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Secure Computation Approaches
Trusted Execution 
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing 

software
Cons
§ Weaker security guarantees
§ Cannot stop determined 

adversaries
§ Historically plagued by 

vulnerabilities and breaches
§ Long term deployment is 

difficult – TEE’s can ‘run out’ of 
entropy / CRP’s, etc.

Fully Homomorphic 
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of 

communications, i.e., “fire and 
forget”

§ Useful when one side is limited 
in compute / memory / storage

§ Provably secure – relies on 
strength of PKE

Cons
§ Very high computational 

requirements
§ Harder to accelerate
§ Mapping existing algorithms to 

FHE may be difficult 

Multi-Party 
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat 

models
§ Easy to map existing 

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic 

proofs are weaker than 
PKE ones



Mixed Criticality Computing Systems
§ Current state of affairs: 

• Trusted/untrusted applications running on trusted/untrusted cores



Trusted Execution Aware Design
§ Develop a new trust-aware architectural framework for integrating multiple heterogeneous 

IPs or tenants, secure to non-secure cores, in the same chip design
• Hardware virtualization through trusted, non-trusted and unknown island partitioning

Physical Architecture Virtual Islands

TLruntime

= min(TLPE, TLProc)



What are TEEs?
§ Isolated Execution
• Isolated data cannot be read or write by other regions
• Dedicated memory management 

§ Secure Storage
• Main memory
• Optionally non-volatile storage



What are some major TEEs
§ ARM Trust Zone

• Separates rich OS with smaller secure OS
§ SGX

• Software Guard Extension
§ Sanctum

• Builds on top of SGX
§ Keystone

• Open-source Framework, RISCV based

§ AMD Platform Security Processor (PSP)
• A trusted execution environment subsystem incorporated into AMD 

microprocessors



Secure Processor Design
§ Common approaches among the 

techniques:
• A mechanism to categorize the 

trusted and non-trusted processes / 
programs / memory regions etc.

• Separation (physically or logically) of 
trusted and non-trusted parties

• Hardware-based cryptography 
(authentication, secret key or 
random number generation) to 
provide higher level of trust than 
software-based



Secure Processor Design: MIT Aegis
§ A single-chip secure processor that 

ensures the authenticate execution 
of programs under physical attacks

§ Security foundations
• Having all trusted components in 

a single tamper/probing-
resistant processor

• PUF for chip authentication and 
cryptographic key generation;

• Off-chip (untrusted) memory 
protection



Secure Processor Design: MIT Aegis
§ Pros

• The single chip solution is more 
convenient to apply protection to 
and cheaper than multi-chip 
solutions

• PUF provides unique cryptographic 
key that is hard to predict or model.

• Off-chip memory is protected by 
integrity verification (IV) and 
memory encryption (ME)

§ Cons
• Latency brought by hash verification 

in IV and decryption in ME



Secure Processor Design: Apple Solution
§ Apples Secure Enclave 

Processor (SEP)
• A processor creating a logical wall 

between software and sensitive 
security functions

§ Security foundations
• Secure Enclave Processor

§ The SEP provides the main computing 
power for the Secure Enclave (SE)

§ To provide the strongest isolation, the 
SEP is dedicated solely for SE use
• This helps prevent side-channel attacks 

that depend on malicious software 
sharing the same execution core as the 
target software under attack



Secure Processor Design: Apple Solution
§ Security foundation

• Memory Protection Engine
§ The SE operates from a dedicated 

region of the device’s DRAM memory
• Whenever the Secure Enclave writes to 

its dedicated memory region, the 
Memory Protection Engine encrypts the 
block of memory using AES in Mac XEX 
mode, and calculates a Cipher-based 
Message Authentication Code (CMAC) 
authentication tag for the memory

• The Memory Protection Engine stores 
the authentication tag alongside the 
encrypted memory

§ When the Secure Enclave reads 
the memory, the Memory 
Protection Engine verifies the 
authentication tag



Secure Processor Design: Apple Solution
§ Security foundations

• True Random Number Generator
§ The True Random Number Generator (TRNG) is used 

to generate secure random data
• Root Cryptographic Keys

§ The Secure Enclave includes a unique ID (UID) root 
cryptographic key

• The UID is unique to each individual device
• A randomly generated UID is fused into the SoC at 

manufacturing time
§ The Secure Enclave also has a device group ID (GID), 

which is common to all devices that use a given SoC 
• Secure Enclave AES Engine

§ The Secure Enclave AES Engine is a hardware block 
used to perform symmetric cryptography based on the 
AES cipher

• The AES Engine is designed to resist leaking information 
by using timing and Static Power Analysis (SPA)

• The AES Engine supports hardware and software keys
§ Hardware keys are derived from the Secure Enclave 

UID or GID
• Secure nonvolatile storage

§ The Secure Enclave is equipped with a dedicated 
secure nonvolatile storage device

§ The secure nonvolatile storage is connected to the 
Secure Enclave using a dedicated I2C bus, so that it 
can only be accessed by the Secure Enclave

§ The secure nonvolatile storage is used for all anti-
replay services in the Secure Enclave. 



