
4/5/25

1

Secure Computation Approaches:
Homomorphic Encryption

Prof. Michel A. Kinsy

CSE/CEN 598
Hardware Security & Trust

1

Secure Computation Approaches
Trusted Execution
Environments (TEE)
Pros
§ No communication required
§ Trivial to accelerate
§ Great support for existing

software
Cons
§ Weaker security guarantees
§ Cannot stop determined

adversaries
§ Historically plagued by

vulnerabilities and breaches
§ Long term deployment is

difficult – TEE’s can ‘run out’ of
entropy / CRP’s, etc.

Fully Homomorphic
Encryption (FHE)
Pros

§ Very low communication costs
§ Requires a single round of

communications, i.e., “fire and
forget”

§ Useful when one side is limited
in compute / memory / storage

§ Provably secure – relies on
strength of PKE

Cons
§ Very high computational

requirements
§ Harder to accelerate
§ Mapping existing algorithms to

FHE may be difficult

Multi-Party
Computation (MPC)
Pros
§ Low compute requirements
§ Easy to accelerate
§ Provably secure
§ Supports multiple threat

models
§ Easy to map existing

algorithms
Cons
§ High communication costs
§ High latency
§ Information theoretic

proofs are weaker than
PKE ones

2

Outsourced Computation
§ Cloud storage and computing have many advantages
• The rise of connected and sensor-based devices have led to cloud

computing being used as a commodity technology service

SECURE?

3

4/5/25

2

Outsourced Computation
§ One of the key issues with cloud-

based computation is data
privacy
• Sensitive data is stored and

computed over the cloud, which at
most times, is a shared resource

• We currently have more than 2,500
cloud vulnerabilities

• 150% increase just in the last five
years

Number of cloud vulnerabilities tracked by IBM
Security X-Force

4

Outsourced Computation

20212019 202020192017

Data of at least 6 m illion users
are exposed due to “human

error” from misconfigured
Amazon S3 cloud Server.

Verizon

Capital One
Former worker of AW S illegally

accessed into Capital One’s

AW S cloud server and leaked
personal data of 106 million

people.

Best Western
179 GB database included

personal data of members of

the U.S government, m ilitary,
and DHS are exposed via
unsecured Elastic-search

database hosted on AW S.

Alibaba
Alibaba Cloud’s staffs obtained
client contact information and

leaked it to a third-party partner
without consent.

Microsoft
A flaw in M icrosoft’s Azure

Cosmos DB database left more

than 3,300 Azure customers
(including many Fortune 500

companies) open to complete
unrestricted access by

attackers.

5

Homomorphic Encryption

§ What is Homomorphic Encryption (HE)?
• Encryption scheme that allow computation on encrypted data without

decryption
• Homomorphic encryption can be used along with cloud services to

perform computations on encrypted data, guaranteeing data privacy

Homomorphic

encryption-based data

processing platform

Third-party cloud

service provider

Cloud server processes the data in

encrypted form and returns it to the client

Client encrypts

data with their

own key and

sends it to cloud

Client decrypts and reads the

computation results

Data owner

6

4/5/25

3

Homomorphic Computation
§ Homomorphic computation is a form of of computation that

allows computation on encrypted data
• The result of this encrypted data processing itself is encrypted
• But when the result is decrypted, it should match the output of the

program if it runs directly on the encrypted input data

Alice

Bob{Enc(x)}

Bob has the
program P

P[{Enc(x)}]

Runs program P on
Enc(x)

Enc(P [x])

7

Overview Homomorphic Encryption (HE)
§ An encryption scheme is called homomorphic over an operation

'*' if it supports the following
• ∀ (m1, m2) ∈ M, Enc(m1) * Enc(m2) = Enc(m1 * m2)
• Where Enc is the encryption algorithm and M is the set of all possible

messages
§ Supporting addition and multiplication operations is sufficient to

create an encryption scheme that the homomorphic evaluation of
an arbitrary function
• Any Boolean circuit can be represented using only XOR (addition) and

AND (multiplication) gates

8

Homomorphic Encryption
§ Homomorphic Encryption

• Is a form of encryption that allows computations to be carried out on ciphertext
• Generates an encrypted result
• The result when decrypted matches the result of operations performed on the

plaintext

§ Formally,
• EvalE(f, c0, c1,…,cn)

