
Application Specific Networks-on-Chip Synthesis:
An Energy Efficient Approach

Somayeh Kashi∗, Ahmad Patooghy‡, Dara Rahmati†, Mahdi Fazeli∗, Michel A. Kinsy‡
∗Department of Computer Engineering, Iran University of Science and Technology University, Tehran, Iran

†Institute for Research in Fundamental Sciences, Tehran, Iran
‡Department of Electrical and Computer Engineering, Boston University, Boston, USA

Abstract—Multiple Voltage Supply (MSV) chip fabrication is
considered a viable technique for addressing the power and
thermal challenges of modern many-core systems. Efficiency of
this technique has been demonstrated in application specific
Network-on-Chips (NoCs) which have lots of cores and vari-
ous operating voltages/frequencies. In this paper, a four-phase
synthesis toolchain is proposed and evaluated for the design of
multi-voltage application specific NoCs. The proposed synthesis
toolchain performs (i) core to router allocation, (ii) voltage
islanding to match voltages of cores connected to the same
router, (iii) hierarchical floorplanning to reduce the complexity
of power delivery network, and (iv) path allocation to connect
routers based on the application requirements. The distinguishing
feature of the proposed toolchain is that, for the first time, the
router allocation phase is performed prior to voltage islanding.
This approach offers more flexibility and more efficiency in the
multi-voltage NoC synthesis process. Experimental results on
real benchmarks show that the toolchain (a) provides 63% less
energy consumption and (b) produces twice as much alternative
designs satisfying the benchmarks requirements when compared
to existing approaches.

Index Terms—application-specific chip, custom NoC synthesis,
partitioning, islanding, floorplanning.

I. INTRODUCTION

With the recent advances in VLSI fabrication technology,
complex Multi-Processor System on Chips (MPSoCs) are
now widely available in the marketplace. MPSoCs contain
several general processing, DSP, I/O controller, and memory
cores working with different voltages and frequencies. Such
heterogeneous multi-core systems need an efficient on-chip
communication architecture to ease data transmission between
the cores. In such chips, general purpose Network-on-Chip
(NoC) which is normally used in homogeneous chips [1], [5]
is often not a viable solution, because MPSoCs (1) have cores
with different working voltages/frequencies, (2) generally use
multiple voltage islands [4], (3) may have information about
the target application at the design time [2], [3], and finally
(4) commonly use the router sharing technique, in which
multiple cores are connected to a single router [7]–[9]. As
a result, application specific NoC design and synthesis for
multi-voltage MPSoCs has been investigated by researchers
[7]–[9]. These application specific NoC designs directly affect
many aspects of the MPSoC’s performance including the area,
temporal and spatial temperature, and power consumption of
the chip.

The main steps of a custom NoC synthesis are core to router
allocation, router to router connection and path allocation for
the communication flows [7]. Seiculescu et al. proposed a

synthesis flow for voltage-driven custom NoC design [7]. In
their work, cores are assigned to voltage islands based on their
nominal operating voltages at the first step. Then, cores are
allocated to the routers, using a min-cut based partitioning
algorithm in each island. Finally, the Dijkstra algorithm finds
the shortest deadlock free path for each flow when establishing
the router to router connections and physical links. Todorov
et al. proposed a synthesis methodology which uses spectral
partitioning and spanning trees to construct a custom NoC [8].
The partitioning step is done according to the communication
graph, the floorplan information, and the voltage islands. In
[9], Wang et al. have presented voltage-driven frameworks
to do voltage island generation, voltage-driven floorplanning
and post-floorplan processing. The objective of the voltage
assignment is to select the least possible voltage value for
cores to minimize the overhead of voltage converters under
performance critical constraints. After this step, cores are as-
signed to the routers by a min-cut based partitioning algorithm
in each island. A simulated-annealing based floorplanning is
used simultaneously to determine the position of the cores and
the routers during voltage-driven floorplanning.

