
NoSync: Particle Swarm Inspired Distributed
DNN Training

Mihailo Isakov and Michel A. Kinsy

Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering

Boston University, Boston, MA
{mihailo, mkinsy}@bu.edu

Abstract. Training deep neural networks on big datasets remains a
computational challenge. It can take hundreds of hours to perform and re-
quires distributed computing systems to accelerate. Common distributed
data-parallel approaches share a single model across multiple workers,
train on different batches, aggregate gradients, and redistribute the new
model. In this work, we propose NoSync, a particle swarm optimiza-
tion inspired alternative where each worker trains a separate model, and
applies pressure forcing models to converge. NoSync explores a greater
portion of the parameter space and provides resilience to overfitting. It
consistently offers higher accuracy compared to single workers, offers a
linear speedup for smaller clusters, and is orthogonal to existing data-
parallel approaches.

Keywords: deep learning, artificial neural network, distributed systems,
evolutionary algorithm, particle swarm optimization

1 Introduction

Deep neural networks have shown excellent results on a number of tasks such as
image recognition [8], machine translation [2], question answering [1], and game
playing [16]. In his 2014 keynote on “Large Scale Deep Learning” [4], Jeffrey Dean
makes the point that DNN researchers want the results of experiments quickly,
and that there is a “patience threshold” they are willing to pay. As state-of-the-
art networks require weeks to train with a single GPU on the ImageNet dataset,
many researchers are turning to distributed systems for training. This distributed
training ranges from running a model on a single machine outfitted with multiple
GPUs, to using clusters with thousands of cores, novel architectures, and special
interconnects [19].

Two common approaches for distributing neural networks across multiple
workers are model parallelism and data parallelism. In model parallelism, net-
work layers are split across multiple workers, and workers communicate neu-
ron activations and gradients. In data parallelism, networks are cloned between
workers, workers work on different batches and communicate parameter updates
after every batch. Data parallelism is better suited for convolutional neural net
parallelization, as this approach requires less network bandwidth [12].

Data parallel distributed DNN training approaches are either synchronous
or asynchronous. Synchronous approaches require that all the updates are ag-
gregated before the next training batch can begin. They suffer from low worker

2 Mihailo Isakov and Michel A. Kinsy

utilization due to locking, and are typically only employed when high network
bandwidth and homogeneous hardware is available [9]. Asynchronous DNN train-
ing aims to fix some of these issues by relaxing the requirement that all workers
must finish their updates before the next batch can begin. This significantly
raises utilization and reduces bandwidth requirements, but introduces staleness
in the system. If left unchecked, the staleness of worker models can range in tens
or even hundreds of iterations [5]. This staleness negatively impacts accuracy,
prompting a number of researchers to attempt to counter this effect [7][13].

We propose an alternative to the conventional data-parallel approaches. Our
intuition stems from the fact that in both synchronous and asynchronous train-
ing, a model is cloned across multiple workers, wasting the majority of worker
memory. We ask whether using that memory to train individual workers may give
us faster convergence, and how would it impact accuracy. We propose NoSync,
a Particle Swarm Optimization (PSO) inspired deep neural network training
algorithm.

We summarize our contributions here:

– We propose a new type of distributed neural network training, which of-
fers both higher accuracy compared to synchronous and asynchronous data-
parallel approaches, as well as lower bandwidth requirements and good scal-
ability.

– We show that model averaging can work, as long as the models do not diverge
too far, and we provide an insight into the learning happening during NoSync
training.

– We verify the results by training common convolutional networks on sim-
ulated systems, and show that our training has equivalent utilization and
bandwidth requirements as common synchronous approaches.

2 Related work

Processing neural networks typically involves training, inference, or both (known
as online training). In case of inference, distributing a neural network is trivial, as
each example or batch can be processed independently. In the case of distributed
training, there are two methods of parallelizing neural networks present in liter-
ature: (1) model parallelization [12][5], where different network layers or neurons
are partitioned between machines and all machines work on the same data, and
(2) data parallelization [9][15], where the same network model is present on all
machines, but trains on different data.