§ Example:
• Enc(key, 2) = $, Enc(key, 3) = %
• Eval(+, $, %) = #
• Dec(key, #) = 5

9

4/5/25

4

Simple Illustrative Example
§ Function to compute
• f is a simple addition

§ Such that y	=	f(x1,	x2,	…,	xk)
• y	=	x1	+	x2	+	…	+	xn	= ∑%&'(𝑥%

§ n is number of terms

§ We will define our encryption function as
• Enc	(xi)	=	(xi	+	p)*q	where p and q determine the key k(p,q) and it is

private

§ We define the decryption function as
• Dec	(Y,	n)	=	Y/q	–	n*p

10

Simple Illustrative Example
§ Homomorphically compute

• fHE(5, 9, 3)
§ Computation Process

• Key Generation
§ Pick p and q
§ k(7, 2)

• Encrypt the terms
§ Enc(5) = (5+7) * 2 = 24
§ Enc(9) = (9+7) * 2 = 32
§ Enc(3) = (3+7) * 2 = 20

• Evaluation
§ f(24, 32, 20) = 24 + 32 + 20 = 76

• Decrypt the result
§ Dec(76, 3) = (76/2) + (3*7) = 17

11

Homomorphic Computation
§ Fully Homomorphic Encryption (FHE)
• It was first defined in 1978 under privacy homomorphism

§ For the purpose of searching encrypted data

• Various approaches
§ Multiplicatively homomorphic by RSA and El Gamal Additively homomorphic by GM

and Paillier
§ Quadratic formulas by BGN’05 and GHV’10a

• Recent major advances
§ First Construction of fully homomorphic encryption by Gentry [2009]

• Using algebraic number theory - ideal lattices

12

4/5/25

5

Overview Homomorphic Encryption (HE)
§ Techniques to compute on encrypted data can be classified in

three (3) categories
• Partially Homomorphic Encryption (PHE)

§ Allowing only one type of operation with an unlimited number of times

• Somewhat Homomorphic Encryption (SHE)
§ Allowing some types of operations with a limited number of times

• Fully Homomorphic Encryption (FHE)
§ Allowing an unlimited number of operations with unlimited number of times

13

Overview Homomorphic Encryption (HE)
§ Techniques to compute on encrypted data can be classified in

three (3) categories
• Partially Homomorphic Encryption (PHE)

§ Unlimited add OR multiplication

• Somewhat Homomorphic Encryption (SHE)
§ Limited addition AND multiplication

• Fully Homomorphic Encryption (FHE) ⇐ SHE + Bootstrapping
§ Unlimited addition AND multiplication

14

Homomorphic Encryption Approaches
§ Popular Homomorphic Encryption Schemes
• TFHE – Fast Fully Homomorphic Encryption - 2016

§ Support homomorphic evaluation on logic gates (AND, OR, NAND, NOT, MUX, etc.)
§ Best for operation on individual bits

• BGV (Brakerski-Gentry-Vaikuntanathan - 2011) and BFV (Brakerski/Fan-
Vercauteren - 2012)
§ Exact arithmetic on vectors of numbers
§ Best for vectorized operation over finite fields

• CKKS (Cheon, Kim, Kim and Song – 2016)
§ Approximate arithmetic on vectors of numbers
§ Best for vectorized operation over real numbers

15

4/5/25

6

Overview Homomorphic Encryption (HE)
§ A Homomorphic Encryption algorithm has four primary operations

• KeyGen, Enc, Dec, and Eval
§ KeyGen, Enc and Dec are essentially not different from their classical tasks in

conventional encryption algorithms
• KeyGen operation generates a secret and public key pair for an asymmetric encryption

scheme and a single key for the symmetric encryption scheme
§ Eval operation is the true homeomorphic encryption specific operation, it

takes ciphertexts as input and outputs evaluated ciphertexts
• Eval performs the function f() over the ciphertexts (c1, c2) without seeing the messages

(m1, m2)
• The format of the ciphertexts must be preserved after an evaluation process to be

decrypted correctly
• The size of the ciphertext should also be constant to support unlimited number of

operations
§ Increase in the ciphertext size will require more resources and will limit the number of operations

