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Abstract—In this work, we present an efficient and practical
algorithm, named COPAL (Connectivity preserving algorithm), to
identify routers, that will cause network disconnection in an off
position, based on a distributed depth-first search (DFS) through
“neighbor-to-neighbor” communication. The algorithm allows the
runtime system to make effective power-gating decisions in on-
chip network based systems. For an N-node network, the time
complexity of COPAL is O(N) and the total number of messages
sent in classifying nodes’ criticality in optimizing network con-
nectivity is of the order of 2Nlog2(N). FPGA implementation
shows that the algorithm is scalable and the required hardware
resource overhead is minimal.

Keywords—Power-gating, On-chip-Network Connectivity.

I. INTRODUCTION

The power wall problem has forced multicore and many-
core systems into the “dark silicon” era [1] [2] where large
portions of silicon are effectively “dark”– either idle for long
periods of time or significantly underclocked at the nominal
operating voltage – to stay within the power budget. Es-
maeilzadeh et al. [1] predict that over 50% of chips will not be
used with the ITRS scaling at 8nm technology node. Taylor [2]
estimates that in few years, designs may be 93.75% dark. The
exponential growth of core count per chip coupled with the
“dark silicon” problem has intensified the need for robust and
efficient dynamic power management schemes. Strategic chip-
wide power supply management is now required to narrowing
the gap between available resources and sustainable power
dissipation.

Power-gating has emerged as an important technique to
mitigate the standby power consumption. Power-gating allows
components or sub-systems to be switched on or off based
on compute or communication workload variations during the
application execution [3]. It can be applied at the logic block
level, e.g., function units [4], or at the core or router level
[5]. Although it has been shown that as the number of cores
increases, a large portion of chip’s power is consumed by
the on-chip network (OCN). In current many-core systems,
when processing units or cores are turn-off and not generating
any network traffic, routers and links remain active in order
to maintain on-chip network connectivity. This has prompted
researchers and designers to investigate power-gating schemes
for the on-chip routers [6].

Efficient and effective power-gating at the network-on-chip
level remains an important research problem [7]. In particular,
how to judiciously select router nodes to power off without
disconnecting the network or causing deadlock is a major
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Fig. 1. Relationship between percentage of inaccessible/power-off compo-
nents (a) dis- and connected components, and (b) probability of completely
connected network for different netowrk size.
challenge. The difficulty stems from the fact that in a node,
processing unit(s) or core(s) and local router have two different
activity levels. A core may be idle or power-off, while the
router is active and being used to transport packets for other
nodes.

If, for power saving purposes, an essential router is power-
off, the on-chip network will become disconnected and node
pairs belonging to different subnets will not be able to com-
municate. This will severely impact the correctness and the
deadlock freedom of the on-chip network routing protocol
since packets and credits may be lost. Fig.1 shows network
connectivity results induced by fine-grained dynamic power
management, which assumes per-tile power-gating capability.
Taking an 8×8 2D-mesh with uniform-random power-off node
distribution as an example, the size of the maximal connected
subgraph is 15.59 out of 32 active nodes, when 50% of nodes
are switched off, see Fig.1.(a). While for a medium sized
2D-mesh network with 256 nodes, approximately 68.49% of
the network loses connectivity when 50% of the routers are
powered-off, see Fig.1.(b). Results from Fig.1 suggest that for
large-scale networks, nodes should be turned off in cluster
fashion when a large portion of the chip is inactive to preserve
maximum network connectivity. Simply assumeing a uniform
distribution of power-off nodes throughout the network is
unrealistic, nevertheless, data in Fig.1 theoretically highlight
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Fig. 2. (a) and (b) are our two baseline fine-grained power-gating algorithms.

the significance of maining network connectivity for power-
gating. Further, it is important to detect the cut elements in
a very efficient manner, and guide the runtime system in
judiciously powering routers down while maintaining network
connectivity, or to avoid assigning processes with continual
communications to nodes belonging to different subgraphs.

A more formal approach to determine at runtime when
a router can be safely power-down in power-gating mode
would represent a significant contribution. In this work, we
present an efficient and practical algorithm, named COPAL
(Connectivity preserving algorithm), to identify routers, that
will cause network disconnection in an off position, based on
a distributed depth-first search (DFS) through “neighbor-to-
neighbor” communication. Our algorithm allows the runtime
system to make effective power-gating decisions.

