
Brief Announcement: Distributed Shared Memory
based on Computation Migration

Mieszko Lis Keun Sup Shim Myong Hyon Cho Christopher W. Fletcher
Michel Kinsy Ilia Lebedev Omer Khan Srinivas Devadas

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA, USA

{mieszko,ksshim,mhcho,cwfletcher,mkinsy,ilebedev,okhan,devadas}@csail.mit.edu

1. BACKGROUND
Driven by increasingly unbalanced technology scaling and power

dissipation limits, microprocessor designers have resorted to in-
creasing the number of cores on a single chip, and pundits expect
1000-core designs to materialize in the next few years [1]. But how
will memory architectures scale and how will these next-generation
multicores be programmed?

One barrier to scaling current memory architectures is the off-
chip memory bandwidth wall [1,2]: off-chip bandwidth grows with
package pin density, which scales much more slowly than on-die
transistor density [3]. To reduce reliance on external memories and
keep data on-chip, today’s multicores integrate very large shared
last-level caches on chip [4]; interconnects used with such shared
caches, however, do not scale beyond relatively few cores, and the
power requirements and access latencies of large caches exclude
their use in chips on a 1000-core scale. For massive-scale multi-
cores, then, we are left with relatively small per-core caches.

Per-core caches on a 1000-core scale, in turn, raise the question
of memory coherence. On the one hand, a shared memory abstrac-
tion is a practical necessity for general-purpose programming, and
most programmers prefer a shared memory model [5]. On the other
hand, ensuring coherence among private caches is an expensive
proposition: bus-based and snoopy protocols don’t scale beyond
relatively few cores, and directory sizes needed in cache-coherence
protocols must equal a significant portion of the combined size of
the per-core caches as otherwise directory evictions will limit per-
formance [6]. Moreover, directory-based coherence protocols are
notoriously difficult to implement and verify [7].

2. EXECUTION MIGRATION MACHINE
The Execution Migration Machine (EM2) [8,9] maintains mem-

ory coherence by allowing each address to be cached in only one
core cache (the home), and efficiently migrating execution to the
home core whenever another core wishes to access that address.
A hardware-level thread migration protocol ensures that execution
transfer is efficient: the architectural context (program counter, reg-
ister file, and possibly other state like the TLB) is unloaded onto the
interconnect network, travels to the destination core, and is loaded

Copyright is held by the authors.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
ACM 978-1-4503-0743-7/11/06.

into the architectural state elements there [8]. Because each thread
always accesses a given address from the same core, threads never
disagree about the contents of memory locations so sequential con-
sistency is trivially ensured.

The flow of a memory access under EM2 is shown in Figure 1.
Depending on the implementation, each core may be capable of
multiplexing execution among several contexts at instruction gran-
ularity; when all contexts are occupied, an incoming migration
causes one of them to be evicted. For deadlock-free migrations,
each core has one native context for each of the threads that orig-
inated on that core in addition for the guest contexts for threads
originally started on other cores: an evicted thread travels to its
dedicated native context on a separate virtual network to avoid de-
pendency loops and deadlock [10].

EM2 can potentially outperform traditional directory-based cache
coherence (CC) by avoiding the data replication and loss of ef-
fective cache capacity of CC [8, 9] and by enabling data access
through a one-way migration protocol. However, migrations can
negatively affect performance because of the delays involved in
stopping, migrating, and restarting threads; moreover, each migra-
tion must transfer the entire execution context (1–2KBits in a 32-bit
Atom-like processor [8]) over the on-chip network, causing signif-
icant power consumption.

Optimizing performance and power, therefore, requires either
(a) reducing the migration rate, or (b) reducing the amount of data
transferred in each migration (and so making migrations faster and
more power-efficient). Since migrations depend on the assignment
of addresses to per-core caches, a good data placement method (one
which keeps a thread’s private data assigned to that thread’s native
core, and allocates shared data among the sharers) is critical. Since
data placement has been investigated in the context of CC-NUMA
architectures (e.g., [11]) and EM2-specific program-level replica-

Memory
access

in core A

Address
cacheable
in core A?

Access memory and
continue execution

Migrate
thread to

home core

yes

no

threads
exceeded?

Migrate another
thread back to
its native core

yes

Access memory and
continue execution

no

On-chip Network
Core originating
memory access

Core where address
can be cached

Figure 1: The life of a memory access under EM2.

ocean cont
2.50E+07

_

2 00E 07es
 gt
h

2.00E+07
es
se

 le
n

1.50E+07ac
ce

ru
n

or
y

g
to

1.00E+07

m
em ut
in
g

5 00E+06of
 m

tr
ib
u

5.00E+06#
o

co
nt

0.00E+00

c

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Figure 2: The number of accesses to memory cached at non-
native cores for a SPLASH-2 [13] OCEAN benchmark run,
binned by the number of consequent accesses to the same core
(the run length). About half of the accesses migrate after one
memory reference, while the other half keep accessing memory
at the core where they have migrated. 64-core/64-thread EM2

simulation using Graphite [14], with 16KB L1 + 64KB L2 data
caches and first-touch data placement.

tion techniques have also been explored [12], the remainder of this
paper focuses on part (b), and outlines two approaches to reducing
the average migration cost.