16

RLWE-Based Homomorphic Encryption

§ What LWE – Learning with Error and Ring LWE?
14𝑠$ + 5𝑠% + 15𝑠& + 7𝑠' ≈ 8 + 1 𝑚𝑜𝑑	17

3𝑠$ + 7𝑠% + 4𝑠& + 12𝑠' 	 ≈ 16 + 3 𝑚𝑜𝑑	17

8𝑠$ + 10𝑠% + 11𝑠& + 3𝑠' ≈ 7 + 2	(𝑚𝑜𝑑	17)

6𝑠$ + 7𝑠% + 16𝑠& + 2𝑠' ≈ 3	 + 4	(𝑚𝑜𝑑	17)

• Learning with Error is a
computation problem that given
a set of linear equations, we
solve for the secret

17

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ FV.SH.SecretKeyGen():
• sample s from a Gaussian distribution, and
• output

§ sk = s

§ FV.SH.PublicKeyGen(sk):
• set s = sk,
• sample a from Rq and e from Gaussian distribution,
• output

§ pk[0] = b = [-(a.s + e)]q
§ pk[1] = a

18

4/5/25

7

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ FV.SH.Encrypt(pk, m):
• encrypt a message m ϵ RT

• compute t = q/T
• sample r0 from R2

• sample r1 and r2 from the Gaussian distribution, and
• return

§ ct[0] = [b.r0 + r2 + t.m]q and

§ ct[1] = [a.r0 + r1]q

19

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ FV.SH.Add(ct1, ct2):
• Compute ct1 + ct2

• return
§ c0 = [ct1[0] + ct2[0]]q ,
§ c1 = [ct1[1] + ct2[1]]q

§ FV.SH.Decrypt(sk, ct):
• set s = sk, and ciphertexts = c0, c1

• compute [𝒄𝟎	<	𝒄𝟏.𝒔]
𝒕 𝒒

• compute ;𝒎(𝒎𝒐𝒅	𝑻)

20

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ FV.SH.MUL(ct1, ct2):

• Compute ct1 * ct2

• return

§ 𝑐(=
(+,! (.	+," ()

, /
	

§ 𝑐$ =
(+,! (.	+," $ 	0	+,! $.	+," ()

, /
	

§ 𝑐% =
(+," (.	+," $)

, /

§ FV.SH.Decrypt(sk, ct):
• set s = sk,
• ciphertexts c0, c1 and c2
• compute *𝒎=	(𝒄𝟎𝒔𝟎+	𝒄𝟏𝒔𝟏+	𝒄𝟐𝒔𝟐)𝒒
• compute *𝒎(𝒎𝒐𝒅	𝑻)

21

4/5/25

8

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ Relinearisation challenge
• Relinearisation is a procedure that takes a degree 2 ciphertext and

reduces it again to a degree 1 ciphertext
• Let ct = [c0, c1, c2] denote a degree 2 ciphertext, then we need to find ct’

= [c0’, c1’] such that
§ [c0.s0 + c1.s1 + c2.s2]q = [c0’.s0 + c1’.s1]q

• To eliminate c2.s2 term we need to mask it
§ Masking is done using relinearisation keys/ homomorphism keys/ evaluation keys

22

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ Noise growth challenge
• Noise in freshly encrypted ciphertext is given by

§ ct1 has B amount of noise
§ ct2 has B amount of noise

• SH.Add(ct1, ct2):
§ Noise growth: B + B = 2B

• SH.Mul(ct1, ct2):
§ Noise growth: B * B = B2

§ With L levels of multiplication
• Noise growth: 𝐵%#

23

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ Noise growth challenge
• Decryption will be correct, if

§ Noise <= q/4

• To perform L levels of multiplication,
§ 𝐵G1 ≤ ⁄𝑞 4	 which means 𝑞 ≥ 4𝐵G1

 For B = 10, L q log2 q n

1 400 9 1024

2 40000 16 1024

3 400000000 29 2048

4 40000000000000000 56 2048

24

4/5/25

9

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ Noise growth challenge
• Noise in freshly encrypted ciphertext is given by

