
Fast Processing of Large Graph Applications Using
Asynchronous Architecture
Michel A. Kinsy, Rashmi S. Agrawal and Hien D. Nguyen

Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering, Boston University

8 Saint Mary’s Street, Boston MA 02215 - Email: mkinsy@bu.edu

Abstract—Graph algorithms and techniques are increasingly
being used in scientific and commercial applications to express
relations and explore large data sets. Although conventional
or commodity computer architectures, like CPU or GPU, can
compute fairly well dense graph algorithms, they are often
inadequate in processing large sparse graph applications. Mem-
ory access patterns, memory bandwidth requirements and on-
chip network communications in these applications do not fit
in the conventional program execution flow. In this work, we
propose and design a new architecture for fast processing of
large graph applications. To leverage the lack of the spatial
and temporal localities in these applications and to support
scalable computational models, we design the architecture around
two key concepts. (1) The architecture is a multicore processor
of independently clocked processing elements. These elements
communicate in a self-timed manner and use handshaking to
perform synchronization, communication, and sequencing of
operations. By being asynchronous, the operating speed at each
processing element is determined by actual local latencies rather
than global worst-case latencies. We create a specialized ISA to
support these operations. (2) The application compilation and
mapping process uses a graph clustering algorithm to optimize
parallel computing of graph operations and load balancing.
Through the clustering process, we make scalability an inherent
property of the architecture where task-to-element mapping can
be done at the graph node level or at node cluster level. A
prototyped version of the architecture outperforms a comparable
CPU by 10∼20x across all benchmarks and provides 2∼5x better
power efficiency when compared to a GPU.

I. INTRODUCTION

Advances in mobile computing, coupled with the prolif-
eration of online social networks, have given rise to a new
class of applications and computing challenges [1]. These
applications tend to be relational by nature. In other words,
they express or encode relations, communications, connec-
tivity and interactions between people, places, objects or
systems. As such, the data of interest in these applications
are often best represented in the form of graphs. Graph-based
applications range from social network analyses to anomaly
detections [2]. For computing purposes, graphs are commonly
represented in one of two forms: (1) as adjacency matrix or
(2) as adjacency list. Adjacency Matrix works well for densely
connected graphs, i.e., the number of edges in the graph is
close to the maximal number of edges. In general, computing
on dense graphs can be easily parallelized and GPU and SIMD
architectures have proven to be the platform of choice for
executing such graph-based applications [2]. Unfortunately,
the vast majority of large graph-based applications are sparse.
For the efficient storage of large sparse graphs, adjacency list
or other compressed representation schemes are used. Memory

access and load balancing are some of the key bottlenecks
to the efficient processing of large sparse graph algorithms
and applications [1]. The memory access patterns often lack
spatial and temporal localities resulting in high cache miss
rates. Current cache-based processor architectures are simply
not well suited for the computational flow of graph processing.
In addition to the storage problem, computing on large sparse
graphs currently presents a number of challenges including
effective programming abstractions and models of computation
that leverage the graph structure in the application. In this
work, we present a domain-specific architecture tailored to
graph-based algorithms and applications.

II. PROPOSED GRAPH PROCESSOR ARCHITECTURE

Figure 1 shows an illustration of the proposed architecture.
The three key modules of the architecture are (1) the graph
processor, (2) the co-processor and (3) the main memory.
The graph processor (1) module has a Memory Interface
unit (1a) to coordinate batch accesses to the main memory
or external memory units, a Dispatch Logic (1b) to perform
scatter operations on data from the main memory, an Output
Logic (1c) to gather output data from the graph processor,
and a systolic array of simple processing elements called Node
Arithmetic Logic Engines (NALEs) (1d) to carry out the actual
graph computations. The co-processor (2) performs three key
functions. It (1) executes non-graph parts of the application,
(2) schedules the graph part of the application and (3) monitors
the execution flow of the graph.

graph	processor,	and	a	grid	of	processing	cores	(1d)	to	carry	out	the	actual	graph	computations.	
The	co-processor	(2)	performs	three	key	functions.	It	(1)	executes	non-graph	parts	of	the	
application,	(2)	schedules	the	graph	part	of	the	application	and	(3)	monitors	the	execution	flow	
of	the	graph.	

