₁ (N	vI₁)	
EB1	EB1,C0 (F1)			ĒA	1,F₀ (H	H1)	ĒF1	,D₀ (I	0)	Ев	ı,C₀ (.	1º)	EI ₁ ,	.E₀ (G	1)	EG	ا) 1٫٫٫٫	<1)	Ен	1,K₀ (ட)		EL	ı,K₀ (N	⁄I1)
EB	ı,C₁ (F	=₀)		EA	₄,F₁ (I	H₁)	EF	ı,D1 (lo)	Ев	1,C1 (1⁰)	El₁	,E₁ (G	i _o)	EG	i1,J1 (K₀)	E⊦	I1,K1 ((L1)	1	EL	1,K1 (N	Mo)



В	С	F]	А	F	Н	F	D	I		В	С	J	I	Е	G		G	J	Κ	Н	K	L		L	K	М
0	0	1		0	0	0	0	0	1		0	0	1	0	0	1		0	0	0	0	0	0		0	0	0
0	1	1	1	0	1	1	 0	1	0		0	1	0	0	1	1		0	1	1	0	1	0		0	1	1
1	0	1		1	0	1	 1	0	0		1	0	0	1	0	1		1	0	1	1	0	0		1	0	1
1	1	0		1	1	1	1	1	0		1	1	0	1	1	0		1	1	0	1	1	1		1	1	0
EB	B ₀ ,C ₀ (F ₁) EA ₀ ,F ₀ (F		H ₀)	EFa	,D ₀ (I	I ₁)	•	Ев	,C ₀ (J ₁)	El₀	,E₀ (G	1)		Ec	io,Jo (1	K ₀)	EF	I ₀ ,K ₀ (L ₀)	1	EL	0,K0 (I	√l₀)			
EB			EA	0,F1 (I	H1)	EFc	,D1 (I	l _o)		EB	₀ ,C ₁ (.	Jo)	Elo	,E1 (G	1)		EG	i _{o,} J ₁ (I	K1)	EF	I ₀ ,K ₁ (L ₀)	1	EL	₀ ,K ₁ (1	VI1)	
EB	EB1,C0 (F1)			EA	1,F0 (H	H1)	EF ₁	,D ₀ (I	o)		EB	1,C0 (.	J _o)	EI1,	,E₀ (G	1)		EG	1,J0 (I	<1)	EH	1,K0 (L₀)		EL	ı,K₀ (N	И ₁)
Ев	EB1,C1 (F0)		EA	41,F1 (I	H1)	EF	ı,D1 (I	l _o)		Ев	1,C1 (J _o)	Elı	,E1 (G	_o)	P	Ec	i ₁ ,J ₁ (K ₀)	EF	I ₁ ,K ₁ ((L ₁)	1	EL	1,K1 (I	⋈₀)	



В	С	F	А	F	Н	F	D	I	В	С	J	I	Е	G	G	J	Κ	Н	K	L		L	K	М
0	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0		0	0	0
0	1	1	0	1	1	0	1	0	0	1	0	0	1	1	0	1	1	0	1	0		0	1	1
1	0	1	1	0	1	1	0	0	1	0	0	1	0	1	1	0	1	1	0	0		1	0	1
1	1	0	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1		1	1	0
EB	₀ ,C ₀ (F	=1)	EA ₀ ,F ₀ (H ₀)		EF	,D₀ (I	l₁)	Ев	,C0 (J1)	Elo	,E₀ (G	1)	EG	io,Jo (K ₀)	EF	I ₀ ,K ₀ ((L ₀)	1	EL	₀ ,K ₀ (I	M₀)	
EB	₀ ,C ₁ (F	= ₁)	EA	₀ ,F ₁ (I	H1)	EF	,D1 (I	l _o)	Ев	₀ ,C ₁ (J _o)	Elo	,E1 (G	1)	EG	i _{0,} J1 (K1)	EF	I ₀ ,K ₁ ((L ₀)		EL	₀ ,K ₁ (1	VI₁)
EB ₁	,C₀ (F	= ₁)	EA	1,F0 (H	H1)	EF1	,D ₀ (I	0)	Ев	1,C ₀ (.	Jo)	EI1	,E₀ (G	1)	EG	1,J0 (I	<1)	EH	1,K0 (L_)		EL	ı,K₀ (N	И ₁)
Ев	1,C1 (I	F₀)	EA	4,F1 (I	H1)	EF	1,D1 (l _o)	Ев	1,C1 (J₀)	Elı	,E1 (G	o)	EG	i1,J1 (K ₀)	EF	I ₁ ,K ₁ ((L ₁)	1	EL	1,K1 (I	∀ ₀)