§ ct1 has B amount of noise
§ ct2 has B amount of noise

• SH.Add(ct1, ct2):
§ Noise growth: B + B = 2B

• SH.Mul(ct1, ct2):
§ Noise growth: B * B = B2

§ With L levels of multiplication
• Noise growth: 𝐵%#

25

HE Computational Challenges
§ Brakerski-Fan-Vercauteren (BFV) scheme as illustrative example
§ Noise growth challenge
• Decryption will be correct, if

§ Noise <= q/4

• To perform L levels of multiplication,
§ 𝐵G1 ≤ ⁄𝑞 4	 which means 𝑞 ≥ 4𝐵G1

 For B = 10, L q log2 q n

1 400 9 1024

2 40000 16 1024

3 400000000 29 2048

4 40000000000000000 56 2048

26

Arithmetic Hardware Library for Accelerated HE
§ A library consisting of modules

involved in these HE algorithms
• Residue Number System (RNS)

• Chinese Remainder Theorem (CRT)

• NTT-based polynomial multiplication

• Modulo Inverse

• Modulo Reduction

• Polynomial and scalar operations
• And others …

Client FPGA Logic

Key Generation

Degree-2 Ciphertext Decryption

Nearest

Binary

Integer of

u/[q/2]

c1'

s
Poly

MULMod

Redu

m u

Poly

MUL

c2'

Poly

MUL

Poly

Add

Encryption

b

r1

r0

Poly

MUL

Mod

Redu

Poly

Add

c0

Scalar

MUL

[q/2]
m

Poly

MUL

Mod

ReduPoly

Add

c1

r2

a

Cipher

Out

Noise

Sampler

Message to Encrypt

Relinearisation Verision 2

Key Generation

TRNG

e

Poly

MULPoly

Add

a

s

Poly

Add Poly

MUL

Noise

Sampler

<<

P

Mod

Redu

rlk1

rlk0

rlk0

rlk1

Cipher In

Degree-1 Ciphertext Decryption

c0'

c1'

s
m u

Decrypted

Message

Poly

MUL

Mod

Redu

Poly

Add

Nearest

Binary

Integer of

u/[q/2]

Noise

Sampler

TRNG

e

Poly

MUL

Mod

Redu
Poly

Add

a

s

Relinearisation Verision 1

Key Generation

TRNG

e

Poly

MUL

Mod

ReduPoly

Add

a

s

Poly

Add Powers

Of 2

Poly

MULT

rlk1

rlk0
b

a

b

c0'

c0'
c1'

c2'

Cloud Provider FPGA Shell

Poly

Add

Input Bus

Network Interface

Output Bus

Network Interface

Public Key In

Relin Key

Out

Public Key

Out

RNS

Homomorphic

Addition

Poly

Add

c0[0] c1[0] c0[1] c1[1]

c0' c1'

Homomorphic Multiplication

Poly

MUL
Poly

MUL

Poly

MUL

Poly

MUL

Poly

Add

c0' c1' c2'

Relinearisation Version 1

Poly

Add

Poly

Add

c1''c0''

c2'c0' c1'

rlk0rlk1

Inner Product

Inner Product

Scalar

MUL

Scalar

MUL

Decomp

Relinearisation Version 2

Poly

MUL

Div&

Round

Poly

Add

Poly

MUL

Div&

Round Poly

Add

c2'c0' c1'rlk0rlk1

c1''

c0'' c1''

c0''

System Bus

Poly

Add

c0[0] c1[0] c0[1] c1[1]

Input Bus

O
u

tp
u

t
B

u
s

CRT

27

4/5/25

10

Arithmetic Hardware Library for Accelerated HE
§ Gaussian Noise Sampler

A Post-Quantum Secure Discrete Gaussian Noise Sampler

BRAM
u1 store

BRAM
u2 store

BRAM
u3 store

X

X

x

y

X
Random Bit
Generator

i

j

k

u2(j)

u3(k)

u1(i)

BRAMx

y
(x)

<
y

xRandom Bit
Generator

(c) (d)(a) (b)

BRAM
(x store)

j

u x(j)

X
u

BRAM
(core store)

<

core(j)

z

Random Bit
Generator

j

j

Sampling Algorithms

Box-Muller Sampling

Rejection Sampling

Ziggurat Sampling

distance � between the actual distribution DZ,� and the
approximate distribution D̃Z,� is defined as follows:

�(D̃Z,�, DZ,�) = sum|p(x)� ⇢(x)| < 2�� (4)

Hence to keep the statistical distance negligible, estimating
the true probabilities will require either �-bit fixed point
or floating point approximations. So to achieve 128-bits of
security, 128-bits of precision will be required, which means
that using statistical distance is not cryptographically efficient.