Model parallelization splits a model between multiple workers, requiring the
workers to transmit neuron activations for each batch. This approach is efficient
in the case of fully-connected layers, where models are large and activations are
small, but is very inefficient in the case of convolutional neural networks where
the convolution kernels are small, but activations are large [12].

While model parallelization exploits the fact that neural networks are highly
parallelizable, data parallelization attempts to parallelize the training algorithm,
in this case stochastic gradient descent (SGD). In data parallel distributed DNN
training, multiple workers share the same model, but work on different data.

NoSync: Particle Swarm Inspired Distributed DNN Training 3

Typically, we take a batch, split it amongst workers, aggregate the calculated
gradients, and update all the models [14][5][17]. Data parallel approaches can be
further broken down into synchronous and asynchronous. In synchronous data
parallel training, a locking mechanism prevents each of the workers from working
on stale models, requiring that all machines have identical models at all times.
This approach leads to lower utilization, requiring either fast interconnects to
achieve good performance [9], or a higher computation/communication ratio [19].

A simple way of increasing worker utilization is allowing the workers to work
on batches independently of each other. In asynchronous training, each worker
requests the newest model from a parameter server, calculates the gradients on
a batch, and sends them back. These gradients are likely not applied to the same
model the worker was given, but to a newer one updated by other workers, mean-
ing that the applied update is stale. Asynchronous approaches, while faster than
synchronous ones, suffer an accuracy penalty due to this staleness. Several works
have attempted to minimize this loss in accuracy [7][13]. In [7], authors inversely
weigh the updates by their staleness, meaning that staler updates will have less
of an impact on training. While restoring accuracy, this approach does not fully
utilize all the workers, as the slower workers might not contribute to training
at all due to their lower learning rates. In [13], the authors show that staleness
caused by asynchrony can be viewed as just an amount of implicit momentum.
By tuning the momentum parameter, they restore the original accuracy while
still valuing all updates equally.

Recently, several works have pushed the envelope on the minimum time re-
quired to train a network on the ImageNet dataset, ranging from 29 hours on 8
NVidia P100 GPUs [8], down to 1 hour using 256 P100 GPUs [6], and even 15
minutes using 1024 P100’s [18]. All of these approaches use synchronous train-
ing and try to increase the computation to communication ratio, for example
by using batches as large as 32k samples. Similar to our work, but in parallel,
the authors in [20] propose training an individual model on every worker and
applying elastic averaging between workers as means to prevent divergence. This
development serves as further validation o f the proposed approach.

3 NoSync Training
Particle swarm optimization: Particle Swarm Optimization [10] (PSO) is
a biology-inspired optimization algorithm imitating the movement of flocks of
birds or swarms of insects. It searches for a function extreme by having a popu-
lation of particles, each of which samples the function at a certain position. Each
particle has a position and velocity, and repeatedly moves in the parameter space
searching for a better extreme. PSO is gradient-insensitive, easy to parallelize,
and is a good global search algorithm.

In PSO, each particle with index j at time t consists of a position xjt and
velocity vjt . A particle keeps track of the best position it has encountered during
the search pijt and the swarm stores the position pgt of the best solution any
particle has encountered during the search. PSO introduces two metaparameters:
the cognitive parameter c1 and the social parameter c2, along with the random
values r1, r2 ∈ [0, 1] determined at each iteration.

4 Mihailo Isakov and Michel A. Kinsy

Each iteration, a particle j updates its position and velocity as:

xjt+1 = xjt + vjt

vjt+1 = vjt + c1r1(pijt − x
j
t) + c2r2(pgt − x

j
t)

(1)

From equation 1, a particle maintains its speed across iterations, and accel-
erates towards the best local and global solution. The goal of the cognitive and
social parameters is to control the amount of ‘pull’ applied towards the best in-
dividual and swarm solution, respectively. Initially, the swarm should give more
freedom to the particles by having a small value of c2. Later in the search, PSO
increases c2, forcing the particles to converge and explore the area around the
best solution.