В	С	F]	А	F	Н	F	D	T	В	С	J	I	Е	G	G	J	Κ	Н	K	L		L	K	Μ
0	0	1		0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0		0	0	0
0	1	1		0	1	1	 0	1	0	0	1	0	0	1	1	0	1	1	0	1	0		0	1	1
1	0	1	Ì	1	0	1	 1	0	0	1	0	0	1	0	1	1	0	1	1	0	0		1	0	1
1	1	0]	1	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1		1	1	0
EB	₀,C₀ (i	=1)	1	EA	₀,F₀ (I	H₀)	EFa	,D₀ (I	l₁)	EB	,C0 (J1)	Elo	,E₀ (G	1)	EG	i _{or} Jo (K ₀)	EF	I ₀ ,K ₀ (L ₀)	1	EL	₀ ,K ₀ (N	∕I₀)
EB	₀,C₁ (F	= ₁)	EA ₀ ,F ₁ (H ₁) EF ₀ ,D ₁ (I ₀)		l _o)	Ев	₀ ,C ₁ (J _o)	Elo	,E1 (G	1)	EG	i ₀ ,J1 (K1)	EF	I ₀ ,K ₁ (L ₀)	1	EL	0,K1 (N	/11)				
EB ₁	,C ₀ (F	EA ₁ ,F ₀ (H ₁) EF ₁ ,D ₀ (I ₀)		o)	Ев	1,C ₀ (.	Jo)	EI1	E ₀ (G	1)	EG	1,J ₀ (I	<1)	EH	1,K0 (L ₀)		EL	ı,K₀ (N	1 ₁)					
EB	1,C1 (I	F₀)	EA1,F1 (H1) EF1,D1 (I0)		Ев	1,C1 (J₀)	El₁	,E₁ (G	io)	EG	i ₁ ,J ₁ (K ₀)	EF	I ₁ ,K ₁ (L1)		EL	1,K1 (M	л _о)					

В	С	F		А	F	Н	F	D	T		В	С	J	I	Е	G	G	J	Κ	Η	K	L		L	K	М
0	0	1		0	0	0	0	0	1		0	0	1	0	0	1	0	0	0	0	0	0		0	0	0
0	1	1	1	0	1	1	0	1	0		0	1	0	0	1	1	0	1	1	0	1	0		0	1	1
1	0	1	1	1	0	1	1	0	0		1	0	0	1	0	1	1	0	1	1	0	0		1	0	1
1	1	0		1	1	1	1	1	0		1	1	0	1	1	0	1	1	0	1	1	1		1	1	0
EB),C ₀ (F	=1)		EA	₀,F₀ (I	H₀)	EF	,D₀ (I	I1)	[EB	6 ₀ ,C ₀ (J1)	Elo	,E₀ (G	i ₁)	EG	io,Jo (K₀)	E⊦	I₀,K₀ (Ъ)	1	EL	₀,K₀ (N	Mo)
EB	,C ₁ (F	=₁)	EA ₀ ,F ₁ (H ₁) EF ₀ ,D ₁ (I ₀)		l _o)		Ев	6 ₀ ,C ₁ (J _o)	Elo	,E1 (G	i ₁)	EG	i ₀ ,J ₁ (K1)	EF	I ₀ ,K ₁ (L ₀)		EL	₀ ,K ₁ (N	И ₁)				
EB ₁	,C₀ (F	i)		EA ₁ ,F ₀ (H ₁) EF ₁ ,D ₀ (I ₀)		o)		Ев	1,C0 (.	Jo)	EI1	,E ₀ (G	1)	Eg	1,J0 (I	<1)	Ен	1,K ₀ (L ₀)		EL	ı,K₀ (N	/11)			
EB	ı,C₁ (F			EA	4,F1 (I	H1)	EF	1,D1 (I	l _o)		EB	i₁,C₁ (J⁰)	El₁	,E₁ (G	i _o)	Eg	i _{1,} J ₁ (K ₀)	EF	I ₁ ,K ₁ (L ₁)		EL	1,K1 (M	vl₀)

Secure Computation Approaches

Multi-Party Computation (MPC) Pros

- Low compute requirements
- Easy to accelerate
- Provably secure
- Supports multiple threat models
- Easy to map existing algorithms

Cons

- High communication costs
- High latency
- Information theoretic proofs are weaker than PKE ones

Fully Homomorphic Encryption (FHE)

Pros

- Very low communication costs
- Requires a single round of communications, i.e., "fire and forget"
- Useful when one side is limited in compute / memory / storage
- Provably secure relies on strength of PKE

Cons

- Very high computational requirements
- Harder to accelerate
- Mapping existing algorithms to FHE may be difficult

Trusted Execution Environments (TEE)

Pros

- No communication required
- Trivial to accelerate
- Great support for existing software

Cons

- Weaker security guarantees
- Cannot stop determined adversaries
- Historically plagued by vulnerabilities and breaches
- Long term deployment is difficult – TEE's can 'run out' of entropy / CRP's, etc.