In almost all of the previously proposed methods, the core
to router assignment step is done after the voltage islanding.
As a result, cores with high communication demand operating
on different voltages have to be placed in different voltage
islands. This increases the number of hop counts between
the communicating cores and imposes a voltage conversion
overhead between the islands. The former degrades the chip
performance and the latter results in more power consumption
and heat generation. To address the problem, our proposal is
to do the partitioning step prior to voltage islanding in order
to have more flexibility in the partitioning step. To prevent po-
tential voltage fragmentations, we consider the voltage related
issues during all steps of the synthesis, including partitioning,
islanding and floorplanning. To the best of our knowledge,
this is the first work to consider the voltage values in all the
steps of the NoC synthesis flow with the concurrent goals of
reducing the power consumption, delay and the complexity of
the power delivery network.

The rest of the paper is organized as follows. Section II
defines the NoC synthesis problem. Section III introduces
the key observations motivating our proposal. Our multi-
voltage synthesis toolchain is described in detail in Section
IV. Experimental results are presented in Section V and finally
Section VI concludes the paper.

II. SYNTHESIS PROBLEM DEFINITION

The custom NoC synthesis process starts with a given
communication core graph and tries to find a design satisfying
application requirements. The core graph Gcomm(C,E) is a
directed and weighted graph where each vertex ci ∈ C is a
core and each directed edge eij = (ci, cj) denotes needed
communication flow from core ci to core cj . The required
bandwidth of the communication flow from core ci to core
cj is represented by bwij ; the latency constraint for the flow
is represented by latij . Each core ci has its own minimum
operating voltage vi subject to performance constraints. The
voltage difference between corresponding cores ci and cj is
represented by diffvoltij = |vi − vj |.

Weight function: The weight of each edge eij (Wcommij)
is a combination of bwij , latij , and diffvoltij according to
the proposed cost function of equation (1). It is used during
the synthesis process.

Wcommij =


α.

bwij

maxbw
+ γ.(1− diffvoltij

maxdiffvolt
)

+β.minlat

latij
latij 6= 0

α.
bwij

maxbw
+ γ.(1− diffvoltij

maxdiffvolt
) latij = 0.

(1)
Parameters maxbw, minlat, and maxdiffvolt are the max-

imum required bandwidth, the worst latency constraint, and
the maximum voltage difference between cores, respectively.
Parameters α, β, and γ, which are the weight coefficients,
should satisfy the α + β + γ = 10. According to this cost
function, the communication flow between two cores with high
bandwidth requirement, low latency constraint and low voltage
difference would have a large Wcomm value.

Partitioning Problem: Partition the Gcomm(C,E) into l
graph-partitions p1, p2, ..., pl such that 1) p1

⋃
p2

⋃
...
⋃
pl =

Gcomm(C,E), 2) pi
⋂
pj = φ, 1 6 i, j 6 l, i 6= j, and 3) for

each partition pn, 1 6 n 6 l sum of inter partition weights be
lower than from sum of intra partition weights i.e., equation
(2) be satisfied.∑

pm,m 6=n

∑
ci∈pn,cj∈pm

Wcommij <
∑

ci&cj∈pn

Wcommij . (2)

We assume that the minimum operating voltage of a core
is determined based on the performance constraints of the
core. Then, we build an island graph Gvolt(V, F) which is a
directed and weighted graph. In the island graph each vertex
vi ∈ V is a voltage island in which the operating voltage of all
cores is vi. Therefore, the directed edge fij = (vi, vj) connects
a lower voltage island (vi) to a higher voltage island (vj). Each
edge has a weight of Wvoltij = (vj − vi) × ni (ni is the
number of cores in island vi) and denotes the cost of merging
islands vi and vj with respect to their power consumption. It
is clear that in the case of merging two voltage islands, the
lower voltage island should work with the voltage of the other
island to meet the performance constraints of both islands.

As described, extending the number of on-chip voltage
converters increases the power consumption and degrades the
performance of the chip. To limit the number of on-chip

voltage converters, we need a way to merge some the adjacent
voltage islands. This problem is defined as follows.

Voltage Island Merging Problem: Find the smallest set U in
the Gvolt(V, F) graph, U ⊂ V , such that 1)

∑
i&j∈U Wvoltij

is minimized, and 2) by merging the islands of set U to their
higher voltage islands, the power constraint of the application
is satisfied. When such a subset is found, the merging contin-
ues till at most two islands remain in the set U .