Secure Processor Design: Apple Solution
§ Pros

• Restricted access and dedicated 
peripherals enable the isolation of SEP 
from possible attacks

• Memory allocated by AP for SEP is 
encrypted, enforcing privilege rules 
upon external access requests

• Secure mailbox to talk to the outside
§ Cons

• No validation of external memory 
blocks

• SEP decrypted and secret key 
published [Mimoso, 2017]. Although no 
user info/data will leak because of the 
breach, it provides a way to explore the 
details of SEP

Patent #: US8832465B2



Secure Processor Design: ARM Trust Zone
§ Two logic zones

• Secure world with access to all data
• Normal (non-secure) world with access to non-sensitive data

§ Security Attribution Unit (SAU) and Implementation Defined Attribution Unit (IDAU) 
• Determine which memory region should belong to which world

§ The switch of the two worlds are through a secure gateway (SG) with secure monitor 
calls (SMC)

SMC

SG



ARM Trust Zone Runtime Behavior
§ ARM Cortex-A processor has 3 

execution modes
• User mode, kernel mode, and 

hypervisor mode
§ ARM’s TrustZone introduces a 

new mode -  the Secure Monitor 
mode
• In this new mode, the CPU can 

access all of the device’s peripherals 
and memory

• When not operating in this mode, 
the CPU can only access a subset of 
peripherals and specific ranges of 
physical memory



Secure Processor Design: Intel TXT
§ Intel Trusted Execution Technology 

(TXT)
• A hardware-based technology to 

examine the authenticity of the 
operating system and its running 
environment

§ Security foundation
• Trusted platform module (TPM) to 

provide secure storage
• Static and dynamic chains of trust;
• Hardware-based authenticated code 

module (ACM)



Secure Processor Design: Intel TXT
§ Intel Trusted Execution Technology 

(TXT)
§ Security foundation

• Trusted platform module (TPM) to 
provide secure storage

• Static and dynamic chains of trust;
• Hardware-based authenticated code 

module (ACM)
§ Known attacks

• Butter overflow at runtime
• System management mode (SMM) 

infection, which is the most privileged 
software loaded

• Bootloader infection to execute the 
attacker’s own code



Secure Processor Design: Intel SGX
§ Software guard extensions
§ Allow definition of regions of 

memories called enclaves
• Contents intended to be 

protected and unreadable by 
any process outside of the 
enclave including processes at 
higher privilege levels 

§ Even though OS is untrusted, it 
should still be able to manage 
page translation and page tables of 
the enclave



Secure Processor Design: Enclaves

§ Enclave has its own code and data 
areas. Provides confidentiality and 
integrity with controlled entry points

§ Enclave code and data cannot be 
accessed from outside the enclave, 
even by the OS

§ TCS: Thread Control Structure
• SGX supports multithreading; one TCS 

for each thread supported
User Process Enclave

Enclave
Data

Enclave
Code

App
Data

App
Code

OS

Enclave



Physical Memory
§ PRM – Processor Reserved Memory 

allocated by the BIOS. Access to PRM is 
blocked by external agents (DMA, 
graphics engine, etc.)
• To other devices this range is treated as non-

existent memory
• All SGX enclaves mapped into the PRM

§ EPC Pages: Enclave page cache holds 
enclaves from any application. 
• Divided into 4KB pages
• If an EPC page is valid, it either contains an 

SGX enclave page or EPCM (EPC micro-
architecture structure)

PRM

EPCM

EPC

RAM



Physical Memory
§ EPCM: Enclave page cache map

• One for each EPC
• Used by hardware for access control
• It stores management related aspects 

for the corresponding EPC
§ Aspects such as valid/invalid; r/w/x 

permissions
§ Type of page
§ Virtual address range through which 

EPC can be accessed
§ It is an additional layer of security 

compared to legacy paging and 
segmentation since we do not trust the 
OS

PRM

EPCM

EPC

RAM



Physical memory
§ SECS: SGX Enclave Control Store

• One for each enclave
• 4KB (present in an EPC)
• Contains global metadata about the 

enclave
§ EPC pages that are used

• Mapping information
• Crypto log of each used EPC page

§ Range of protected addresses used by 
the enclave

§ 32/64 bit operating mode
§ Debug access

PRM

EPCM

EPC

RAM



§ Based on the analysis of SGX, offers 
additional protection against memory 
access pattern side-channeling