This brief makes three major contributions to on-chip
network routing in multicore/many-core systems: (1) an online
algorithm to determine the criticality of a network node for
maintaining network connectivity for power-gating, and (2)
highlighting the potential inefficiencies associated with cen-
tralized power-gating management under network connectivity
guarantees, and (3) propose and design a practical distributed
algorithm can be implemented directly in hardware. To the
best of our knowledge, it is the first distributed and scalable
algorithm addressing the connectivity property for guiding
power-gating decision for on-chip networks.

II. POWER-GATING IN MULTICORE SYSTEMS

A. Power-gating schemes

In multicore/many-core systems, power-gating is done ei-
ther through a centralized scheme or in a distributed fashion
[8]. In general, the centralized or global approach is more
software-centric and uses the operating system or hypervisor
to make power-gating decisions. With distributed techniques,
power-gating decisions are often made in hardware via a
simple state machine controller in each tile. Fig.2 depicts the
two approaches. In both cases, a programmable power-gating
(PG) unit is placed between the functional unit and its power
rails. For the distributed approach (Fig.2.a), each processor
tile has its own PG unit, Monitor and Power Manager. The
Monitor tracks the idle time and the thermal profile of the node
or a functional unit. If the Power Manager detects that the
accumulative idle time recorded by the Monitor exceeds some
programmed number of consecutive cycles or the temperature
profile is approaching its warning value, PG unit is switched-
off cutting the power supply to the functional unit. In this
configuration where Power Manager is embedded in each
tile, the PG unit switches between powered-on and off states
independently using local information, e.g., the interval of time
where internal datapaths stay empty or idle, and only sends its
state information to the System Manager.

For the centralized management scheme, tiles do not have
in situ Power Manager module, monitoring data are sent to
the global power management module as part of the System
Manager (Fig.2.b). After gathering all the state information,
the Power Manager makes its power-gating decisions and
distributes them to the computing tiles. Based on the decision
received from the centralized Power Manager, the PG unit can
then switch on or off the power supply locally.

In either case, to systemically and effectively manage on-
chip resources, the system must be aware of the on/off states
of each tile. Our algorithm applies to both distributed and
centralized schemes of power-gating in on-chip network based
systems.

B. Multiple applications

App.A
App.B
App.C

Inaccessible/Power-off node Power-on node Cut node

Phase n Phase n+1 Phase n+2 Phase n+3

X0ms-X00ms

Fig. 3. Example of active nodes that vary with changing workloads
or performance/power constraints of multiple applications on a manycore
platform.

Fig. 3 demonstrates an example of simultaneously exe-
cuted multiple applications. The set of active nodes for each
application varies with the time-phase changes seen in the
executing workload to dynamically adapt to some degree of
parallelism. The critical nodes, surrounded by circle, even their
associated processing units are idle, they need to keep power-
on state to transport messages among other nodes that execute
the same application. Therefore, a quick response method for
connectivity identification is important to enable groups of
nodes with connectivity requirements to make more judicious
power-gating decisions.

III. COPAL: CONNECTIVITY PRESERVING ALGORITHM

A. Definitions and Framework

We begin the presentation of the COPAL algorithm by
giving the standard definitions for the key concepts used in
it formulation. DEFINITION Given an NoC characterization
graph G = G(R,L), where the routers and links in the network
are given by the sets R and L, ri ∈ R represents the router
associated with processor element i, while each arc li, j ∈ L
represents a link from ri to r j. For a given G, two vertices
i and j are called connected elements if G contains a path
from i to j; graph G is said to be connected if every pair of
vertices in G is connected.

The connectivity of G dictates path diversity and routing
choices in the NoC. Node pairs can only be able to com-
municate with each other belonging to the same connected
subgraph. Supposing the vertex set V cg = {G1,G2, ...,Gk}
contains all the connected subgraph Gi of G, the maximal
connected subgraph Gmax is the one with the maximal number
of vertices. The V cg is totally determined by the topology of
the G.