To obtain sharper security bounds with lower precision,
a new measure of closeness metric, max-log distance [16],
between the probability distributions is more useful. The max-
log distance �ML between the two distributions D̃Z,� and
DZ,� is defined as follows:

�ML(D̃Z,�, DZ,�) = max|ln p(x)� ln ⇢(x)| < 2��/2 (5)

Using max-log distance, it is possible to achieve more than
128 bits of security using just 64-bits of precision. This is
not only cryptographically efficient but also leads to a highly
optimized hardware implementation.

While statistical distance is convenient and easy to use,
64-bit security offered by 64-bit floating-point precision is
not sufficient. Hence, in our implementations, we will use
statistical distance just to perform tail-cut on the Gaussian
distribution and then use max-log distance metric to define
sampling precision so as to achieve 128-bits security with 64-
bit floating-point precision.

IV. BOX-MULLER SAMPLING

The Box-Muller sampling method is based on the Box-
Muller transform proposed by Box and Muller [15]. A basic
form of Box-Muller transform takes two samples from the
uniform distribution on the interval [0, 1] and maps them
to two standard Gaussian distributed samples. Algorithm 1
shows how the Box-Muller sampling works. Input to the
algorithm is the standard deviation � for desired probability
distribution. Steps 1 and 2 generate two samples uniformly at
random from the interval [0, 1]. In step 4 and 5, the required
computations are performed to map the samples from the
uniform distribution to the required Gaussian distribution. At
every iteration the algorithm generates two samples x and y

as an output.

Algorithm 1 Box-Muller Sampling Algorithm
Input: �

Output: x, y
Repeat

1: choose u1 R = R \ [0, 1] uniformly at random
2: choose u2 R = R \ [0, 1] uniformly at random
3: if u1 6= 0 then
4: compute x = �

p
�2 lnu1 cos (2⇡u2)

5: compute y = �
p
�2 lnu1 sin (2⇡u2)

6: return x, y
7: end if

A. Hardware Implementation
There are is just one existing hardware implementations for

Box-Muller sampling because it is expensive to compute cos,
sin and square-root values on the fly in hardware. We faced
similar challenge and thus, we precompute the cos, sin and
square-root values. The precomputation stage is carried out
offline and accordingly, the modified Box-Muller algorithm
for the hardware implementation is as shown in algorithm 2.

Algorithm 2 Modified Box-Muller Sampling Algorithm for
Hardware Implementation
Input: �

Output: x, y
1: Precompute:
2: choose u1 R = R \ [0, 1] uniformly at random
3: choose u2 R = R \ [0, 1] uniformly at random
4: if u1 6= 0 then
5: compute u1store =

p
�2 lnu1

6: compute u2store = cos (2⇡u2)
7: compute u3store = sin (2⇡u2)
8: end if

Repeat
9: compute x = � ⇥ u1store ⇥ u2store

10: compute y = � ⇥ u1store ⇥ u3store
11: return x, y

Fig. 2. Box-Muller Sampling Circuit

Using the modified Box-Muller algorithm for hardware
implementation simplifies the circuit as shown in Figure 2.
We need three storage elements to store the precomputed
values of u1store, u2store, and u3store. Here, u1store is the
precomputation of square-root component, u2store is the cos

component’s precomputation, and u3store is the precomputa-
tion os sin component. We utilize BRAMs on the FPGA board
for this storage purpose.

To generate the addresses for these storage elements so as to
randomly access one value from each BRAM per iteration, we
use a random bit generator. This random bit generator follows

Fig. 5. Ziggurat Sampling Circuit

results. Thus, the resulting implementation is compact, fast and
generates high quality Gaussian random numbers with correct
distribution in constant time.

VII. PERFORMANCE EVALUATION

In this section, we present the hardware cost for each of
the samplers we implemented. We will compare and evaluate
the efficiency of these samplers as well. All of our imple-
mentations are done using Verilog, with the Xilinx Zync-7010
CLG400ACX1341 FPGA board as the target device.