Secure Computation Approaches

Multi-Party Computation (MPC) Pros

- Low compute requirements
- Easy to accelerate
- Provably secure
- Supports multiple threat models
- Easy to map existing algorithms

Cons

- High communication costs
- High latency
- Information theoretic proofs are weaker than PKE ones

Fully Homomorphic Encryption (FHE)

Pros

- Very low communication costs
- Requires a single round of communications, i.e., "fire and forget"
- Useful when one side is limited in compute / memory / storage
- Provably secure relies on strength of PKE

Cons

- Very high computational requirements
- Harder to accelerate
- Mapping existing algorithms to FHE may be difficult

Trusted Execution Environments (TEE) Pros

- No communication required
- Trivial to accelerate
- Great support for existing software

Cons

- Weaker security guarantees
- Cannot stop determined adversaries
- Historically plagued by vulnerabilities and breaches
- Long term deployment is difficult – TEE's can 'run out' of entropy / CRP's, etc.

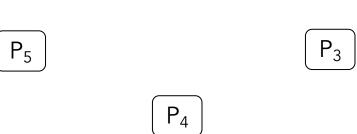
- For the Two-party secure multiparty computation
- Assume
 - Alice has x, Bob has y, and they want to compute two functions $f_{A}(x,y)$ and $f_{B}(x,y)$
 - It could be the same function f(x,y)
 - The desired outcome is that at the end of the protocol
 - Alice learns the result of her function $f_A(x,y)$ and not Bob's input y
 - Bob learns the result of his function $f_B(x,y)$ and not Alice's input x

- For the Two-party secure multiparty computation
- Assume
 - Alice has x, Bob has y, and they want to compute two functions $f_{A}(x,y)$ and $f_{B}(x,y)$
 - It could be the same function f(x,y)
- Illustration
 - Alice represents the function f(x,y) as a garbled circuit
 - She then sends the circuit and values corresponding to her input bits to Bob
 - Bob evaluates the circuits using the sent Alice's bits and his own input bits
 - He then transfers the result to Alice

- For the Two-party secure multiparty computation
- Assume
 - Alice has x, Bob has y, and they want to compute two functions $f_A(x,y)$ and $f_B(x,y)$
 - It could be the same function
- The set up for the n-party secure multiparty computation makes the same assumptions
 - Here instead of just Alice and Bob, there are n parties
 - Each party with a private input
 - And they want to jointly compute the function

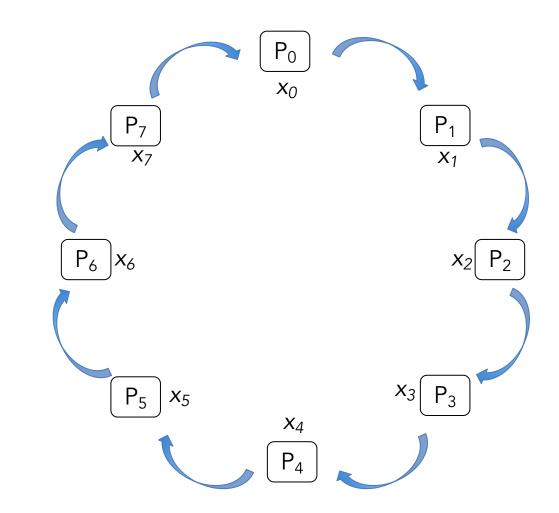
 $f_{X_i} = (x_1, ..., x_n)$

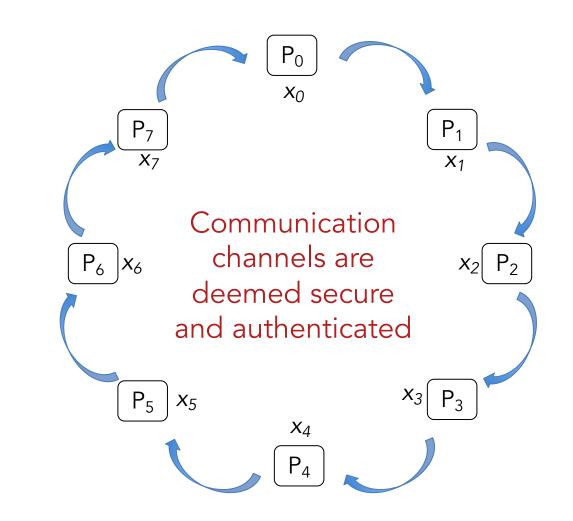
- Validity
 - Secure function evaluation (SFE) system must be able to correctly computed
 - For example, result must be computed with inputs from at least all correct parties
- Privacy
 - P_1 and P_2 cannot know each others input ip_1 , ip_2
- Agreement
 - Result must be same for all parties (P₁ and P₂)
- Termination
 - All active parties (P_1 and P_2) eventually receive final result
- Fairness
 - P_1 should not be able to learn the result while denying it to P_2