	
	
Graph	Processor	Micro-Architecture		
The	graph	processor	is	a	systolic	array	of	simple	processing	elements	called	Node	Arithmetic	
Logic	Engines	(NALEs).	It	is	envisioned	that	the	graph	processor	will	contain	a	thousand	to	
hundreds	of	thousands	of	NALEs.	Figure	[?]	depicts	the	block	representation	of	a	NALE	and	
Figure	[?]	shows	the	micro-architecture.		The	NALE	is	optimized	for	fast	MAC	(Multiply-And-
Accumulate)	operations	with	a	three-state	output	comparator	for	fast	node	value	sorting.	It	has	
two	FIFO	structures,	one	to	communicate	with	neighbors	and	one	internal	FIFO	to	emulate	
multiple	graph	nodes	(node	cluster	mode	execution).		
	
The	NALE	has	a	FIFO-based,	memory-oblivious	and	latency-insensitive	Instruction	Set	
Architecture	(ISA).	In	other	words,	there	are	no	explicit	load	and	store	in	the	instruction	set.	
Instructions	are	16-bit	long	and	operate	as	(1)	fetch	instruction,	(2)	read	input	FIFOs	when	data	
are	present,	(3)	perform	operation	and	(4)	write	to	output	FIFOs.	Figure[?]	shows	the	
instruction	format.	Each	NALE	operates	independently	of	others	depending	on	the	readiness	of	
inputs.	Communicating	only	through	FIFOs	allows	for	each	NALE	to	run	on	its	own	clock	speed.	
Furthermore,	this	approach	allows	us	to	adopt	a	GASL	design	methodology	that	can	seamlessly	
scale	to	hundreds	of	thousands	of	NALEs.	Figure	[?]	illustrates	the	the	clockless	handshake	logic	
between	NALEs.	In	addition	to	the	scalability	benefits,	the	absence	of	a	global	clock	allows	for	
the	underlining	data	dependencies	to	dictate	application	execution	time.		
	
Model	of	computation	and	compilation		
An	asynchronous	model	of	computation	is	adopted	to	fully	take	advantage	of	the	graph	
processor.	Given	a	graph	application	specification	and	a	number	of	available	NALEs	of	its	
computation,	the	execution	preprocessing	flow	follows	five	key	steps.	Figure	[?]	illustrates	the	
steps.		In	the	first	step,	the	application	is	profiled	to	extract	the	graph	topologic,	followed	by	
the	clustering	of	nodes,	clusters	dependency	analysis,	placement	and	compilation	steps.		
	

Streams	Dispatch	Logic/Decoder

Streams	Output	Logic/Encoder

M
em

or
y	
In
te
rf
ac
e

Graph	Processing	Cores

Main	Memory
L1

Processor

L2

Scheduler

Monitor

Co-Processor

Node	

Node	

Node	

C	
I	

FIFO	 D	

EU	C	
I	

FIFO	 D	

EU	C	
I	

FIFO	 D	

EU	

C	
I	

FIFO	 D	

EU	C	
I	

FIFO	 D	

EU	

1

2

3

1a1b

1c

1d

Fig. 1. Proposed graph processor system architecture.

Graph Processor Micro-Architecture: Figure 2 shows the
micro-architecture of a NALE. The NALE is optimized for
fast MAC (Multiply-And-Accumulate) operations with a three-
state output comparator for fast node value sorting. It has two
FIFO structures, one to communicate with neighbors and one
internal FIFO to emulate multiple graph nodes (node cluster
mode execution).

Reference		
	
	
	

	

	
	
	

	
	
	

Neighbors
Registers

Neighbors
Registers

FIFO

Multiplier

Accumulator
Comparator

Lo-RegisterHi-Register

FIFO

Local	Data
Memory

Local	Inst.
Memory

Control

32 32

32 32

32 32

32

32

32

32

32 32

32

32

32

64

16

2

11 1

3232

Encoder

32

32

To	&	From
Memory

1
Valid

3
ID ACK

4

Ready
1

@Targets@SourcesOP Data

OPcode [src1,	@PEi] [src2,	@PEj] [dest,	@PEk]

Function		/

Data

ValidIN ValidOUT

Latches

Enable

DataIN DataOUT

NALEjNALEi

Fig. 2. Micro-architecture of a Node Arithmetic Logic Engine (NALE).

Each NALE operates independently of others depending on
the readiness of inputs. Communicating through FIFOs only
allows each NALE to run on its own clock speed. Furthermore,
this approach allows us to adopt a GasP asynchronous [3]
design methodology that can seamlessly scale to hundreds of
thousands of NALEs. Figure 3(a) illustrates the the clockless
handshake logic between NALEs. In addition to the scalability
benefits, the absence of a global clock allows for the under-
lining data dependencies to dictate application execution time.
Figure 3(b) shows the synthesizable equivalent of the GasP
circuit.