III. OBSERVATIONS & MOTIVATIONS

Considering the existence of several heterogeneous cores
on most MPSoCs, multiple-supply voltage (MSV) technique
[7] can be effectively used to reduce the power consumption
of MPSoCs. In an MSV enabled chip, the performance-
critical cores normally have to work with higher supply
voltages to meet their performance constraints, while other
cores have the chance to work with lower supply voltages. To
make data communication feasible between the cores working
with different voltages, the use of voltage converters have
been proposed [9]. However, even if there are no physical
limitations, voltage converters imply significant overheads on
both communication power and packet delivery delay. These
overheads are obviously in contrast with the main objective of
MSV enabled MPSoC design.

A communication core graph with 26 IP cores, D-26-media,
[6] is shown in Figure 1. The color of each vertex here repre-
sents the working voltage of the core and the numbers next to
edges represent the required bandwidth between communicat-
ing cores. Some pairs of the cores with different voltages, e.g.,
(DMA, MEM5), (MEM3, PE1), (ARM, SDRAM1), demand
a high communication bandwidth. However, if the voltage
islanding takes place prior to the partitioning, cores with
different operating voltages and at the same time high commu-
nication demands will be placed in different voltage islands. To
support this claim, we synthesized 3 real communication core
graphs of D-35-bot, D-36-4, and D-38-VOPD under the two
policies of 1) single voltage MPSoC, and 2) MSV enabled
MPSoC with no limitation on the number of voltage con-
verters. Results of power delay product which simultaneously
shows power consumption and delay are depicted in figure
Fig. 2. One can conclude from this figure - across all the
synthesized benchmarks - that the MSV enabled chips have
significantly more power delay product than the single voltage
chips. This confirms that in application specific NoC synthesis
it is needed to 1) limit the number of voltage converters and
2) place communicating cores as close as possible regardless
of their working voltages. Driven by these requirements, our
proposed toolchain performs the core partitioning phase prior
to the voltage islanding. The proposed synthesis toolchain is
described in the Section IV.

IV. PROPOSED SYNTHESIS TOOLCHAIN

In this section, we describe the proposed toolchain for appli-
cation specific NoC synthesis. The toolchain flow follows four
steps to reach designs that satisfied the power and performance
constraints of the given application. Unlike other methods, we

Fig. 1: A sample application core graph with multiple voltages.

Fig. 2: PDP comparison between single and multiple voltage synthe-
ses without limitation on the number of voltage converters.

start with core partitioning, without any assumption on the
floorplan of the cores.

A. Core to Router Allocation

The first step of the proposed toolchain assigns cores to
on-chip routers based on the bandwidth requirement of cores.
When designing an NoC based system for a given class of
multi-core applications, the number of routers could theoreti-
cally vary from a single global router to one per core. While
use of several-port routers will consume more power due to the
complex switching structure, using many small routers in turn
increases the hop count as well as the switching activity, which
inevitably increases the power needed to transfer a packet.
Therefore, for a given class of applications, it is necessary
to elaborate different scenarios based on the constraints to
find the best switching structure. For this purpose, the core
to router allocation step tries to assign the cores with high
communication bandwidth and/or tight latency demands to the
same partition, using a unique router for each partition [7].

Equation (1) calculates Wcommij , the weight of each
communication flow eij . The parameters α, β, and γ are either
set by the designer based on the application characteristics
or needed iterations over a range of values. In this case, the
objective is to meet the specified constraints.

The number of routers (e.g. i) iterates from one to the
number of cores. For every value of i, the input communication
graph Gcomm(C,E) is partitioned into the number of i
min-cut partitions, namely Gcomm(Ci, Ei), 1 ≤ i ≤ n.
To describe intuitively, the partitioning is done in such a
way that, the edges that are cut among the partitions will
have lower weights than the remaining edges. The number
of vertices assigned to each partition is the same as defined in
Equation (2). As a result, the communication flows with higher

Fig. 3: Pseudo-code of merging voltage islands.

bandwidth requirements or tighter latencies or closer voltages
are connected to the same router in the same partition. This
assignment reduces the hop count and also dissipated power.
We have done the partitioning using an efficient partitioning
tool called Chaco [10].

B. Merging Voltage Islands

The proposed method performs core partitioning according
to Wcomm weight values and without taking into account
the core voltages at the first step. This approach may lead
to having cores with different voltages in the same partition
i.e., the island fragmentation. The fragmentation imposes a
large number of voltage converters and a complicated power
delivery network. To alleviate this problem, we propose an
island merging algorithm to re-adjust the voltages of cores in
every partition.