3. EM2 WITH REMOTE CACHE ACCESS
One scenario where EM2 performance and power efficiency can

be improved is evident from Figure 2: in about half of the non-
local cache accesses (which cause the accessing thread to migrate),
the thread migrates to another core after just one memory access
(and possibly other non-memory instructions), usually back to the
core from which the first migration originated (data not shown). In
each case, a full execution context (including the entire register file)
traverses the on-chip interconnect only to bring back one word of
data (or, for writes, no data), clearly a suboptimal scenario.

To address this, we propose to extend EM2 with a remote cache
access capability: for some memory accesses, a thread will con-
tact the remote cache and retrieve (or write) the necessary word
instead of migrating back and forth. Although memory coherence
approaches based entirely on remote cache access have been pro-
posed [15], they must make a separate access for each word to en-
sure memory coherence; the combination with EM2 is therefore
uniquely poised to address both the one-off remote cache accesses
and the runs of consequent accesses shown in Figure 2.

Figure 3 illustrates the memory access process under this hy-
brid architecture (EM2-RA). To avoid interconnect deadlock, the
remote-access virtual subnetwork must be separate from the sub-
networks used for migrations and (cf. [10]), requiring six virtual
channels in total. Clearly, the migration-vs.-remote-access decision
is crucial to EM2-RA performance; we therefore outline a simpli-
fied analytical model that establishes an upper bound on perfor-
mance of decision schemes and thus allows us to quickly evaluate
how close to optimal a given hardware-implementable scheme is.

The simplified model considers one thread at a time (and so ig-
nores evictions caused by migrations to a core with no free guest
contexts), ignores local memory access delays (since the migration-
vs.-RA decision mainly affects network delays), and assumes knowl-
edge of the full memory trace of the application as well as the
address-to-core data placement. Under these assumptions, the solu-
tion can be obtained efficiently via the following dynamic program:

Given a thread memory trace m1, · · · , mN , the data placement
implies a corresponding sequence of cores d(m1), · · · , d(mN).
Suppose we have the optimal solution to the sub-trace m1, · · · , mk
when the thread starts at core c0 and ends at core ci; call this
OPT (m1,mk,ci). The solution for the longer memory sub-trace
m1, · · · , mk, mk+1, with the thread ending at a particular core c j,
can be broken into two cases:

• Core miss for mk+1: c j 6= d(mk+1). The thread stays at c j
and performs a remote access, so we return:

OPT (m1,mk,c j)+ costremote_access
(
c j,d(mk+1)

)
.

• Core hit for mk+1: c j = d(mk+1). The thread either stays at
c j and accesses the local cache (for free) or migrates from
another core and then accesses the local cache, so we return:

min
(
OPT (m1,mk,c j),
minci:ci 6=c j OPT (m1,mk,ci)+ costmigration(ci,c j)

)
.

This optimal solution can be computed in time O(NP2), where N
is the length of the trace and P is the number of processor cores.
Computing the equivalent cost of a specific decision requires ap-
plying the decision procedure to each memory access in the trace,
and so is O(N).

4. STACK-BASED EM2 ARCHITECTURE
While the EM2-RA hybrid effectively reduces the migrated con-

text size on average by replacing some migrations with round-trip
remote cache accesses, optimal performance requires potentially
complex logic in each core to make the migration vs. remote ac-
cess decision.

But how can we reduce the migrated context size for all mi-
grations? The minimum migration context comprises the program
counter (necessary to retrieve the next instructions) and the entire
register file (necessary to execute the instructions). Although one
could imagine sending only a portion of the register file (based, for
example, on the operands of the next few instructions), the register
file is a random-access data structure and the next few instructions
could refer to any subset of registers, necessitating complex muxing
in and out of the register file block. Clearly, to drastically reduce
migration context size we must dramatically reduce or entirely give
up the register file.

Stack architectures, which do not have a random-access register
file, offer a natural solution. In a stack-based ISA, most instruc-
tions do not specify their operands but instead access the top of the
stack: for example, an ADD instruction would replace the top two
entries on the stack with one entry containing their sum. Most of-
ten, there are two stacks (the expression stack, used for evaluation,
and the return stack, used for procedure return addresses and loop
counters); the top few entries of each stack are typically cached in
registers and backed by a region of main memory with overflows
and underflows of the stack cache automatically and transparently
handled in hardware.