Particle swarm optimization and gradient descent: Classic gradient
descent is often prone to overfitting and does not generalize very well. Adding
momentum has been shown to help the search escape local minima and find
good solutions. For some parameters θ, iteration t, a learning rate α, objective
J(θ), and a batch of input-output pairs xi and yi drawn from a dataset, we can
write one update as:

θt+1 = θt − vt

vt+1 = µvt + α∇θJ(θ;xi, yi)
(2)

By observing equations 1 and 2, we notice some similarities: (1) both equa-
tions maintain a position and speed, and (2) in PSO, each particle is pulled
towards the best solution it has encountered (c1r1(pijt − x

j
t)), while in gradient

descent, a model calculates and applies the gradient, arriving at a better solution
(α∇θJ(θ;xi, yi)). The third component c2r2(pgt − x

j
t) of a PSO velocity update

has no counterpart in gradient descent - it is used to pull the swarm towards the
best solution any particle in the swarm has encountered. Since gradient descent
only trains one solution, there is no global solution for it to be pulled towards.
From this observation, we introduce a new type of neural network training which
trains multiple solutions, and applies a force for them to converge.
Introducing NoSync: In NoSync, for a distributed system of w workers, we
train w models, one on each worker. Each worker is trained with classic stochastic
gradient descent with momentum. After every batch, we gather the n best per-
forming models, and calculate their mean model cm, i.e., their ‘center of mass’.
We then perform pulling - we move each of the w models towards this center of
mass cm. The amount of pull depends on the distance between the model and
the center of mass, multiplied by the pull coefficient β. With the metaparameter
β set to 0, models will freely diverge. Interpolating two models will typically
produce a model whose accuracy is worse than either of the two. This is because
the error function on the linear path between them is highly nonconvex. There
is no reason to assume that two distant models can gain anything by being in-
terpolated. For that reason, we apply pulling from the very start, forcing the
models not to stray too far. If the models are close enough, we can safely assume
that the error function between them is convex.

NoSync: Particle Swarm Inspired Distributed DNN Training 5

Pulling models: In order to prevent models from diverging, we introduce
‘pulling’ between workers. In a cluster of w workers, each worker i trains its
model W i on a separate batch, and afterwards sends it over the network to the
parameter server. The parameter server computes the average of the models,
and pulls all the workers’ models towards it by a parameter β as:

W i
t+1 = (1− β)W i

t +
β

w

w∑
k=1

W k
t (3)

Parameter β is chosen so that the models do not diverge to far, but also do
not converge to a single point, rendering the parallelization useless. While there
is no reason to think that combining different trained models results in a net-
work with comparable accuracy, in section 6 we show that combining or pulling
models from the very start results in higher accuracies than that of single ma-
chine implementations. There exists an obvious connection between the learning
rate α and the pull β: higher learning rates will permit models to diverge fur-
ther, possibly breaking the above assumption about interpolating loss, and lower
learning rates will lead to the models converging and not usefully exploring the
parameter space.

In a one-dimensional system, let us assume that there are w particles at
time t have positions pti and gradients gti drawn from a normal distribution
gti = N (0, σ2

g). Each iteration, particle i updates its position as:

pt+1
i = (1− β)(pti + αgti) +

β

w

w∑
k=1

ptk (4)

Assuming that particles are initialized from a normal distribution N (0, σ2
w),

in case when the pull parameter β is β = 0, one can model the position of a
particle as a random walk:

pti = p0i +

t∑
t=1

αgti

= N (0, σ2
w) + α

t∑
t=1

N (0, σ2
g)

= N (0, σ2
w + tα2σ2

g)

= N (0, tα2σ2
g), σ2

w � tα2σ2
g

(5)

It follows that two particles m and n at time t will have a distance of:

|ptm − ptn| = |N (0, tα2σ2
g)−N (0, tασ2

g)|
= |N (0, 2tα2σ2

g)|
(6)

The absolute value of normal value is a half-normal distribution, with the

mean µ = σ
√
2√
π

. Hence, the average distance can be calculated as:

E(|ptm − ptn|) =

√
2
√

2tα2σ2
g

√
π

=
2
√
tασg√
π

(7)

