
Algorithms for Scheduling Task-based Applications
onto Heterogeneous Many-core Architectures

Michel A. Kinsy
Department of Computer and Information Science

University of Oregon
Email: mkinsy@cs.uoregon.edu

Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Email: devadas@@mit.edu

Abstract—In this paper we present an Integer Linear Pro-
gramming (ILP) formulation and two non-iterative heuristics for
scheduling a task-based application onto a heterogeneous many-
core architecture. Our ILP formulation is able to handle different
application performance targets, e.g., low execution time, low
memory miss rate, and different architectural features, e.g.,
cache sizes. For large size problem where the ILP convergence
time may be too long, we propose a simple mapping algorithm
which tries to spread tasks onto as many processing units as
possible, and a more elaborate heuristic that shows good mapping
performance when compared to the ILP formulation. We use two
realistic power electronics applications to evaluate our mapping
techniques on full RTL many-core systems consisting of eight
different types of processor cores.

I. INTRODUCTION

With advances in semiconductor technology multi/many-
core microprocessors are being deployed in a broad spectrum
of applications: power electronics, geosciences, aerospace,
defense, interactive digital media, cloud computing, and bioin-
formatics. This convergence of application specific processors
and multicore systems is entering a new phase where we
see two distinct computing architectures emerging: massive
parallel homogeneous cores, e.g., Tilera [1] and heterogeneous
many-core architectures, e.g., IBM Cell [2]. The Tilera-like
homogeneous architectures find most of their application in
clusters, clouds and grids computing. They are generally
executing applications that are inherently parallel [3]. They
are composed of a large number of general-purpose processors
like x86, Power, MIPS, or ARM. A homogeneous collection
of cores on the die makes the manufacturing and testing
process more manageable, and keeps the software support
model simple. These architectures have many advantages: they
are more programmable and they provide easier import of
existing code and compilers onto them. The key disadvantage
of massive parallel homogeneous cores architectures is their
lack of specialization of processing units to different tasks.

The second paradigm is the heterogeneous many-core sys-
tems approach where highly specialized application-specific
processor/functional units and general-purpose cores are in-
tegrated onto the same chip. They have many advantages,
performance and power can be better optimized, specializa-
tion of compute units to different tasks promises greater
energy/area efficiency. Kumar et al. [4] present a hetero-
geneous architecture which outperforms a comparable-area
homogeneous architecture by up to 63%, and with a good
task-to-core assignment, they are able to achieve an additional
31% speedup over a naive scheduling policy.

The current trend in system-on-chip (SoC) design is system-
level integration of heterogeneous technologies consisting of
a large number of processing units such as programmable
RISC/CISC cores, memory, DSPs, and accelerator function
units/ASIC [5] providing various services. Although the design
of heterogeneous many-core systems shares many of the
same issues we see in homogeneous general-purpose parallel
architectures, there are a few added design and programma-
bility challenges. These functional asymmetric heterogeneous
architectures require greater system management. Processing
elements need more fine-grained work allocation and load
balancing [6], [7]. With the increased adaptation of hetero-
geneous many-core processors with a number of core types
that match the function affinities, we need new techniques for
developing, analyzing, and executing software programs on
these platforms. For example, task models that characterize
the execution time of tasks in heterogeneous hardware envi-
ronment, task models that partition tasks where different pieces
of a task can run on different cores allowing it to improve its
performance, and scheduling algorithms and metrics that take
into account task dependencies that influence the execution
time, runtime control flow and memory access patterns [8].

In this work we present a general framework for decom-
posing an application into tasks, and propose a set of simple,
scalable algorithms for mapping task-based applications onto
generic heterogeneous many-core architectures.

II. RELATED WORK

Application scheduling on heterogeneous resources has
been shown to be NP-complete in general cases [9], [10],
as well as in several restricted cases [11], [12], [13]. Task
scheduling on a heterogeneous system can be generally clas-
sified into static [14] and dynamic [15], [16]. With static
assignment, task-to-core mapping is done at compile-time
offline or once at the beginning of the application, and the
schedule is maintained throughout the execution of the applica-
tion. Compared with dynamic scheduling, task monitoring and
migration are used to ensure a certain level of application per-
formance. While dynamic scheduling can potentially achieve
better application performance compared to static scheduling,
it may become less feasible in large many-core systems.
Brandenburg et al. [17], for example, consider the issue of
scalability of the scheduling algorithms on multiprocessor
platforms, particularly in the case of real-time workloads.
K. Ramamritham and J. A. Stankovic [18] discuss the four
paradigms underlying the scheduling approaches in real-time