TABLE III
HARDWARE COST FOR DIFFERENT SAMPLERS

Sampling Algorithm Slice LUTs BRAM DSP Freq. (MHz)

Box-Muller Sampling 146 1 11 204.6

Rejection Sampling 89 1 0 76.4

Ziggurat Sampling 114 1.5 9 103.5

In table III, we present the synthesis results for generating
samples from the Gaussian distribution with � = 3.33, ⌧ = 9,
and a sampling precision of 64-bits. We observe that the hard-
ware cost for rejection sampling is the lowest and hardware
cost of the Box-Muller sampling method is the highest. The
hardware cost for the random bit generator is not included
in the hardware cost of any of the samplers, because it can
be seamlessly replaced by any efficient random bit generator
implementation that meets the application’s requirement.

TABLE IV
HARDWARE COST COMPARISON FOR BOX-MULLER SAMPLING

Implementation Precision LUT BRAM DSP Freq. (MHz)

[21] 16-bit 1528 12 3 233

Our work 64-bit 717 6 18 270.9

Table IV presents the comparison of hardware cost for Box-
Muller sampling. The data represent the synthesis results of
implementation done by Lee et al. [21] for � = 8.2. The target

device used by the authors is a Xilinx Virtex-4 XC4VLX100-
12 FPGA board. We synthesised our implementation on the
same FPGA board using similar parameters but still main-
taining a sampling precision of 64 bits. The results thus
obtained are also presented in the table IV. When comparing
the hardware resource utilization for both the implementations,
we found that LUT and BRAM utilization is about 2⇥ higher
in [21] whereas our implementation has 1.5⇥ more DSP
utilization. However, the achieved operating frequencies in
both the implementations are almost comparable. Also we
would like to highlight that the security provided by the
implementation in [21] is not clearly defined.

Next, we compare the hardware cost associated with our
Ziggurat sampling implementation to that in [19]. Again,
to keep the comparison fair, we synthesised our Ziggurat
sampling implementation using the Xilix ISE design tool
on a XC6SLX25-3 Spartan-6 FPGA board, as this is the
target device used in [19]. Table V presents the result of this
comparison for � = 3.33.

TABLE V
HARDWARE COST COMPARISON FOR ZIGGURAT SAMPLING

Implementation � LUT BRAM DSP Freq. (MHz)

[19] 64 785 0 26 60.3

Our work 128 143 1.5 16 114.1

For similar sampling parameters with double the precision,
our implementation utilizes approximately 5⇥ fewer LUTs and
2⇥ less DSPs than the implementation in [19]. However, we
achieved almost twice the operating frequency as compared to
the other implementation. It is worth noting that their Ziggurat
setup involves dividing the Gaussian distribution curve by
only n = 8 rectangles, while our Ziggurat setup involves
dividing the curve into n = 64 rectangles. Hence, we have
a 1.5 BRAM utilization while the other implementation has
0 BRAM utilization. To summarize, using the implementation
in [19] one will have to spend about 3 times the hardware
resources, to obtain low precision samples.

We do not compare the hardware cost for rejection sam-
pling. Rejection sampling has been implemented in hardware
by Göttert et al. [22], along with their public key encryption
scheme. However, the authors do not present the hardware cost
details explicitly for the Gaussian sampler in the paper.

TABLE VI
APPROXIMATE LATENCY(IN CLOCK CYCLES) OF DIFFERENT SAMPLERS

TO GENERATE n SAMPLES

Sampling Algorithm Latency

Box-Muller Sampling 0.61n

Rejection Sampling 7.30n

Ziggurat Sampling 3.13n

In Table VI, we present the generic latency computation
equations for each of sampling methods. The lower latency
in Box-Muller sampling can be attributed to the fact that the

28

Homomorphic Encryption Libraries
§ Some of the popular homomorphic encryption libraries

• PALISADE
§ https://palisade-crypto.org/

• SEAL
§ https://www.microsoft.com/en-us/research/project/microsoft-seal/

• Helib
§ https://homenc.github.io/HElib/

• HEAAN
§ https://heaan.it/

• TFHE
§ https://tfhe.github.io/tfhe/

29

Upcoming Lectures
§ Other Hardware Security Topics
• Related Topics
• Reviews

30