DEFINITION A rooted acyclic graph is a graph in which
one of the vertices is distinguished from the others. This



particular vertex is called the root of the graph. A rooted graph
G with root rroot , any node j on the unique path from rroot to a
node i is called an ancestor of i, and i is called a descendant
of j. If the last edge on the path from the root rroot of the
graph G to a node i is ( j, i), the j is the parent of i, and i is
called a child of j, denoted i = jchild and j = iparent . If two
nodes have the same parent, they are siblings; a node with no
children is a leaf.

The key insight of the COPAL algorithm is to identify the
minimal set of network nodes, i.e., cut elements of subgraphs,
to keep active during each power-gating time interval to main-
tain necessary network connectivity. If temporarily switch-off
router happens to be a cut element, it will cause network dis-
connections where node pairs belonging to different subgraphs
will not be able to communicate and breaking down the routing
protocol.

B. Network Node Classification Algorithm

Depth-first searching (DFS) algorithm can be used to detect
connected elements and cut elements. The root of the graph
corresponds to the System Manager and is always active. The
following rule serve as detection criteria [9]:

• RULE: A root vertex is a cut vertex iff it has at least
two children. A non-root vertex u is a cut vertex if
and only if it has a child v, with no back edge from
v or any descendant of v to an ancestor of u.

Cut vertex classification
Given a vertex i, ((iroot == true) & (|ichildren| ≥ 2)) or

((iroot == f alse) & (∃ j ∈ ichildren, idepth ≤ jlow))
⇒ i is a cut element.

Proof: For a root node r, with |rchildren| ≥ 2, let us assume
r 6= cut element, that is, ∃(i and j) ∈ rchildren such that when
r is off, i and j can communicate with each other through
another path.
Without loss of generality, let i be traversed before j. In a
depth first traversal, (|nodeparent | = 1)⇒ (node 6= root). ∀k
connected to i through {path| r /∈ path}, kparent 6= r. Since
( j ∈ kchildren)⇒ ( jparent must not be r). This is a contraction
because jparent is in fact r. Therefore, there cannot be such a
path. And we can conclude that ((iroot == true) & (|ichildren| ≥
2))⇒ i is a cut element.

For a non-root node i, idepth ≤ jlow and j ∈ ichildren, if
jdescendants=Ø and the only edge connected to j is (i, j), then
j will be disconnected when i is turned off. This implies
that i is a cut element. If jdescendants 6= Ø and i is not a cut
element, a communication path between j and an ancestor
k of i can still be established even when i is power-off. It
follows that ∃(k, j) ∈ {(m,n)| m ∈ j, jdescendants,n ∈ iancestors}.
And ∃ j ∈ ichildren with idepth > jlow. However, we assumed
idepth ≤ jlow, therefore, there exists no such non-cut element.
It implies that i is a cut element. �

C. Algorithm Description

COPAL is a four-phase algorithm that must be executed
at startup in order to detect the maximal connected subgraph
and mark all disconnected components caused by faults in the
initialization phase of each time interval.

Anchoring Phase: In this phase, the “System Manager”
node acts as the root and starts the execution to

build the depth-first tree by transitioning into the
Forward Phase;

Forward Phase: This phase explores undiscovered neigh-
bors. Particularly, it discovers every vertex con-
nected to the current node and going as deep
as possible until it reaches a leaf node. In the
process it updates depth and low values, and sets
up parent and child relationship between nodes
along the paths. There is a node counter that keeps
count of nodes during the forward searching. It is
incremented by 1 when a new UNVISITED node
is discovered;

Backward Phase: It performs the tree traversal from a
node back to its ancestor. During a backward
searching, at intermediate parent nodes, if an UN-
VISITED neighbor is discovered, a forward search-
ing is initiated. Otherwise, it continues searching
back until it reaches the root node. It updates the
low values of nodes along backward paths. The
node counter remains unchanged during backward
searches;

Classification Phase: This phase finally classifies nodes
into cut elements and non-cut component. The
cut elements detection is executed based on local
information.

The algorithm is triggered from and terminated at both the
root node, counter records number of connected components
after the execution. Node relationships in the depth first tree
are updated during the forward searching. Each router node is
marked whether it is a cut element or not after the execution.
This allows power-gating scheme to selectively switch on or
off routers to guarantee maximum network connectivity while
minimizing the number of active routers associated with idling
processing elements. The detailed algorithm is presented in
Algorithm 1.