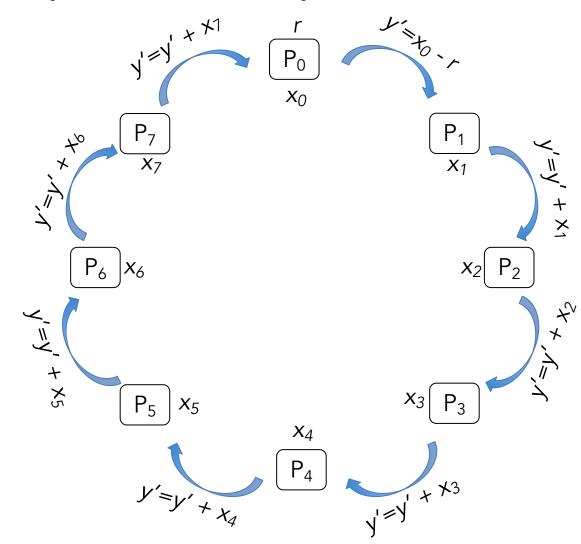


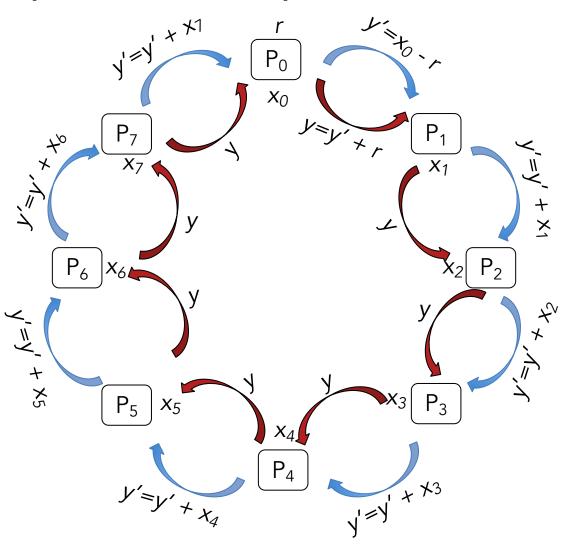
 P_2

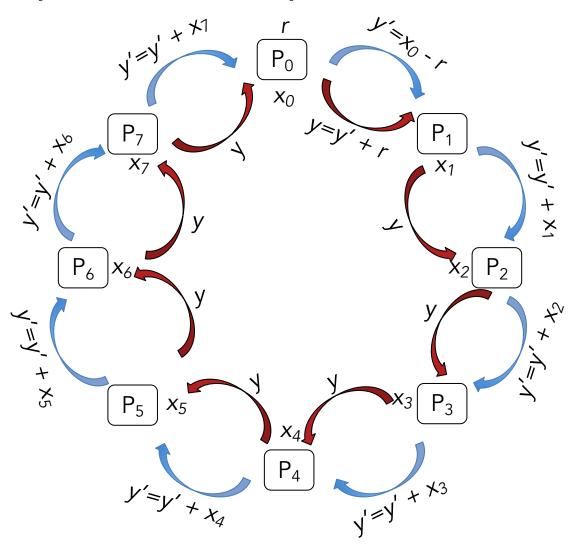
Secure Multiparty Computation

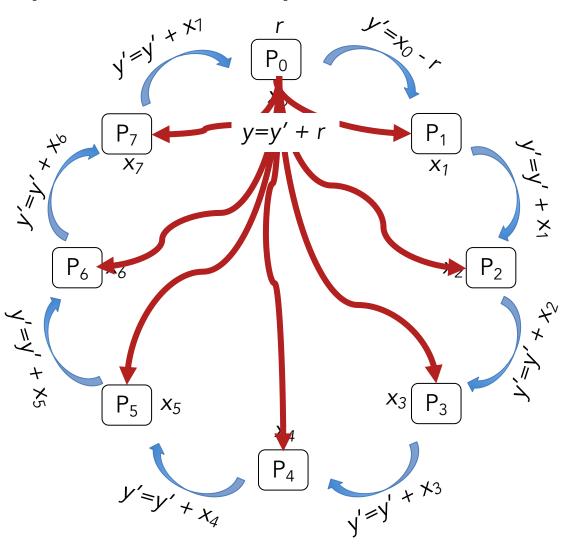

Construction of the computation
 Let us have 8 parties P₁, . . . , P₇ that want to perform a joint computation
 P₆