A simplified pseudo code of the island merging algorithm
is shown in Fig. 3. For this purpose, cores in each partition
are grouped in voltage islands according to their operating
voltages (Islanding() function in Fig. 3). New edges are
added to the graph and appropriate weights (Wvolt) compute
the merging cost for them. The weight value is defined as
Wvoltij = (vj − vi)× ni, in which vi and vj are the supply
voltages of the islands. In order to minimize the merging cost,
Wvolt values are listed in ascending order. The top of the
list denotes the minimum cost and corresponding islands are
merged. During this process, cores with supply voltage vi are
readjusted to operate on vj (vi < vj). As a result, Gvolt(V, F)
is updated by removing the lower voltage island and changing
the weight values (UpdateIslandGraph()).

The island merging (within each partition) continues un-
til a single island emerges. The weight of the edges be-
tween the islands is compared with an input threshold
(Integration-threshold). In case of a lower value the islands
are separated into two partitions. Otherwise, all cores of the
island are set to work under the same voltage. This process is
applied to all the partitions, and thus, the supply voltages of
all the cores inside a partition will be the same.

Lemma 1) The proposed method merges the islands with
minimal cost.

Proof) Let us consider m islands V = {v0, v1, ..., vm} as
well as the number of cores in each island to be defined as
n0, n1,, nm. We define the current abstract computation

power as cur = n0×v0+...+ni×vi+..+nj×vj+..+nm×vm.
Assume that the voltage of an island vi is lower than that of
an island vj and these islands are merged. The next abstract
power after merging is defined as next = n0× v0+ ...+ni×
vj + ..+ nj × vj + ..+ nm × vm. The difference between the
current abstract power and next one is ni × (vj − vi), which
is equal to Wvoltij on Gvolt(V, F) graph. Therefore, as the
order of Wvolt is ascending, the lower values are selected
first. As a result, the difference between the current power
and next power i.e., cost of merging, is minimized. �

C. Hierarchical Voltage-Aware Floorplanning

The aim of the partitioning step is to group tightly connected
cores (in terms of low delay and high bandwidth constraints) at
the same partition to make them connected through the same
router. This effectively reduces the communication costs; oth-
erwise, if such cores are placed far away without provisioning
the communication requirements, the link power consumption
and latency may grow drastically [7], [9]. Although, we
have merged the voltage islands within the same partition to
solve the voltage fragmentation problem and to reduce the
complexity of the power delivery network, islands with similar
supply voltages may still remain far away among different
partitions. This will potentially increase the complexity of the
power delivery network. To tackle this issue, we introduce a
hierarchical floorplanning method, which includes three steps;
i) core-floorplanning, ii) partition floorplanning and iii) core
placement update. The first step places the cores within each
partition close to each other to meet their communication
requirements. In this step the cores on each partition are
floorplanned separately. In the second step, each partition is
considered as a fixed block and the blocks are floorplanned
to determine the position of the partitions on the chip. This
step is done with the aim of placing the blocks with the same
voltage and also communication requirements close to each
other.

For our hierarchical floorplanning, we use the Parquet
floorplanner tool [11] in a two-step approach. The method
does close-proximity-aware placements of (1) cores within the
same partition and (2) islands with the same voltage and high
communication constraints. As a result we will have shorter
links and a simpler power delivery network.

D. Routing and Path Allocation

This phase tries to establish the required physical links be-
tween each pair of routers. A set of links are used to establish
the best routing path between the source and destination of a
communication flow. We have used the algorithm proposed in
[7], [12], [13] to find a deadlock free routing path for each
communication data flow. The process starts with sorting the
data flows based on their required bandwidth. The flow with
the highest requirement is processed first. A fully connected
graph is generated where the vertices represent routers. The
graph is pre-processed to find the prohibited turns and to
break any cyclic dependencies between flows and thus avoid
deadlocks [13], [14]. The next step is to assign a weight (cost)

to each edge of graph based on its corresponding physical
link. Once the weights are assigned, choosing the shortest path
is equivalent to finding a path with the least cost to route a
data flow. This is done by applying Dijkstra’s shortest path
algorithm [15]. It should be noted that as the voltage converters
between the islands induce overheads in terms of dissipated
power and delay, the routing path allocation algorithm finds a
path for each data flow such that the number of inter-island
links are reduced.