systems, namely, static table-driven scheduling, static priority
preemptive scheduling, dynamic planning-based scheduling,
and dynamic best-effort scheduling. A. Burns [19] also gives
a detailed review on task scheduling in hard real-time sys-
tems. H. Topcuoglu and M. Wu [20], present two different
scheduling algorithms for a bounded number of heterogeneous
processors with an objective to simultaneously meet high
performance and fast scheduling time. Their algorithms use
rankings and priorities to schedule tasks with the objective
of minimizing finish times. Arora et al. [21] present a non-
blocking implementation of a work-stealing algorithm for
user-level thread scheduling in shared-memory multiprocessor
system. Chaudhuri et al. [22] provide in-depth formal analysis
of the structure of the constraints, and show how to apply
that structure in a well-designed ILP formulation such as the
scheduling problem. Yi et al. [23] present an integer linear
programming formulation for the task mapping and schedul-
ing problem. They use various techniques and architecture
characteristics to reduce application execution time. Given
an application, Lakshminarayana et al. [24] propose an age-
based scheduling algorithm that assigns a thread with a larger
remaining execution time to a fast core. Shelepov et al. [25]
propose a heterogeneity-aware signature-supported scheduling
algorithm that does not rely on dynamic profiling, where they
use thread architectural signatures to do the scheduling.

III. MODELS OF COMPUTATIONS

The problem of finding a schedule for a heterogeneous
parallel architecture is complicated by a number of factors:
different processing elements, not every processor may be able
to execute all processes, the run time of a given process may be
different on different processing elements, and communication
time between may vary. Before proceeding with discussion
of scheduling algorithms, we first give a set of standard
definitions.

A. Application Decomposition

In many-core system environments, parallel computing
comes naturally. But this parallel computing paradigm also
forces the application running to examine the type of par-
allelism it exhibits. Broadly, an application exhibits some
instruction-level parallelism, some data parallelism, and some
task parallelism. Task-level parallelism on heterogeneous
many-core architectures seems more attractive because it
decouples an application expression from the core ISA or
the number of cores. This reduces the problem of executing
such an application on a given platform to a scheduling
problem. For those reasons, we adopt task-based application
decomposition and processing unit mapping [14], [20].

B. Task-based application decomposition model

We define an application as a composition of computation
tasks (or simply tasks) providing one global compute service.
For running such an application in a heterogeneous many-
core environment, tasks need to be created, scheduled in time,
mapped to the appropriate cores and synchronized.

Definition 1: A task is a computational primitive that oper-
ates on a set of inputs I(i1, i2, ..., in), where iα is a data or
a memory location read by the task. It has a set of outputs,
denoted O(o1, o2, ..., om), where oα is the data or memory
location written in by the task, and an internal working set
data w.

Figure 1(a) depicts a generic multi/many-core architecture
where each letter represents a particular type of processing
unit (core). Cores may vary in frequency, ISA, function units,
memory back-end, etc. Figure 1(c) shows an illustrative task
graph to be run through the various mapping algorithms. Each
task is characterized by its operating data type and runtime
(some reference execution time on some idealized machine): f
stands for floating-point operation, i for integer operation, v for
vector operation, and m for multiplication/division operation.

Definition 2: There are three elementary tasks: a feedback
task, a sequential task, and a parallel task. For generality,
they are defined for a given execution time t, but also lend
themselves to static application annotation and analysis.

At some time t during application execution, task A exhibits
a feedback, denoted Å,
if I(i1, i2, ..., in)tA ∩ O(o1, o2, ..., om)t−1

A 6= φ.
At some time t during application execution, tasks A and

B are sequential, denoted A 7−→ B,
if O(o1, o2, ..., om)tA ∩ I(i1, i2, ..., in)

t
B 6= φ or

O(o1, o2, ..., om)t−1
A ∩ I(i1, i2, ..., in)

t
B 6= φ.

At all time t during application execution, tasks A and B
are parallel, denoted A ‖ B,
if O(o1, o2, ..., om)tA ∩ I(i1, i2, ..., in)

t
B = φ and

O(o1, o2, ..., op)
t
B ∩ I(i1, i2, ..., iq)

t
A = φ.

