
Secure Computation Approaches:
Trusted Execution Environment (TEE)

Prof. Michel A. Kinsy

CSE/CEN 598
Hardware Security & Trust

Secure Computation Approaches
Trusted Execution
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing

software
Cons
§ Weaker security guarantees
§ Cannot stop determined

adversaries
§ Historically plagued by

vulnerabilities and breaches
§ Long term deployment is

difficult – TEE’s can ‘run out’ of
entropy / CRP’s, etc.

Fully Homomorphic
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of

communications, i.e., “fire and
forget”

§ Useful when one side is limited
in compute / memory / storage

§ Provably secure – relies on
strength of PKE

Cons
§ Very high computational

requirements
§ Harder to accelerate
§ Mapping existing algorithms to

FHE may be difficult

Multi-Party
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat

models
§ Easy to map existing

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic

proofs are weaker than
PKE ones

Mixed Criticality Computing Systems
§ Current state of affairs:

• Trusted/untrusted applications running on trusted/untrusted cores

Trusted Execution Aware Design
§ Develop a new trust-aware architectural framework for integrating multiple heterogeneous

IPs or tenants, secure to non-secure cores, in the same chip design
• Hardware virtualization through trusted, non-trusted and unknown island partitioning

Physical Architecture Virtual Islands

TLruntime

= min(TLPE, TLProc)

What are TEEs?
§ Isolated Execution
• Isolated data cannot be read or write by other regions
• Dedicated memory management

§ Secure Storage
• Main memory
• Optionally non-volatile storage

What are some major TEEs
§ ARM Trust Zone

• Separates rich OS with smaller secure OS
§ SGX

• Software Guard Extension
§ Sanctum

• Builds on top of SGX
§ Keystone

• Open-source Framework, RISCV based

§ AMD Platform Security Processor (PSP)
• A trusted execution environment subsystem incorporated into AMD

microprocessors

Secure Processor Design
§ Common approaches among the

techniques:
• A mechanism to categorize the

trusted and non-trusted processes /
programs / memory regions etc.

• Separation (physically or logically) of
trusted and non-trusted parties

• Hardware-based cryptography
(authentication, secret key or
random number generation) to
provide higher level of trust than
software-based

Secure Processor Design: MIT Aegis
§ A single-chip secure processor that

ensures the authenticate execution
of programs under physical attacks

§ Security foundations
• Having all trusted components in

a single tamper/probing-
resistant processor

• PUF for chip authentication and
cryptographic key generation;

• Off-chip (untrusted) memory
protection

Secure Processor Design: MIT Aegis
§ Pros

• The single chip solution is more
convenient to apply protection to
and cheaper than multi-chip
solutions

• PUF provides unique cryptographic
key that is hard to predict or model.

• Off-chip memory is protected by
integrity verification (IV) and
memory encryption (ME)

§ Cons
• Latency brought by hash verification

in IV and decryption in ME

Secure Processor Design: Apple Solution
§ Apples Secure Enclave

Processor (SEP)
• A processor creating a logical wall

between software and sensitive
security functions

§ Security foundations
• Secure Enclave Processor

§ The SEP provides the main computing
power for the Secure Enclave (SE)

§ To provide the strongest isolation, the
SEP is dedicated solely for SE use
• This helps prevent side-channel attacks

that depend on malicious software
sharing the same execution core as the
target software under attack

Secure Processor Design: Apple Solution
§ Security foundation

• Memory Protection Engine
§ The SE operates from a dedicated

region of the device’s DRAM memory
• Whenever the Secure Enclave writes to

its dedicated memory region, the
Memory Protection Engine encrypts the
block of memory using AES in Mac XEX
mode, and calculates a Cipher-based
Message Authentication Code (CMAC)
authentication tag for the memory

• The Memory Protection Engine stores
the authentication tag alongside the
encrypted memory

§ When the Secure Enclave reads
the memory, the Memory
Protection Engine verifies the
authentication tag

Secure Processor Design: Apple Solution
§ Security foundations

• True Random Number Generator
§ The True Random Number Generator (TRNG) is used

to generate secure random data
• Root Cryptographic Keys

§ The Secure Enclave includes a unique ID (UID) root
cryptographic key

• The UID is unique to each individual device
• A randomly generated UID is fused into the SoC at

manufacturing time
§ The Secure Enclave also has a device group ID (GID),

which is common to all devices that use a given SoC
• Secure Enclave AES Engine

§ The Secure Enclave AES Engine is a hardware block
used to perform symmetric cryptography based on the
AES cipher

• The AES Engine is designed to resist leaking information
by using timing and Static Power Analysis (SPA)

• The AES Engine supports hardware and software keys
§ Hardware keys are derived from the Secure Enclave

UID or GID
• Secure nonvolatile storage

§ The Secure Enclave is equipped with a dedicated
secure nonvolatile storage device

§ The secure nonvolatile storage is connected to the
Secure Enclave using a dedicated I2C bus, so that it
can only be accessed by the Secure Enclave

§ The secure nonvolatile storage is used for all anti-
replay services in the Secure Enclave.