V. EXPERIMENTAL RESULTS

Our proposed toolchain utilizes Chaco [10] and Parquet
floorplanner [11] tools to do the partitioning and floorplanning
phases respectively. We also implemented a version of the
Sunfloor synthesis flow [7], [12] that we call Sunfloor Inspired
(SFI) flow and use it to perform the power/performance
comparisons with our proposed design flow. The SFI toolchain
needs a given floorplan and assigned voltages of cores to start
its synthesis process. This toolchain groups the cores into
different voltage islands according to their assigned voltages,
and then cores within each voltage island are partitioned to do
router allocation; finally, routers are connected to find routing
paths for communication flows.

In the experiments, standard core graphs of D-36-4,
D-35-bot, D-65-pipe, D-38-tvopd [12] are synthesized un-
der 45nm technology size, and are compared in terms of
power delay product. We used Orion2.0/Orion3.0 [16], [17]
power models to estimate static/dynamic power consumption
of routers and links respectively for our proposed method and
our SFI implementation.

In our proposed synthesis toolchain, we treated the lowest
allowed voltage as an input parameter i.e., we repeated the
synthesis with the lowest allowed voltages of 0.8, 0.9, 1, 1.2
volts. To have a better insight, we implemented the proposed
synthesis toolchain in two scenarios. In the first scenario the
synthesis is done assuming a given initial core floorplanning,
while in the second scenario there is no initial floorplanning
given, i.e., the toolchain does a voltage-aware floorplanning.

A. Power, Delay and PDP Results

For each of the mentioned core-graph benchmarks, we let
the tools find their synthesis solutions under the specified
constraint of the core-graph. The experiments are repeated for
different upper bounds on the number of on-chip routers from
one to the number of cores in the core-graphs. In cases that
tools found a synthesis solution, the power delay product is
represented and shown in Fig. 4. As an example, in Fig. 4.a,
for the maximum allowed on-chip routers of 10, the proposed
toolchain with initial floorplanning provides the best synthesis
solution in terms of power delay product. The SFI toolchain
has not been able to find any synthesis solution that satisfies
the application constraints. The key outcome highlighted in
Fig. 4 is that in almost all the cases the proposed toolchain
offers better designs against the SFI tool in terms of PDP. Our
average PDP improvement over the SFI design flow is 59%
and 63% for with and without initial floorplanning scenarios

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35

P
o
w

er
 D

el
a
y
 P

ro
d

u
ct

 (
m

W
S

)

Number of Routers

SFI

Proposed with init floorplan

Proposed w/o init floorplan 10

12

14

16

18

20

22

24

26

28

30

15 20 25 30 35

P
o

w
er

 D
el

a
y

 P
ro

d
u

ct
 (

m
W

S
)

Number of Routers

SFI

Proposed with init floorplan

Proposed w/o init floorplan

5

10

15

20

25

30

5 10 15 20 25 30 35 40

P
o
w

er
 D

el
a
y
 P

ro
d

u
ct

 (
m

W
S

)

Number of Routers

SFI

Proposed with init floorplan

Proposed w/o init floorplan 50

70

90

110

130

150

170

190

210

5 15 25 35 45 55 65

P
o
w

er
 D

el
a
y
 P

ro
d

u
ct

 (
m

W
S

)

Number of Routers

SFI

Proposed with init floorplan

Proposed w/o init floorplan

a b

c d

Fig. 4: PDP Comparison of four benchmarks (a) D-35-bot, (b) D-36-4, (c) D-38-tvopd, and (d) D-65-pipe.

respectively. It is clear that when the maximum number of
allowed on-chip routers changes, both of our proposed and
SFI toolchains have to redo the synthesis flow from start. Due
to this reason, solutions for the maximum router limit of K
are independent of those for K+1 and/or K-1.

The general pattern that can be seen in all four core graphs
of Fig. 4 is that increasing the maximum allowed number
of on-chip routers increases the PDP of solutions found by
the proposed synthesis toolchain under both scenarios. The
other important point is that, based on the found solutions,
our proposed toolchain finds better synthesis solutions when
it is not forced to obey an initial floorplanning. In fact, the
average PDP improvement of 9% can be seen in all 109
different synthesis cases when we let the proposed toolchain
do the floorplanning by itself. The best solutions found by
our proposed toolchain and the SFI tool, in terms of power
consumption and average network delay, are shown in figures
Fig. 5 and Fig. 6. The proposed tool outperforms the SFI
design flow in all benchmarks.