6 Mihailo Isakov and Michel A. Kinsy

From equation 7 it follows that the average distance between two points
grows with the square of time. To prevent different models from diverging, we
apply the pull coefficient β ∈ [0, 1]. With β 6= 0, the equation 7 becomes:

pt+1
i = (1− β)(pti + αgti) +

β

w

w∑
k=1

ptk

= (1− β)(N (0, σ2
pti

) + αN (0, σ2
g)) +

β

w

w∑
k=0

N (0, σ2
pti

)

= N (0, (1− β)2(σ2
pti

+ α2σ2
g)) +N (0,

β2

w2
wσ2

pti
)

= N (0, α2σ2
g(1− β)2 + σ2

pti
((1− β)2 +

β2

w
))

(8)

ψ = (1− β)2, ω = (1− β)2 +
β2

w
(9)

pt+1
i = N (0, ψα2σ2

g + ωσ2
pti

) (10)

In order to determine σ2
pti

, we monitor pti from time-step 0 onwards:

p0i = N (0, ψα2σ2
g)

p1i = N (0, ψα2σ2
g + ωψα2σ2

g)

...

pti = N (0, ψα2σ2
g

t∑
k=0

ωk) = N (0, ψα2σ2
g

1− ωt

1− ω
)

(11)

The distance of two particles pulled by coefficient β is:

E(|pti − ptj |) = E(|N (0, ψα2σ2
g

1− ωt

1− ω
)−N (0, ψα2σ2

g

1− ωt

1− ω
)|)

=
2(1− β)ασg

√
1−ωt

1−ω√
π

(12)

Therefore, the distance between particles will grow with bigger gradient de-
viation σg, greater learning rate α, and will decrease with increasing pull β. It
is also worth noting that this distance will approach infinity when β → 0 and
t → inf. Assuming that the number of workers w is large and t → inf, the
distance becomes:

E(|pti − ptj |) =
2(1− β)ασg√
π
√

2β − β2
(13)

Assuming β � 1, the distance changes into:

E(|pti − ptj |) =

√
2ασg√
π
√
β

(14)

NoSync: Particle Swarm Inspired Distributed DNN Training 7

With the coefficient β 6= 0, the mean distance from the center of mass will
stabilize, as the random gradients force the particles to diverge irrespective of
the the mean distance from the center, while the pull grows linearly with the
distance. By increasing β, one can reduce the size of the swarm, and by decreasing
β more freedom of movement will be given to the particles. This formulation gives
the user the ability to directly control the relative size of the swarm compared
with weight updates. One can make sure that the each particle on average is not
more than n steps from every other particle.
Dropping models: In classic PSO, each particle is pulled towards a single or
multiple best optima encountered. In the above section, NoSync applies pull to
the ‘center of mass’, for which all particles contribute. We explore the possibility
of calculating the center of mass from only the n best particles, which might
allow the swarm to follow the leaders and faster escape local minima. Given a
set N of the n best models, we rewrite equation 3 as:

W i
t+1 = (1− β)W i

t +
β

n

∑
k∈N

W k
t (15)

An additional benefit of this approach is bandwidth reduction - only the particles
that are in the top n solutions transmit their model every iteration.

4 Exploring Learning in NoSync

Source of the accuracy increase: NoSync modifies the original synchronous
training approach in three ways: (1) It does not synchronize models. Each worker
trains a separate model, and periodically sends updates to the parameter server.
(2) Instead of synchronizing models, effectively taking their “center of mass”,
NoSync only pulls them closer. This means that at any point during training,
we have w different models, which allows exploring w points in the parameter
space, instead of just 1. (3) While synchronous data-parallel training integrates
updates from all batches, regardless of how poorly a training model performs,
we only integrate the n best performing models, n ∈ [1, w]. This aggregation
approach does not mean that low-performing models stop contributing to sub-
sequent training rounds, but rather that their states are disregarded during the
current iteration.