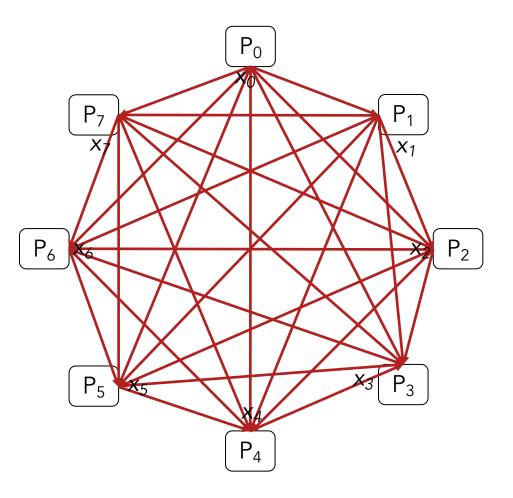

- Construction of the computation
 - Let us have 8 parties P₀, .
 . . , P₇ that want to perform a joint computation
 - Each party P_i with i ∈
 [0..7], has private input x_i


- Construction of the computation
 - Let us have 8 parties P₀, .
 ..., P₇ that want to perform a joint computation
 - Each party P_i with i ∈
 [0..7], has private input x_i

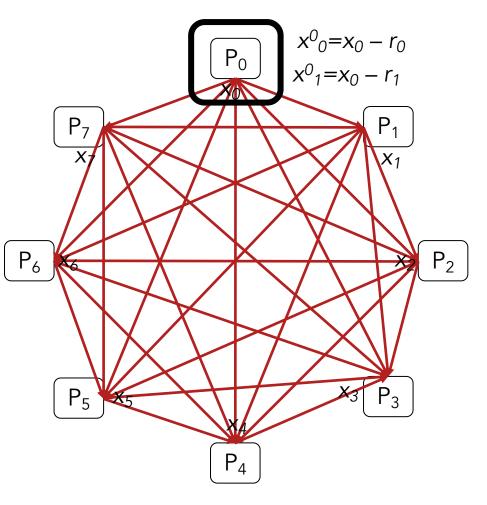

- Construction of the computation
 - r is a random number


- Construction of the computation
 - r is a random number


- Construction of the computation
 - r is a random number
 - If any P_i is semi-honest or malicious, then these messages may not be passed along properly or be modified in a way that break the protocol


- Construction of the computation
 - Result distribution could be faster

- Construction of the computation
 - Even fast compute

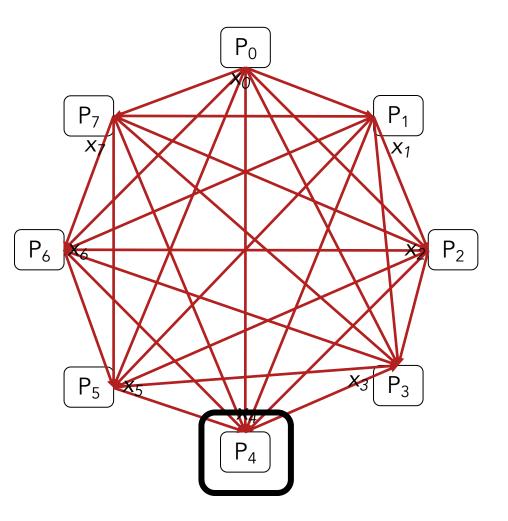


- Construction of the computation
 - The parties can use a linear secret sharing scheme to create a distributed state of their inputs
 - For each party, the random variables r_i are different

$$x_{2}^{0} = x_{0} - r_{2} \quad x_{3}^{0} = x_{0} - r_{3}$$

$$x_{4}^{0} = x_{0} - r_{4} \quad x_{5}^{0} = x_{0} - r_{5}$$

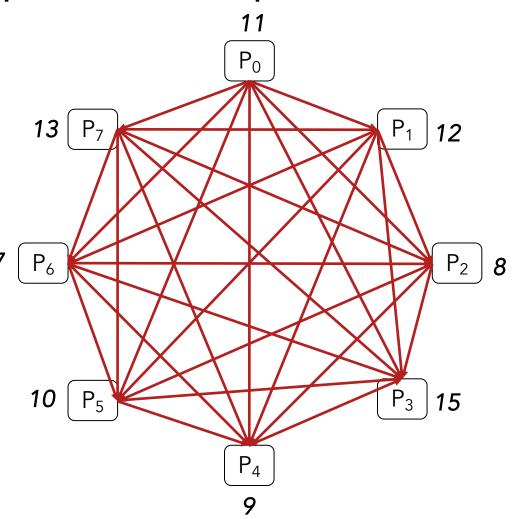
$$x_{6}^{0} = x_{0} - r_{6} \quad x_{7}^{0} = x_{0} - r_{7}$$