Another important observation is that the SFI tool is able to
find synthesis solutions satisfying the application constraints
for only 37% of the design candidates. Whereas, our proposed
synthesis toolchain shows a great efficiency with 73%. In fact,
our toolchain gives designers a greater flexibility by providing
twice as much valid design alternatives. Using PDP as the
metric, Fig. 7 shows the comparative evaluations of four core-
graphs. Based on these results, to use of the SFI tool leads to
at least 84% - and on average 155% - worse PDP than our
proposed toolchain. The improvements seen with our design
flow is even larger under the without initial floorplanning.

To further validate the PDP reductions seen in the proposed
methodology, we count the number of used voltage converters
in the output designs for the two toolchains. The results for the
examined four benchmarks are presented in Figure Fig. 8. The
proposed synthesis toolchain needs at least 40% fewer voltage
converters. This positive outcome is due to the fact that our
algorithm places communicating cores as close as possible.
A higher number of voltage converters leads to more power

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D-35-bot D-36-4 D-38-tvopd D-65-pipe

P
o

w
er

 (
m

.W
)

Benchmarks

SFI

Proposed with init floorplan

Proposed w/o init floorplan

D
e
la

y
(S

)

Fig. 5: Design solutions of the proposed and SFI tools based on
best-power criteria.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

D-35-bot D-36-4 D-38-tvopd D-65-pipe

D
el
a
y
(S
)

Benchmarks

SFI

Proposed with init floorplan

Proposed w/o init floorplan

Fig. 6: Design solutions of the proposed and SFI tools based on
best-delay criteria.

0

20

40

60

80

100

120

140

160

D-35-bot D-36-4 D-38-tvopd D-65-pipe

P
o

w
er

 D
el

a
y

 P
ro

d
u

ct
 (

m
W

S
)

Benchmarks

SFI

Proposed with init floorplan

Proposed w/o init floorplan

Fig. 7: Design solutions selected based on best-PDP criteria.

consumption and delay.

0

20

40

60

80

100

120

140

D-35-bot D-36-4 D-38-tvopd D-65-pipe

N
u

m
b

er
 o

f
V

o
lt

a
g

e

C
o

n
v

er
te

rs

Benchmarks

SFI Proposed with/without init floorplan

Fig. 8: Average number of required voltage converters.

Fig. 9: Final floorplanning of the proposed synthesis toolchain. (a)
and (c) benchmarks D-38-tvopd and D-65-pipe with initial floorplan-
ning; (b) and (d) the same benchmarks without initial floorplanning.

B. Complexity of the Power Delivery Network

As we discussed earlier in the paper, the main objective
of voltage-aware floorplanning is to reduce the cost of the
power delivery network. In this regard, we compared the
final floorplanning of our proposed toolchain under with and
without initial floorplanning scenarios in Fig. 9. Comparing the
generated floorplans for D-38-tvopd and D-65-pipe (Fig. 9),
one can gather that the hierarchical floorplanning algorithm
of the proposed toolchain gives a better core layout when
no initial placement is given. Most of the cores with the
same voltage are automatically placed in the same groups
under the without initial floorplanning scheme. This means
that synthesized without initial floorplans have fewer voltage
converters and lower PDN costs. Although our main focus is
power and performance, the output designs of the proposed
toolchain also show on average 3.56% and 4.64% lower on-
chip areas - for the four examined benchmarks - under the
with and without initial floorplanning scenarios, respectively.

The time complexity of the proposed algorithm is
O(|C|3ln(|C|)|E|), where |C| and |E| are the number of ver-
tices and edges in the core graph Gcomm(C,E) respectively.
These two values respectively show the number of on-chip
cores and communication flows between cores. The number
of routers is varied from 1 to |C| and the tool tries to build
a topology under each router count. Also, for each topology,
|C|2ln(|C|) corresponds to Dijkstra algorithm which is used
to find the shortest path for flows. The time complexity of
the proposed method is similar to time complexity of the SFI
method [7].