COPAL can be easily applied to identify critical elements
inside a group of nodes that the application is executing on,
as in Fig. 3. In this case, one selected node in a group act as
the root, while the forward and backward phases only traverse
its neighbors with an identical label that indicates they belong
to the same group. Different application groups can execute
COPAL simultaneously. In this way, applications of a resource-
aware programming paradigm [10] can efficiently control the
power-states of their resources.

D. Complexity Analysis

With COPAL, each edge in the network is traversed at
most twice. The upper bound of the algorithm is 2L steps,
where L is the number of edges in the network. The COPAL
framework applies to both distributed and centralized System
Manager schemes. For a 2D-mesh network with N nodes,
the massage size is about log2(N). Messages contain node
id and local power utilization and node activity data. The
average transmission distance (hop count) from a node to
the System Manager is

√
N/2, if

√
N is odd, otherwise, it

is N3/2/2(N−1), assuming the System Manager is sitting in
the middle of the network. Thus, the total message volume
of “all-to-one” transmission is around N3/2log2(N). At System
Manager, at least an N(log2(N)+2) sized memory is required
to store all these information. The computational complexity



Algorithm 1: Pseudocode of COPAL Algorithm
Initialization

i is the unique id of System Manager node ;
iparent = NULL; ichild = NULL ;
ilow = idepth = ∞, icut = False, counter = 0 ;

for j ∈ ineighbors :
(i, j)cutedge = False ;

Anchoring phase at node i
if i in graph & i is UNVISITED :

iroot = True ; /* i is the root */
idepth = ilow = 0, counter = 1;

if ∃ j ∈ ineighbors & j is UNVISITED :
ichild = j;
Send Forward inputs (i, idepth,counter) to j;

Forward Phase (i, idepth,counter) at j
jdepth = jlow = idepth +1;
jparent = i, counter++;
if ∃k ∈ jneighbors & k is UNVISITED :

jchild = k;
Send Forward inputs ( j, jdepth) to k;

else:
Send Backward inputs ( j, jlow,counter) to jparent ;

Backward Phase ( jlow,counter) at i
if ∃k ∈ ineighbors, k is UNVISITED :

Send forward inputs (i, idepth,counter) to k;
else:

ilow = min(idepth,min(mdepth,
∀m ∈ ineighbors \ iparent),
min(nlow,∀n ∈ ichildren));

execute classification algorithms at node i;
if iroot == true :

Finish Depth-first Searching;
Return counter;

else:
Send Backward inputs (i, ilow,counter) to iparent ;

Classification at node i
if iroot == True :

if more then 2 nodes in ineighbors :
icut = True ; /* i is a cut element */

else:
i.cut = False;

elif ∃n ∈ ichildren, idepth ≤ nlow :
icut = True ; /* node i is a cut element */
(i, j)cut−edge = True;

of calculating the cut components and connected components
is O(N) [9].

For centralized power management schemes, another
around of “one-to-all” transmission containing power-gating
decisions with total message volume of N3/2log2(N) is sent
from System Manager to all the tiles. The information gather-
ing and decision distribution phases would typically require
tens of thousands of cycles for a typical wormhole based
medium sized network, even for a multiple-NoC with dedi-
cated transmission resources for the system power manage-
ment. Our experiment results show averages of 2871 cycles for
the “all-to-one” communication and 2809 cycles for the “one-
to-all” decision transmissions on a dedicated NoC, 256-node,
2D-mesh network. More details are presented in the evaluation
section (cf., V).

For the connected components classification, the average
system latency is 68482 cycles which represents a significant
portion of execution time and network bandwidth utilization.
The main reason is because “all-to-one” and “one-to-all” traffic
patterns are self-congested and lead to longer transmission
latency. In [8], Niti stated that for the distributed scheme, the

optimal idleness threshold is 2ms, while for the centralized
scheme, the ideal time interval is 100ms. The centralized
method is limited in its scalability. As the size of network
grows, the monitor-and-actuate power-gating control loop de-
grades [11]. Bandwidth requirements and time delays tend to
limit the associated “all-to-one” and “one-to-all” transmissions.
There is also a drastic increased in memory requirement
in centralized schemes. These drawbacks make centralized
power-gating approaches difficult to implement on large NoCs
under tight power and area budgets. Therefore, implementation
of COPAL in a distributed power-gating framework is more
effective and efficient.