These modifications raise the question: does the accuracy increase stem from
dropping bad gradients, or from training multiple models in parallel? In order
to find the source of the increase in accuracy, we compare several systems:

1. A baseline single worker system;
2. A synchronous model distributed over w workers;
3. 10 models on 10 machines, where after every batch we keep only the last

batch’s best performing model and redistribute it. This is equivalent to set-
ting n = 1 and β = 1;

4. 10 NoSync trained models, with the n parameter set to 10, i.e., we pull all
workers towards the “center of mass”;

5. 10 NoSync trained models, with the n parameter set to 3.

8 Mihailo Isakov and Michel A. Kinsy

0 10 20 30 40 50
80

85

90

95

Epoch

A
cc

u
ra

cy
[%

]

Test set accuracy

Single machine training

Ideal synchronous

Drop all but best

No Drop

Drop 2/3

Fig. 1. Training and test accuracy of 5 systems: (green) training with a single worker,
(red) classic synchronous training with 10 workers, (blue) dropping all but one, (cyan)
pulling all 10 models, (orange) pulling top 3, and dropping 7 models.

In Figure 1, we present the training and test accuracy after 30 epochs of
all 5 systems. The three best performing systems are NoSync with n = 10,
n = 3, and n = 1, in that order. Evidently, sharing more models between the
workers is ideal (no drop), but sharing only the best performing model still
allows the system to give a higher accuracy compared to the single-machine
and distributed synchronous systems. These results corroborate the fact that
accuracy stems from the number of parallel models rather than model dropping.
This fact also highlights the trade-off opportunity between accuracy and network
communication.

We attribute the accuracy increase to three effects: (1) by training many
models, a greater amount of the loss function is explored and there is a higher
chance that a good solution will be found. (2) NoSync acts as a regularizer, i.e.,
though some models may get stuck in local optima or saddle points, other models
will get the opportunity to pull out the underperforming ones. (3) Similarly as
in PSO, while individual particles may follow local gradients, the whole swarm
is less sensitive to nonlinearities of the loss function, and shows more stability.

Saddle points, and broad minima: Another way of understanding NoSync
speedup is by observing saddle points during training. In [3], the authors argue
that while saddle points will not prevent gradient descent from finding a good
local minimum, getting trapped in a saddle point will significantly slow down
training. This is due to the fact that, similarly to minima, the gradients in
saddle points approach close to zero. Several approaches try to solve this, either
by cycling the learning rate as a triangular wave, or by periodically resetting
the gradient back to the staring value. NoSync combats this problem by having
multiple particles. With a low enough value of β, the particles will have enough
freedom and some of them will quickly fall off the saddle point. Particles which
fall off will have a larger gradient than that of those trapped in the saddle point,
and will pull the trapped ones out.

Next, we test out the quality of NoSync solutions compared to those acquired
by conventional training. In [11], authors argue that “broader” local minima are

NoSync: Particle Swarm Inspired Distributed DNN Training 9

better at generalizing than “narrow” minima. Given a minimum, we would prefer
one that is robust to random changes in the parameters, which equates to it being
broad. We compare the resilience of two networks to random parameter changes,
one network trained with classic stochastic gradient descent, and the other with
NoSync. In Figure 2, we vary the amount of noise applied to the parameters and
measure the accuracy and loss on the test set. The NoSync models trained with

0 0.2 0.4 0.6 0.8 1

·10−2

20

40

60

80

Applied Gaussian noise variance

A
cc

u
ra

cy
[%

]

Classic training (α = 0.01)

Classic training (α = 0.1)

NoSync training (α = 0.01)

NoSync training (α = 0.1)

Fig. 2. Robustness to noise of networks trained with classic stochastic gradient descent,
and with NoSync. Classic networks are trained for 30 epochs, and NoSync network is
trained with 10 workers for 10 epochs. We vary the learning rate (0.1 and 0.01), and
set the pull as β = 0.1.

smaller learning rates (0.01) are more sensitive to perturbations compared with
models with larger learning rates. We attribute this effect to multiple particles
early on clustering on a single minimum, and fine-tuning it instead of exploring
the area. This effect is not present when the learning rate is higher (0.1), as
particles will more easily diverge and populate different solutions.