- Construction of the computation
 - The parties can use a linear secret sharing scheme to create a distributed state of their inputs
 - For each party, the random variables r_i are different

$$x^{4}_{0} = x_{4} - r_{0} \quad x^{4}_{3} = x_{4} - r_{3}$$

$$x^{4}_{1} = x_{4} - r_{1} \quad x^{4}_{4} = x_{4} - r_{4}$$

$$x^{4}_{2} = x_{4} - r_{2} \quad x^{4}_{5} = x_{4} - r_{5}$$


$$x^{4}_{6} = x_{4} - r_{6} \quad x^{4}_{7} = x_{4} - r_{7}$$

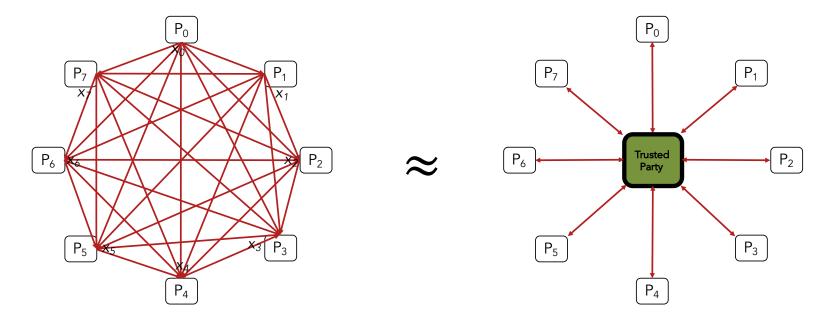
- Construction of the computation
 - Let us have 8 parties P₁, .
 ..., P₇ that want to perform a joint computation
 - Let us do summation

Private Inputs		P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	
11	P ₀								
12	P_1								
8	P ₂								
15	P ₃								
9	P ₄								
10	P ₅								
7	P_6								
13	P ₇								

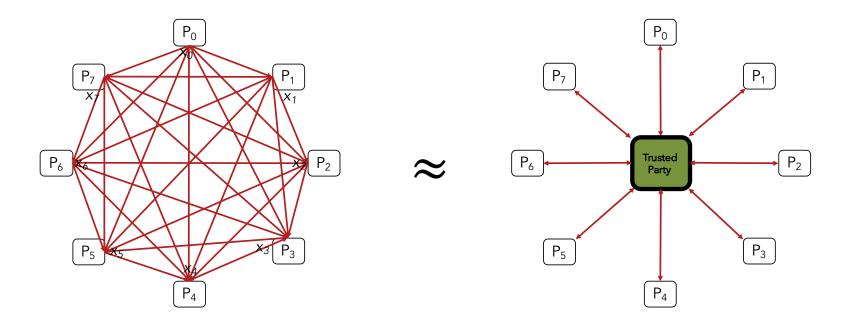
Private Inputs		P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	
11	P ₀	-1	1	4	3	1	0	3	0
12	P_1								
8	P ₂								
15	P ₃								
9	P ₄								
10	P ₅								
7	P ₆								
13	P ₇								

Private Inputs		P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	
11	P ₀	-1	1	4	3	1	0	3	0
12	P ₁	3	-5	1	2	4	0	2	5
8	P ₂	1	0	0	0	2	3	1	1
15	P ₃	4	3	1	-4	3	2	2	4
9	P ₄	1	1	3	0	2	0	1	1
10	P ₅	2	4	0	1	2	-2	3	0
7	P ₆	1	0	5	2	0	1	-5	3
13	P ₇	1	2	3	2	1	1	3	0

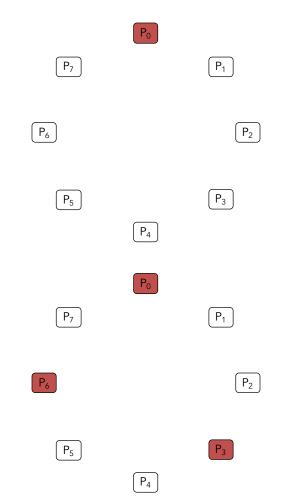
Private Inputs		P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	
11	P ₀	-1	1	4	3	1	0	3	0
12	P ₁	3	-5	1	2	4	0	2	5
8	P ₂	1	0	0	0	2	3	1	1
15	P ₃	4	3	1	-4	3	2	2	4
9	P ₄	1	1	3	0	2	0	1	1
10	P ₅	2	4	0	1	2	-2	3	0
7	P_6	1	0	5	2	0	1	-5	3
13	P ₇	1	2	3	2	1	1	3	0
85		12	5	17	6	15	5	10	14
Local Total									