VI. CONCLUSIONS

In order to benefit from the multi-voltage NoC design,
core to router allocation, core to voltage island assignment,
voltage-aware floorplanning, and routing paths should be done
judiciously. In this paper, we propose heuristic methods to
reduce communication power consumption and complexity of
the power delivery network. By performing partitioning before
islanding, the power consumption and latency are signifi-
cantly reduced. In addition, with voltage island merging and
voltage-aware floorplanning methods, voltage fragmentation
and power delivery network complexity can be further mini-
mized. The multi-voltage custom NoCs synthesized from our
design flow show 63% power and delay product improvement
(on average) over the ones synthesized with the SFI tool.

REFERENCES

[1] G. Chen, F. Li, and S.W. Son, M. Kandemir, Application Mapping for
Chip Multiprocessors, Design Automation Conference (DAC), 2008.

[2] S. Tosun Y. Ar and S. Ozdemir, Application-specific topology genera-
tion algorithms for network-on-chip design, IET Computers & Digital
Techniques,Vol.6, Iss.5,pp.318-333, 2012.

[3] K.S.-M. Li, CusNoC: Fast Full-Chip Custom NoC Generation, IEEE
Transactions on VLSI Systems, vol. 21, no. 4, pp. 692-705, 2013.

[4] D.E. Lackey, P.S. Zuchowski, T.R. Bednar, D.W. Stout, S.W. Gould,
and J.M. Cohn, Managing power and performance for System-on-Chip
designs using Voltage Islands, IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2002.

[5] N. Kapadia and S. Pasricha, A System-Level Cosynthesis Framework for
Power Delivery and On-Chip Data Networks in Application-Specific 3-D
ICs, IEEE Transactions on VLSI Systems, 2016.

[6] D. Rahmati, S. Murali, L. Benini, F. Angiolini, G. De Micheli and
H. Sarbazi-Azad, A Method for Calculating Hard QoS Guarantees for
Networks-on-Chip, ICCAD, 2009.

[7] C. Seiculescu, S. Murali, L. Benini, and G.De. Micheli, NoC Topology
Synthesis for Supporting Shutdown of Voltage Islands in SoCs, Design
Automation Conference (DAC), 2009.

[8] V. Todorov, D. Mueller-Gritschneder, H. Reinig, and U. Schlichtmann,
Deterministic Synthesis of Hybrid Application-Specific Network-on-Chip
Topologies, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), Vol. 33, No. 10, 2014.

[9] K. Wang, S. Dong, and F. Jiao, TSF3D: MSV-driven Power Optimization
for Application-Specific 3D Network-on-Chip, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
Vol. 36, No. 7, 2017.

[10] B. Hendrickson, R. Leland, The Chaco User’s Guide: Version 2.0,
Sandia Tech Report SAND942692, 1994.

[11] S.N. Adya and I.L. Markov, Fixed-outline Floorplanning: Enabling
Hierarchical Design, IEEE Transactions on VLSI Systems, Vol. 11, Iss.
6, 2003.

[12] C. Seiculescu, S. Murali, L. Benini, and G. De Micheli, SunFloor 3D: A
Tool for Networks on Chip Topology Synthesis for 3-D Systems on Chips,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), Vol. 29, No. 12, 2010.

[13] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk, and S. Devadas,
Application-aware deadlock-free oblivious routing, ACM International
Symposium on Computer architecture, ISCA ’09, pages 208–219, 2009.

[14] D. Starobinski, M. Karpovsky, and L.A. Zakrevski, Application of net-
work calculus to general topologies using turn-prohibition, IEEE/ACM
Transactions on Networking (TON), 2003.

[15] M. A. Kinsy, M. H. Cho, K. S. Shim, M. Lis, G. E. Suh, and
S. Devadas, Optimal and heuristic application-aware oblivious routing,
IEEE Transactions on Computers, 62(1):59–73, 2013.

[16] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, Orion 2.0: A fast and accu-
rate noc power and area model for early-stage design space exploration,
in Design, Automation Test in Europe Conference Exhibition (DATE),
2009, pp. 423 428.

[17] A.B. Kahng, B. Lin, and S. Nath, ORION3.0: A Comprehensive NoC
Router Estimation Tool, IEEE Embedded Systems Letters, Vol. 7, No.
2, 2015.