5 System Design
As shown above, the NoSync method converges to higher accuracies compared to
conventional approaches. In this section we propose a distributed training archi-
tecture and explore techniques for reducing network bandwidth and increasing
worker utilization. A typical synchronous data-parallel system uses a number
of workers and either parameter servers [5] or reduction trees [9]. Following the
work in FireCaffe [9] we design a synchronous training system with log2w − 1
reduction tree levels. We pick a synchronous over an asynchronous architecture
in order to simplify training and not have to consider staleness of the system.
In NoSync, each worker computes the forward pass individually and calculates
the accuracy on its batch, requiring no network communication. Each worker
then sends its accuracy to a parameter server, which sorts the models based on
their accuracies. The parameter server requests the models of the n best workers,
takes their average, and broadcasts it to all workers on the network. Each worker
is tasked with calculating the weighted average of its model and the broadcasted
model, and uses this newly calculated model in the next batch.
NoSync and synchronous training: The NoSync method has the same per-
formance as the classic synchronous training when we integrate all the models.

10 Mihailo Isakov and Michel A. Kinsy

NoSync can further reduce traffic by: (1) decreasing the number of integrated
models by dropping the worst performing ones, and (2) introducing stride, i.e.,
pulling models only every n iterations. Furthermore, if one allows some small
staleness, each worker can have full utilization during training.

6 Evaluation
In the case of synchronous data-parallel training, we can prove that if randomness
is removed, the system will behave exactly as a single machine implementation.
This allows authors to independently monitor speedup and accuracy. In NoSync,
however, our speedup stems from a modified search algorithm, and not a purely
parallelized implementation of backpropagation. This means that we cannot ob-
serve accuracy and speedup in a vacuum, but must measure both together in
order to determine the overall benefit of NoSync. For example, a slower NoSync
implementation may nonetheless overtake an optimized synchronous one, as it
may compute less epochs per second, but have faster convergence per epoch.
NoSync Accuracy: We first focus on whether our search algorithm benefits or
hurts overall accuracy. In Figure 3, we compare a baseline single machine system,
an ideal w-worker synchronous implementation with a w times larger aggregated
batch size, and several different NoSync configurations with different numbers
of workers. For testing NoSync, we train a conventional 18-layer ResNet18 net-
work [8]. Due to GPU memory constraints, we did not train deeper networks,
as multiple instances of larger networks are unable to fit into the memory of a
single NVidia Titan Xp GPU.

0 5 10 15 20 25 30
75

80

85

90

95

100

Epoch

A
cc

u
ra

cy
[%

]

Test set accuracy

3 Workers

10 Workers

30 Workers

50 Workers

Baseline

Synchronous

Fig. 3. Per epoch training and test accuracy of 6 systems: (red) NoSync, w = n = 3,
(orange) NoSync, w = n = 10, (green) NoSync, n = w = 30, (blue) NoSync, n = w =
50, (cyan) Baseline single worker training, (black) Synchronous 10 worker training.

NoSync offers a considerably higher accuracy compared to single machine or
synchronous data-parallel approaches. Additionally, we notice that NoSync with
10 workers converges as quickly as the synchronous approach, but additional
workers do not speed up convergence.
Metaparameter exploration: We report that the choice of metaparameters
greatly affects accuracy. In Figure 4 we compare 3 systems of 10, 30, and 50

NoSync: Particle Swarm Inspired Distributed DNN Training 11

machines, and run a grid search on the learning rate α and the pull coefficient
β.

Fig. 4. Test accuracy for 3 different configurations of 10, 30, and 50 machines, training
with learning rates α ∈ {0.003, 0.01, 0.03, 0.1} and pulls β ∈ {0.01, 0.03, 0.1, 0.3}. Each
accuracy reported is the best seen on 20 epochs of training. We use a batch size of 512,
momentum of 0.9.

Experiments show that the systems with smaller numbers of workers are less
sensitive to the metaparameter settings. The amount of ‘pull’ is normalized for
the number of workers, so it is reasonable that a larger cluster will occupy a
larger portion of space. The larger the cluster is, the higher the chance that the
loss function between each worker and the center of mass will be nonlinear, and
pulling will negatively affect their performance. Therefore, we should increase
the pulling force with the number of particles.
Overall Speedup: To measure the overall speedup, we measure the number
of epochs until convergence for different networks, and the time per epoch for
different implementations. In Figure 5, we compare the time to reach 87% accu-
racy for each of the systems. As we can see, adding more than 3 workers does
not significantly speed up convergence.