- There are two major adversary models for secure computation
 - Semi-honest/passive model
 - Follows all required steps
 - Looks for all advantageous information leaked
 - Assumed to be selfish
 - Fully malicious/active model
 - Arbitrarily deviates from the protocol
 - Aborts the protocol at anytime
 - Takes any step that runs counter to the desirable outcome

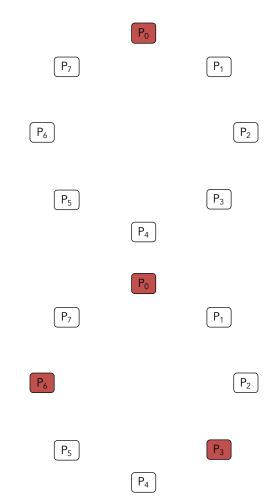

- The multiparty computation is secure if it emulates the trusted central party model to a negligible error range
 - If the two are shown to be indistinguishable
 - Trusted party/Ideal/Simulated model

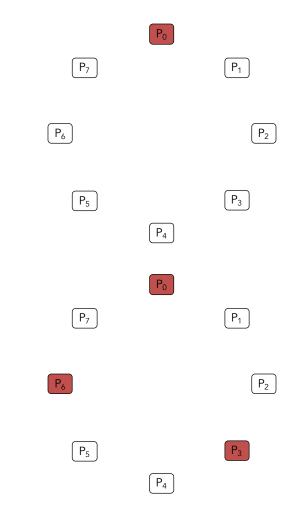
- The security multiparty computation protocol is also evaluated though the simulated model
 - For example, the assumption that parties communicate through secure and authenticated channels holds for both settings

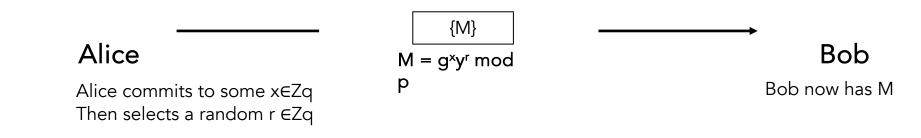


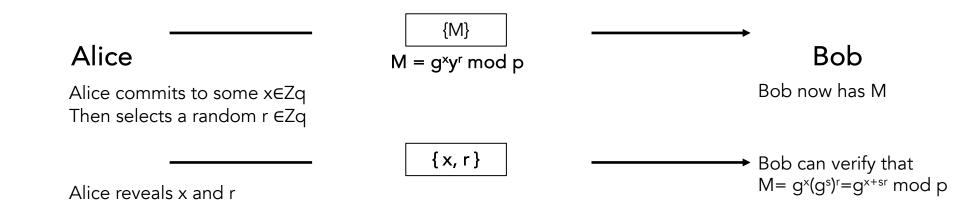
Dealing with semi-honest and malicious

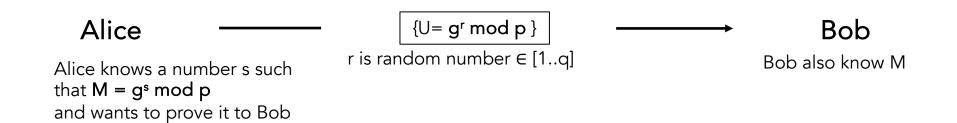
D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In Proceedings of the twentieth annual ACM symposium on Theory of computing (STOC '88)

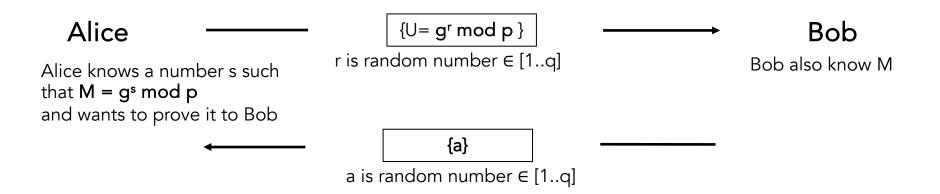

M. Ben-Or, S. Goldwasser, and A. Wigderson Completeness theorems for noncryptographic fault-tolerant distributed computation. In Proceedings of the twentieth annual ACM symposium on Theory of computing (STOC '88)