E. Illustrative Example

In this illustrative case, we consider a network consist-
ing of 10 nodes. There are ids associated with each node.
Cut elements are highlighted using dashed lines. Fig.4.(a)
shows node 8 as switched off. At node 0 - “root”, there are
two UNVISITED neighbors 2 and 3. The algorithm randomly
chooses node 2 as a child and includes 2 in 0children). It
then sends a Forward (0, 0depth=0, counter=2) message to
node 2. It updates 2depth=2low=1, increments counter by 1,
and forwards message Forward (2, 2depth=1, counter=3) to
UNVISITED node 3, shown in Fig.4.(d). The searching process
continues until node 5 is reached (Fig.4.(f)). Node 5 has
no UNVISITED neighbor, so it sends a Backward (5low=4,
counter=6) to its parent node 4. The algorithm continues by
exploring UNVISITED neighbors 6 and 7 of node 4.

Node 5 is 4’s child, and 5low = 4> 4depth = 3, so according
to cut element detection Rule, node 4 is labeled as a cut
element as shown in Fig.4.(g). At node 7, the algorithm
discovers that there is a back edge connecting node 3, and
7low is updated to min(7depth=5, min(6depth=4, 3depth=2))=2
(Fig.4.(j)). Backward searching continues at node 3 and up-
dates 6low=2 and 4low=2 along the path, shown in Fig.4.(l). At
node 3, there is a back edge connect it with root 0. Backward
messages are sent to root 0 through node 2. Parameters 3low
and 2low are updated to 0, and non-root node 3 is classified as
a cut element since 3depth=4low=2, where node 4 is 3’s child
(Fig.4.(m) and (n)). Backward searching then moves to the
root node (0) and finds its neighbors. Node 0 is labeled as a
cut element since its neighbors have already been visited and
it has two children 1 and 2.

The algorithm finishes constructing the current depth first
tree with root node 0 and records the size of connected
subgraph is 8 (counter=8), shown in Fig.4.(o). There are still
UNVISITED nodes 8 and 9 in the network. If they are not active
and added to the tree construction, they will be disconnected.
In which case, the number of maximal connected subgraph
will be 8.

IV. RELATED WORK

Finding cut-components has been studied in graph theory
and wireless network. Conventional centralized cut element
detection methods [12] [13] require knowledge of the complete
network topology. They are implemented either “off-line” or
using a “supervisor node” to maintain the network information.
Samih proposed an algorithm which implements a centralized
fabric manager that gathers nodes information and reconfigures
routing decisions to maintain the network connectivity [6].
In [14], Lizhong presented a power-gating bypass techniques,
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named NoRD. Lizhong also proposed a “power punch” algo-
rithm [15] that sends power control signals ahead of packets.
This allows packets to be transported without suffering any
router wake-up or packet detour latency. Das in [16] uses a
multiple-network, where each subnetwork can be power gated
without compromising the connectivity of the network.

These works have not fully investigated the effect of
power-off nodes on network connectivity and communication
overhead for gathering power-states information from each
tile. In order to assist power gating modules to make better
decisions, connected elements detection must be fast enough
to accommodate frequent communication or resource changes.
In addition, as mentioned by Annavaram [8], power manage-
ment policies should scale well as the number of cores per
chip is continuously increasing from technology generation to
generation.

V. EVALUATION AND DISCUSSION

In this section, we present the simulation results of the CO-
PAL algorithm. For the experimental setup, we implement 8×8,
16×16 and 32×32 2D-meshes/tori with different number of
power-off nodes. We assume an uniform-random distribution
of power-off nodes over the network and repeat the simulation
10,000 times for each case. HORNET [17] is the simulator used
for all the experiments.

A. Execution Latency

For this part of the analysis, we implement the baseline
distributed and centralized power management scheme with
and without the COPAL using the SMT32F103RB, an ARM
Cortex-M3 core with 20KB RAM and 128kB ROM, as the
hypervisor. For the on-chip network, we use a 5-stages 2 virtual
channels wormhole router using DOR routing algorithm. The
execution times are summarized in Table I. COPAL used in

Network Executation time in clock cycles Copal
size “all-to-1” Comput. “1-to-all” Total
8×8 576 17090 571 18237 251

16×16 2871 68482 2809 74108 1019
32×32 13314 274178 13304 300796 4091

TABLE I. COMPARISON IN TERMS OF EXECUTION CYCLES.

a distributed fashion shows 98.63% and 63.4% execution
time saving compared with the centralized and distributed
approaches, respectively.