Secure Processor Design: Apple Solution
§ Pros

• Restricted access and dedicated
peripherals enable the isolation of SEP
from possible attacks

• Memory allocated by AP for SEP is
encrypted, enforcing privilege rules
upon external access requests

• Secure mailbox to talk to the outside
§ Cons

• No validation of external memory
blocks

• SEP decrypted and secret key
published [Mimoso, 2017]. Although no
user info/data will leak because of the
breach, it provides a way to explore the
details of SEP

Patent #: US8832465B2

Secure Processor Design: ARM Trust Zone
§ Two logic zones

• Secure world with access to all data
• Normal (non-secure) world with access to non-sensitive data

§ Security Attribution Unit (SAU) and Implementation Defined Attribution Unit (IDAU)
• Determine which memory region should belong to which world

§ The switch of the two worlds are through a secure gateway (SG) with secure monitor
calls (SMC)

SMC

SG

ARM Trust Zone Runtime Behavior
§ ARM Cortex-A processor has 3

execution modes
• User mode, kernel mode, and

hypervisor mode
§ ARM’s TrustZone introduces a

new mode - the Secure Monitor
mode
• In this new mode, the CPU can

access all of the device’s peripherals
and memory

• When not operating in this mode,
the CPU can only access a subset of
peripherals and specific ranges of
physical memory

Secure Processor Design: Intel TXT
§ Intel Trusted Execution Technology

(TXT)
• A hardware-based technology to

examine the authenticity of the
operating system and its running
environment

§ Security foundation
• Trusted platform module (TPM) to

provide secure storage
• Static and dynamic chains of trust;
• Hardware-based authenticated code

module (ACM)

Secure Processor Design: Intel TXT
§ Intel Trusted Execution Technology

(TXT)
§ Security foundation

• Trusted platform module (TPM) to
provide secure storage

• Static and dynamic chains of trust;
• Hardware-based authenticated code

module (ACM)
§ Known attacks

• Butter overflow at runtime
• System management mode (SMM)

infection, which is the most privileged
software loaded

• Bootloader infection to execute the
attacker’s own code

Secure Processor Design: Intel SGX
§ Software guard extensions
§ Allow definition of regions of

memories called enclaves
• Contents intended to be

protected and unreadable by
any process outside of the
enclave including processes at
higher privilege levels

§ Even though OS is untrusted, it
should still be able to manage
page translation and page tables of
the enclave

Secure Processor Design: Enclaves

§ Enclave has its own code and data
areas. Provides confidentiality and
integrity with controlled entry points

§ Enclave code and data cannot be
accessed from outside the enclave,
even by the OS

§ TCS: Thread Control Structure
• SGX supports multithreading; one TCS

for each thread supported
User Process Enclave

Enclave
Data

Enclave
Code

App
Data

App
Code

OS

Enclave

Physical Memory
§ PRM – Processor Reserved Memory

allocated by the BIOS. Access to PRM is
blocked by external agents (DMA,
graphics engine, etc.)
• To other devices this range is treated as non-

existent memory
• All SGX enclaves mapped into the PRM

§ EPC Pages: Enclave page cache holds
enclaves from any application.
• Divided into 4KB pages
• If an EPC page is valid, it either contains an

SGX enclave page or EPCM (EPC micro-
architecture structure)

PRM

EPCM

EPC

RAM

Physical Memory
§ EPCM: Enclave page cache map

• One for each EPC
• Used by hardware for access control
• It stores management related aspects

for the corresponding EPC
§ Aspects such as valid/invalid; r/w/x

permissions
§ Type of page
§ Virtual address range through which

EPC can be accessed
§ It is an additional layer of security

compared to legacy paging and
segmentation since we do not trust the
OS

PRM

EPCM

EPC

RAM

Physical memory
§ SECS: SGX Enclave Control Store

• One for each enclave
• 4KB (present in an EPC)
• Contains global metadata about the

enclave
§ EPC pages that are used

• Mapping information
• Crypto log of each used EPC page

§ Range of protected addresses used by
the enclave

§ 32/64 bit operating mode
§ Debug access

PRM

EPCM

EPC

RAM

§ Based on the analysis of SGX, offers
additional protection against memory
access pattern side-channeling