ValidIN ValidOUT

LatchesDataIN DataOUT

NALEjNALEi

Enable

FF

LatchesDataIN DataOUT

NALEjNALEi

Aout

RoutAin

Rin

(a) GasP (b) Synthesizable equivalent

Fig. 3. GasP asynchronous communication circuit between NALEs.

Model of computation and compilation : An asynchronous
model of computation is adopted to fully take advantage of the
graph processor. Given a graph application specification and a
number of available NALEs for its computation, the execution
preprocessing flow follows five key steps. Figure 4 illustrates
these steps. In the first step, the application is profiled to
extract the graph topology, followed by the clustering of
nodes, clusters dependency analysis, placement and finally the
compilation step.

	
	

	
	
	

	
	

Instructions
for	PEs

Workload	
Management	
Configurations

Graph	
Application	
Specification

Profiling	
&	

Topology	
Extraction

Profile	
Input

Nodes	
Clustering	

&
Partitioning

Profile	Result
&

Graph	
Topology	

Architecture	
Parameters

Nodes	
&	

Clusters
Compilation

Node	&	
Cluster

Dependencies	

Node	&	
Cluster	

Placements

Node	
&	

Cluster
Descriptions

a

b
c d

a

b
c d

Fig. 4. Compilation process steps for the graph processor.

III. ARCHITECTURE EVALUATION

Experimental setup: To get high-fidelity performance and
power measurements for the proposed architecture, we proto-
type it alongside a conventional CPU and a GPU with compa-
rable complexity in FPGA. The Xilinx Virtex7-XC7VX980T
FPGA device is used for our prototyping platform. We imple-
ment a synthesizable RTL version of the graph processor. We

use the 7-stage RISC core in the Heracles [4] RTL simulator
for the CPU. We adopte the MIAOW open-source general-
purpose graphics processor (GPGPU) based on the AMD
Southern Islands ISA [5] for the GPU architecture. The three
architectures are evaluated based on their execution time and
power.

Graph algorithms and applications: For the evaluation, we
consider a set of representative graph algorithms, namely, Sin-
gle Source Shortest Path (SSSP), Breadth First Search (BFS),
Depth First Search (DFS), PageRank (PR), Minimal Enclosing
Triangles (MiniTri), and Connected Components (CC). We
use three difference graph applications: (1) California road
network (CA) which has 1,965,206 vertices, 2,766,607 edges
and an average degree of 1.41, (2) Facebook social network
(FB) with 2,937,612 vertices, 41,919,708 edges and an average
degree of 14.3 and (3) Livejournal social network (LJ) with
4,847,571 vertices, 85,702,475 edges and 17.6 average degree.

Results: Figures 5 and 6 present the execution time in terms
of number of cycles and power usage for each platform for
the different applications and graph algorithms.

	
	
	
	

	
	

0

10

20

30

40

50

60

CPU

GPU

Graph

0

2

4

6

8

10

12

CPU

GPU

Graph

Total Power Utilization (W*) 	

	
	

0

5

10

15

20

25

30

CPU

GPU

Graph

Compute Time (x 109 cycles)

Fig. 5. Performance in terms of execution for the three architecture types on
the different graph applications.

	
	
	
	

	
	

0

10

20

30

40

50

60

CPU

GPU

Graph

0

2

4

6

8

10

12

CPU

GPU

Graph

Total Power Utilization (W*) 	

	
	

0

5

10

15

20

25

30

CPU

GPU

Graph

Compute Time (x 109 cycles)

Fig. 6. Efficiency in terms of power usage for the three architecture types on
the different graph applications.

REFERENCES

[1] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 31–46.

[2] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, vol. 17, no. 01,
pp. 5–20, 2007.

[3] M. Roncken, S. M. Gilla, H. Park, N. Jamadagni, C. Cowan, and
I. Sutherland, “Naturalized communication and testing,” in 21st IEEE
International Symposium on Asynchronous Circuits and Systems, May
2015, pp. 77–84.

[4] M. A. Kinsy, M. Pellauer, and S. Devadas, “Heracles: A tool for fast rtl-
based design space exploration of multicore processors,” in Proceedings
of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA 2013, pp. 125–134.

[5] R. Balasubramanian et al., “Enabling gpgpu low-level hardware
explorations with miaow: An open-source rtl implementation of a
gpgpu,” ACM Trans. Archit. Code Optim., vol. 12, no. 2, pp. 21:25, Jun.
2015.