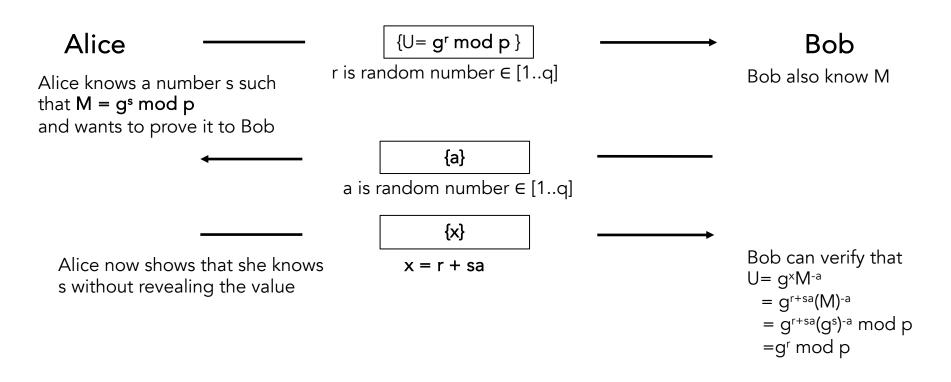

- Dealing with semi-honest and malicious
 - Any function f(x₁, ..., x_n) can be securely computed in a semi-honest setting if the majority is honest
 - The passive adversary controls less than n/2 of the parties
 - Any function f(x₁, ..., x_n) can be securely computed if the adversary actively controls less than n/3 of the parties

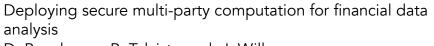

- It is a rich area of research
 - Secure multiparty computation over groups, fields, rings
 - Authentication of the communication channels
 - Synchronous versus asynchronous messaging
 - And many more sub-topics

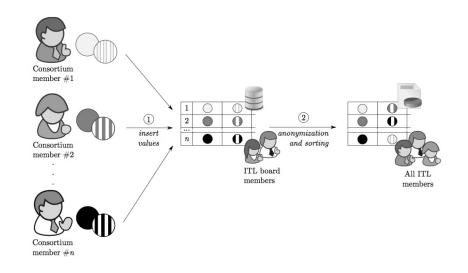

- Commitment
 - Let p and q be two large prime numbers such that q divides p-1
 - Generator g of the order-q subgroup of Zp*
 - A secret s from Zp such that y=g^s mod p
 - Where the values p,q,g, and y are public
 - There is only one secret s in the system residing with Bob


- Commitment
 - Let p and q be two large prime numbers such that q divides p-1
 - Generator g of the order-q subgroup of Zp*
 - A secret s from Zp such that y=g^s mod p
 - Where the values p,q,g, and y are public
 - There is only one secret s in the system residing with Bob

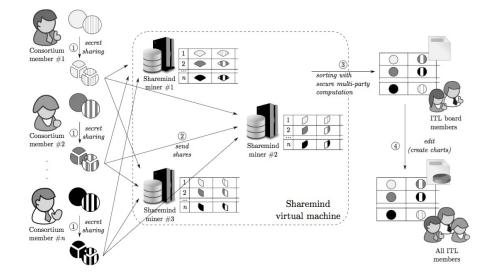

- Zero-Knowledge
 - Let p and q be two large prime numbers such that q divides p-1
 - Generator g of the order-q subgroup of Zp*


- Zero-Knowledge
 - Let p and q be two large prime numbers such that q divides p-1
 - Generator g of the order-q subgroup of Zp*


- Zero-Knowledge
 - Let p and q be two large prime numbers such that q divides p-1
 - Generator g of the order-q subgroup of Zp*



- Use Case
 - In order to analyze the economic situation of an industrial sector, a secure system is needed for jointly collecting and analyzing sensitive financial data
 - The financial data should be kept
 - Confidential
 - Anonymous


D. Bogdanov, R. Talviste and J. Willemson

- Use Case
 - Improved version
 - Data stored/sorted separately on three servers
 - No single party has access to original data
 - Anonymous to the board members

Deploying secure multi-party computation for financial data analysis D. Bogdanov, R. Talviste and J. Willemson

Secure Computation Approaches

Multi-Party Computation (MPC) Pros

- Low compute requirements
- Easy to accelerate
- Provably secure
- Supports multiple threat models
- Easy to map existing algorithms

Cons

- High communication costs
- High latency
- Information theoretic proofs are weaker than PKE ones

Fully Homomorphic Encryption (FHE)

Pros

- Very low communication costs
- Requires a single round of communications, i.e., "fire and forget"
- Useful when one side is limited in compute / memory / storage
- Provably secure relies on strength of PKE

Cons

- Very high computational requirements
- Harder to accelerate
- Mapping existing algorithms to FHE may be difficult

Trusted Execution Environments (TEE) Pros

No communication required

- Trivial to accelerate
- Great support for existing software

Cons

- Weaker security guarantees
- Cannot stop determined adversaries
- Historically plagued by vulnerabilities and breaches
- Long term deployment is difficult – TEE's can 'run out' of entropy / CRP's, etc.

Upcoming Lectures

- Secure Computation Approaches
 - Trusted Execution Environment (TEE)
 - Homomorphic Encryption