§ HW/SW Co-design implementation;
minimal and minimally invasive hardware
modifications with a trusted software
security monitor

§ Hardware - Cache Address Shifter, shift PPN
right by certain bits for obfuscation

§ Software - Security Monitor, replacing SGX
microcode, high privilege level; controls
page walker FSM

Sanctum

Sanctum Memory
§ Hardware extension for dual page table lookup
• Ensure enclave page table only map to enclave memory and OS page

tables only map to non-enclave memory

§ Per enclave metadata used by SM Stored in DRAM regions
managed by the OS
• Page map similar to EPCM in SGX to verify actions of the OS

Keystone
§ Open-source framework for customized TEEs
§ Can be implemented on unmodified RISC-V hardware
• No changes to cores, memory controllers

§ Required hardware platform features
• Trusted boot process
• Device specific secret key (visible only to the trusted boot process)
• Hardware source of randomness

§ Support multiple enclaves
§ Allow multiple stakeholders to customize a TEE

Keystone: Security Monitor (SM)
§ Executed in machine mode
§ Physical Memory Protection (PMP) allows enforcing access

policies to physical memory
§ Use hardware primitives to provide TEE guarantees
• Secure boot
• Memory isolation
• Attestation

§ No resource management

Keystone: Enclaves
§ Two components

• User mode: Enclave application (eapp)
• Supervisor mode: Runtime (RT)

§ Own isolated physical memory region
• RT manages virtual memory for the enclave

§ Enclave measurement after creation
• SM performs measurement and attestation

§ Page tables always inside enclave memory
§ Dynamic resizing

• Extended SBI call to OS
• If OS succeeds, SM increases enclave size

Keystone Components

D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović, “Keystone: An Open Framework for Architecting TEEs,” 2019.

The Hermes Architecture
§ An integration template

to enable a secure SoC
built from untrusted
processing elements (PE)
• With user-defined security

policy

Hermes Architecture Features
§ A template to integrate processing

elements with different security
levels

§ A process isolation design to
create virtual logic zones according
to PEs’ runtime HW & SW security

§ Hardware root-of-trust and a set of
formally verified secure protocols
and to resist malicious behaviors of
PEs

§ A set of quantum-proof hardware
cryptographic primitives to
guarantee the model’s post-
quantum security

Hermes Design Principles
§ Integrating processing

elements with different
security levels
• In this design, no restrictions

are made on the type, trust
level or provenance of the
cores

• A user-programmable security
wrapper built around the
processing elements

• Although we cannot control
what a PE does, its
interactions with the rest of
the system is fully specified
and verified!

Hermes Design Principles
§ Interface-based

hardware as the root-
of-trust design

Hermes Hardware as Root-of-Trust Design
§ Multi-Identity Physical Unclonable Functions (Mi-PUF)

§ Programmable TRNG using Lorenz Chaotic Systems

§ Threshold-based authorization of services

Hermes Hardware as Root-of-Trust Design
§ Support for multi-level user-

defined security protocols
• Front-end and back-end

packetization
• Processing and verifying

incoming and outgoing
requests

• Generation of new session keys
upon island membership
change

• Public-key & symmetric
encryptions of packets

• Access privilege identification

Secure Computation Approaches
Trusted Execution
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing

software
Cons
§ Weaker security guarantees
§ Cannot stop determined

adversaries
§ Historically plagued by

vulnerabilities and breaches
§ Long term deployment is

difficult – TEE’s can ‘run out’ of
entropy / CRP’s, etc.

Fully Homomorphic
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of

communications, i.e., “fire and
forget”

§ Useful when one side is limited
in compute / memory / storage

§ Provably secure – relies on
strength of PKE

Cons
§ Very high computational

requirements
§ Harder to accelerate
§ Mapping existing algorithms to

FHE may be difficult

Multi-Party
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat

models
§ Easy to map existing

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic

proofs are weaker than
PKE ones

Upcoming Lectures
§ Secure Computation Approaches
• Homomorphic Encryption