§ HW/SW Co-design implementation; 
minimal and minimally invasive hardware 
modifications with a trusted software 
security monitor

§ Hardware - Cache Address Shifter, shift PPN 
right by certain bits for obfuscation

§ Software - Security Monitor, replacing SGX 
microcode, high privilege level; controls 
page walker FSM

Sanctum



Sanctum Memory
§ Hardware extension for dual page table lookup
• Ensure enclave page table only map to enclave memory and OS page 

tables only map to non-enclave memory

§ Per enclave metadata used by SM Stored in DRAM regions 
managed by the OS
• Page map similar to EPCM in SGX to verify actions of the OS



Keystone
§ Open-source framework for customized TEEs
§ Can be implemented on unmodified RISC-V hardware
• No changes to cores, memory controllers

§ Required hardware platform features
• Trusted boot process
• Device specific secret key (visible only to the trusted boot process)
• Hardware source of randomness

§ Support multiple enclaves
§ Allow multiple stakeholders to customize a TEE



Keystone: Security Monitor (SM)
§ Executed in machine mode
§ Physical Memory Protection (PMP) allows enforcing access 

policies to physical memory
§ Use hardware primitives to provide TEE guarantees
• Secure boot
• Memory isolation
• Attestation

§ No resource management



Keystone: Enclaves
§ Two components

• User mode: Enclave application (eapp)
• Supervisor mode: Runtime (RT)

§ Own isolated physical memory region
• RT manages virtual memory for the enclave

§ Enclave measurement after creation
• SM performs measurement and attestation

§ Page tables always inside enclave memory
§ Dynamic resizing

• Extended SBI call to OS
• If OS succeeds, SM increases enclave size



Keystone Components

D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović, “Keystone: An Open Framework for Architecting TEEs,” 2019.



The Hermes Architecture
§ An integration template 

to enable a secure SoC 
built from untrusted 
processing elements (PE) 
• With user-defined security 

policy



Hermes Architecture Features
§ A template to integrate processing 

elements with different security 
levels

§ A process isolation design to 
create virtual logic zones according 
to PEs’ runtime HW & SW security

§ Hardware root-of-trust and a set of 
formally verified secure protocols 
and to resist malicious behaviors of 
PEs

§ A set of quantum-proof hardware 
cryptographic primitives to 
guarantee the model’s post-
quantum security



Hermes Design Principles
§ Integrating processing 

elements with different 
security levels
• In this design, no restrictions 

are made on the type, trust 
level or provenance  of the 
cores

• A user-programmable security 
wrapper built around the 
processing elements

• Although we cannot control 
what a PE does, its 
interactions with the rest of 
the system is fully specified 
and verified! 



Hermes Design Principles
§ Interface-based 

hardware as the root-
of-trust design



Hermes Hardware as Root-of-Trust Design
§ Multi-Identity Physical Unclonable Functions (Mi-PUF)

§ Programmable TRNG using Lorenz Chaotic Systems

§ Threshold-based authorization of services



Hermes Hardware as Root-of-Trust Design
§ Support for multi-level user-

defined security protocols
• Front-end and back-end 

packetization 
• Processing and verifying 

incoming and outgoing 
requests

• Generation of new session keys 
upon island membership 
change

• Public-key & symmetric 
encryptions of packets 

• Access privilege identification



Secure Computation Approaches
Trusted Execution 
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing 

software
Cons
§ Weaker security guarantees
§ Cannot stop determined 

adversaries
§ Historically plagued by 

vulnerabilities and breaches
§ Long term deployment is 

difficult – TEE’s can ‘run out’ of 
entropy / CRP’s, etc.

Fully Homomorphic 
Encryption (FHE)
Pros
§ Very low communication costs
§ Requires a single round of 

communications, i.e., “fire and 
forget”

§ Useful when one side is limited 
in compute / memory / storage

§ Provably secure – relies on 
strength of PKE

Cons
§ Very high computational 

requirements
§ Harder to accelerate
§ Mapping existing algorithms to 

FHE may be difficult 

Multi-Party 
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat 

models
§ Easy to map existing 

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic 

proofs are weaker than 
PKE ones



Upcoming Lectures
§ Secure Computation Approaches
• Homomorphic Encryption