As mentioned above, optimal power gating intervals for
distribued and centralized schemes are around 2ms and 100ms,
respectively. For a 2GHz clock frequency system, the cen-
tralized detection execution time is around 9.1ms, 37ms and
150.4ms for 64- 256- and 1024-nodes networks. These exe-
cution time either exceed or make up a large portion of the
power gating period. COPAL execution time is very low; it only
takes around 0.13ms, 0.5ms and 2ms (251, 1019 and 4091
clock cycles) for different network scales. The performance
impact in the form of longer execution latency can be further
reduced through power-gating during system wake-up. It leaves
the system enough time for further optimize its operations
(e.g., making optimal power-gating decision through multiple
iterations or workload rebalancing among turn-on nodes).

B. Hardware implementation of COPAL

All the messages are transmitted through “neighbor-to-
neighbor” transmission, a log2(N)-bits register is applied to
record counter and two one-bit sized registers are required
to record whether current node is a root and cut-node or
not. Another two log2(N)-bits registers are needed to record
the depth and low values, besides, a 3×D-bits look-up-
table(LUT) is required to store parent and child relationship
with its directly connected neighbors, D is the degree of nodes.



Module 8x8 2D mesh 16x16 2D mesh
LUTs Regs PCT LUTs Regs PCT

Router 6252 2068 - 6614 2108 -
COPAL 127 124 3.017% 141 148 3.313%

TABLE II. FPGA IMPLEMENTATION RESOURCE UTILIZATION

Network Size 4×4 8×8 16×16 32×32 64×64
LUTs 98 127 141 157 168
Regs 95 124 148 169 182

TABLE III. THE RESOURCE OVERHEAD OF COPAL ON FPGA,
RANGING FROM 16 TO 4096 [11] 2D-MESH.

Moreover, the combinational circuits to implement the required
function are also quite simple. The design is implemented on a
Xilinx Virtex7-2000T FPGA device. The baseline router with
4VCs and each VC contains 32 flits, message width is 64-
bits. COPAL uses only a small fraction (around 3.017∼3.313%)
of hardware resource allocated to the router for 8×8 and
16×16 2D-meshes, see Table II. Table III shows the increase of
resource overhead alongside the increasing of number of total
nodes as much as 4096, which approximates the logarithmic
curve. Because there are two log2(N)-bits sized depth and low
registers which grows logarithmically with network size. The
hardware implementation shows that COPAL scales well with
network size.

C. Deadlock Avoidance

If, for power-gating purposes, an essential router is power-
off, the on-chip network will become disconnected and node
pairs belonging to different subgraphs will not be able to
communicate. Messages sent between those node pairs will
create back pressure leading to routing deadlocks even for pairs
in the same subgraph, if no time-out mechanism for in-network
packets is built into the system.

It is precisely to avoid or significantly reduce the oc-
currence of an essential router being turned off during a
power-gating action that Copal is proposed. In cases where
disconnected subgraphs are unavoidable due to faults and
power constraints, messages can only be transmitted within
subgraphs following well prescribed deadlock freedom rules.
The support for in-subgraph-only messaging, therefore, should
be determined and provisioned for off-line during system
configuration like at routing tables programming stage.

VI. CONCLUSIONS

Fine-grained dynamic power management has become an
essential part of energy-aware chip design. Efficient and ef-
fective power-gating at the network-on-chip level remains an
important research problem. In this work we examine online
algorithms to determine the criticality of a network node
for maintaining network connectivity for power-gating. We
develop a distributed and scalable algorithm, named COPAL,
for identifying router nodes that will cause network discon-
nection in an off state to allow the runtime system to make
more judicious power-gating decisions. The algorithm places
no restriction on topology. The work has also shown that
distributed control strategy is preferred over centralized holistic
power management for large-scale manycore systems.

In current work, we mainly concentrate on maintaining the
network connectiivty for power-gating. it also worth and nec-
essary exploring the intergation of COPAL with task mapping
strategy as well as routing solutions to give a comprehensive
power management policy in the future works.
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