The stack-machine approach has been used to ensure fast pro-
cedure calls in early computers (e.g., the Burroughs B5000), sim-
plify embedded and resilient controller architectures (see [16] for
a review), and to reduce code footprint in virtual machines (e.g.,
the JVM). For EM2, a stack machine dramatically reduces the re-
quired context size: because instructions can only access the top of
the stack, only the top few entries must be sent over to a remote
core when a memory access causes a migration. Since stack over-
flows and underflows are handled by loads and stores to memory,

Access memory & Migrate anotherccess e o y &
continue execution

Migrate # threads

thread back to
its native core

yes

yes

Memory Address

thread to
home core

threads
exceeded?

A &

Migrate
yes

D i i
y

access
in core A

cacheable
in core A?

Access memory &
continue execution

Send remote

no
no

Decision
Procedure

request to
home core

Access memoryRemote op

Return data (read)Return data (read)
or ack (write) to

the requesting core A
Continue execution

Core originating Core where address
b h d

Network
memory access can be cached

Figure 3: The life of a memory access under EM2-RA.

the offending thread will automatically migrate back to its native
core (where its stack memory is assigned) when the migrated stack
overflows or underflows.

A stack-based EM2 architecture can choose to migrate only a
portion of the stack cache—with enough data to continue execu-
tion on the remote core while data accesses are being made there,
and enough space to carry back any results without overflows—
and flush the rest to the stack memory prior to migration. Since
the migrated depth can be different for every access, determining
the best per-migration depth requires a decision algorithm. Indeed,
to evaluate such schemes, we can use the same analytical model
described for the EM2-RA case and a similar optimization formu-
lation to compute the optimal stack depths (instead of the binary
migrate-vs.-RA decision, the algorithm considers the various stack
depths) and compares them against a given depth-decision scheme.

5. CONCLUSION
The Execution Migration Machine (EM2) is a memory architec-

ture that provides distributed shared memory using fast, hardware-
level thread migrations. In this paper, we focus on reducing the size
of execution context that is sent over the network in every migra-
tion, which improves both latency (especially on low-bandwidth in-
terconnects) and power dissipation. To this end, we introduce two
variant architectures which reduce average context size: (a) EM2

with remote cache access that replaces some migrations with smaller
round-trip remote accesses, and (b) a stack-machine EM2 architec-
ture where the migrated context size can vary from a few top-of-
stack registers to a larger portion of the stack.

Both architectures require a fast core-local decision for every
memory access: for EM2-RA, whether to migrate or do a remote
cache access, and for stack-EM2, how much of the stack to migrate.
We therefore introduce a simplified analytical model of EM2 per-
formance together with a dynamic-programming algorithm to com-
pute the optimal decision sequence from an application’s memory
access trace, which will allow us to evaluate hardware-implementable
decision schemes that will be a focus of our future research.

6. REFERENCES
[1] S. Borkar, “Thousand core chips: a technology perspective,”

in DAC, 2007.
[2] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,

“Reactive NUCA: near-optimal block placement and
replication in distributed caches,” in ISCA, 2009.

[3] I. T. R. for Semiconductors, “Assembly and packaging,”
2007.

[4] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada,
M. Ratta, and S. Vora, “A 45nm 8-core enterprise Xeon R©
processor,” in A-SSCC, 2009.

[5] A. C. Sodan, “Message-Passing and Shared-Data
Programming Models—Wish vs. Reality,” in HPCS, 2005.

[6] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and
traffic requirements for scalable directory-based cache
coherence schemes,” in International Conference on Parallel
Processing, 1990.

[7] D. Abts, S. Scott, and D. J. Lilja, “So Many States, So Little
Time: Verifying Memory Coherence in the Cray X1,” in
IPDPS, 2003.

[8] O. Khan, M. Lis, and S. Devadas, “EM2: A Scalable
Shared-Memory Multicore Architecture,”
MIT-CSAIL-TR-2010-030, 2010.

[9] M. Lis, K. S. Shim, O. Khan, and S. Devadas, “Shared
Memory via Execution Migration,” in ASPLOS I&P, 2011.

[10] M. H. Cho, K. S. Shim, M. Lis, O. Khan, and S. Devadas,
“Deadlock-Free Fine-Grained Thread Migration,” in NOCS,
2011.

[11] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum,
“Operating system support for improving data locality on
CC-NUMA compute servers,” SIGPLAN Not., vol. 31, no. 9,
pp. 279–289, 1996.

[12] K. S. Shim, M. Lis, M. H. Cho, O. Khan, and S. Devadas,
“System-level Optimizations for Memory Access in the
Execution Migration Machine (EM2),” in CAOS, 2011.

[13] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological
considerations,” in ISCA, 1995.

[14] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal,
“Graphite: A distributed parallel simulator for multicores,”
in HPCA, 2010.

[15] C. Fensch and M. Cintra, “An OS-Based Alternative to Full
Hardware Coherence on Tiled CMPs,” in HPCA, 2008.

[16] P. Koopman, Stack Computers: The New Wave. Ellis
Horwood, 1989.