1 Worker 3 Workers 10 Workers 30 Workers 50 Workers

10

15

20

Fig. 5. Epochs until each system achieves 87% test set accuracy.

7 Conclusion

In this work, we presented an alternative distributed DNN training strategy that
outperforms synchronous distributed training in terms of both accuracy and per-
formance. We analyzed how this approach converges, and showed experimental
results for it. We further proposed a system implementation, and introduced sev-
eral modifications to it like adding stride and staleness. Future work will focus on
providing a strict theoretical backing to the NoSync learning and an architecture
exploration exploiting dropping and striding to reduce network contention.

12 Mihailo Isakov and Michel A. Kinsy

References

1. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Learning to compose neural
networks for question answering. CoRR abs/1601.01705 (2016)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. CoRR abs/1409.0473 (2014)

3. Dauphin, Y.N., de Vries, H., Chung, J., Bengio, Y.: Rmsprop and equilibrated
adaptive learning rates for non-convex optimization. CoRR abs/1502.04390 (2015)

4. Dean, J.: Large scale deep learning (2014), https://research.google.com/

people/jeff/CIKM-keynote-Nov2014.pdf
5. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,

Tucker, P., Yang, K., Le, Q.V.: Large scale distributed deep networks. Advances
in Neural Information Processing Systems pp. 1223–1231 (2012)

6. Goyal, P., Dollár, P., Girshick, R.B., Noordhuis, P., Wesolowski, L., Kyrola, A.,
Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch SGD: training imagenet in
1 hour. CoRR abs/1706.02677 (2017)

7. Gupta, S., Zhang, W., Wang, F.: Model accuracy and runtime tradeoff in dis-
tributed deep learning: A systematic study. Proceedings - IEEE International Con-
ference on Data Mining, ICDM pp. 171–180 (2017)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015)

9. Iandola, F.N., Ashraf, K., Moskewicz, M.W., Keutzer, K.: Firecaffe: near-
linear acceleration of deep neural network training on compute clusters. CoRR
abs/1511.00175 (2015)

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. Neural Networks, 1995.
Proceedings., IEEE International Conference on 4, 1942–1948 vol.4 (1995)

11. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: Generalization gap and sharp minima. CoRR
abs/1609.04836 (2016)

12. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
CoRR abs/1404.5997 (2014)

13. Mitliagkas, I., Zhang, C., Hadjis, S., Re, C.: Asynchrony begets momentum, with an
application to deep learning. 54th Annual Allerton Conference on Communication,
Control, and Computing, Allerton 2016 pp. 997–1004 (2017)

14. Niu, F., Recht, B., Re, C., Wright, S.J.: HOGWILD!: A Lock-Free Approach to
Parallelizing Stochastic Gradient Descent pp. 1–22 (2011)

15. Paine, T., Jin, H., Yang, J., Lin, Z., Huang, T.S.: GPU asynchronous stochastic
gradient descent to speed up neural network training. CoRR abs/1312.6186 (2013)

16. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of go
without human knowledge. Nature 550, 354 EP – (Oct 2017), article

17. Strom, N.: Scalable distributed DNN training using commodity GPU cloud com-
puting. Proceedings of the Annual Conference of the International Speech Com-
munication Association, INTERSPEECH 2015-Janua, 1488–1492 (2015)

18. Takuya Akiba, Shuji Suzuki, K.F.: Extremely Large Minibatch SGD: Training
ResNet-50 on ImageNet in 15 Minutes (2017)

19. You, Y., Zhang, Z., Hsieh, C., Demmel, J.: 100-epoch imagenet training with
alexnet in 24 minutes. CoRR abs/1709.05011 (2017)

20. Zhang, S., Choromanska, A., LeCun, Y.: Deep learning with elastic averaging SGD.
CoRR abs/1412.6651 (2014)