For mapping and routing purposes, one can fuse
together any two tasks A and B, if and only if
O(o1, o2, ..., om)tA = I(i1, i2, ..., in)

t
B and all other

tasks C O(o1, o2, ..., om)tA ∩ I(i1, i2, ..., in)
t
C = φ and

O(o1, o2, ..., om)t−1
A ∩ I(i1, i2, ..., in)

t
C = φ. In other words,

the intermediate A to B state is not observable by any other
task. Task fusion is useful in forcing a set of tasks to be
assigned to the same processing, particularly when tasks share
a large amount of state, and communication costs between
processing units are prohibitive or expensive for those tasks.
It also allows us to reduce cyclic task-graphs (Figure 1(b)) to
acyclic ones (Figure 1(c)).

C. Scheduling Algorithm: Taxonomy

For understanding and completeness, we list some basic
scheduling terminologies [26]:

• A processor has a processing power ℘.
• Processor allocation: on which processor a task should

execute.
• Task priority: when, and in what order with respect to

other tasks, should each task execute.
• Fixed task priority: Each task has a single priority that

remains the same through all phases of the application.
• Dynamic priority: a task may have different priorities at

different execution points.

mvi	
 mi	
 vi	

C	
 B	
 D	
 A	

i	

G	
 F	
 H	
 E	

mvf	
 mf	
 vf	
 f	

mi	
 mi	
 vif	

K	
 J	
 L	
 I	

f	

O	
 N	
 P	
 M	

mvi	
 mi	
 i	
 i	

(a) A generic 2D-mesh heteroge-
neous multi-cores.

Task 1
 [i, 4]

Task 2
 [f, 1]

Task 3
 [f, 5]

Task 4
 [fvm,13]

Task 5
 [i, 3]

Task 6
 [f, 14]

Task 7
 [f, 7]

Task 13
 [i, 1]

Task 8
 [i, 12]

Task 11
 [fi,8]

Task 9
 [i, 1]

Task 10
 [fi, 2]

Task 12
 [im, 9]

end

start

(b) A generic task-based decomposition
of an application.

Task 1
 [i, 4]

Task 2
 [f, 1]

Task {3 7 9 10}
 [f, 15]

Task 4
 [fvm,13]

Task 5
 [i, 3]

Task 6
 [f, 14]

Task 12
 [im, 9]

Task 13
 [i, 1]

Task 8
 [i, 12]

Task 11
 [fi,8]

end

start

(c) The acyclic representation of the ap-
plication task graph.

Fig. 1. Example of a generic heterogeneous multi-cores and an application task-based decomposition.

• Preemptive: tasks can be preempted by a higher priority
task at any time.

• Non-preemptive: once a task starts executing, it will not
be preempted and will therefore execute until completion.

• Cooperative: tasks may only be preempted at defined
scheduling points within their execution.

• No migration: Each task is allocated to a processor and
no migration is permitted

• Task-level migration: threads of a task may execute
on different processors; however each thread can only
execute on a single processor.

In our algorithm, many of these characteristics or classifica-
tions are not examined, simply because prior work may have
done it, or this particular instance of the problem does not
warrant such examination, or it is obvious how to extend the
algorithm to support such characteristic.

IV. FORMULATION OF TASK-BASED SCHEDULING

Our framework provides a set of algorithms for mapping
an application onto a heterogeneous many-core architecture,
starting from simple ones to more complex ones, depending on
the level of available system characterization and application
analysis data.

A. Definitions

In our framework we define an application A to be A =
{T1, T2, ..., Tk} where task Ti = (wi, di, ri, ci), in addition to
the characteristics described above, has the following prop-
erties: wi (working set of task Ti), di (deadline of task
Ti), ri (input rate of task Ti), and ci (instruction count
in task Ti). While we only enumerate these properties, it
is not difficult to see that other properties can be incorpo-
rated into the framework. We define a processing element
pi = (℘i, lmini

, lmaxi
), where ℘i = f(IPC,EUs,CSs),

Lmin represents the memory latency on a cache hit, and
Lmax the maximum miss latency. ℘i is a function of the IPC
(instructions-per-cycle), EUs (execution units), and CSs (cache
sizes). The EU factor helps specify which processing unit

has what execution functional unit, e.g., floating-point unit,
multiplication unit.

Definition 3: An task admissible schedule (TAS) for an
application A is a set of tuples that associates to each task T
a set of processing elements such that the data dependencies
and timing constraints between tasks are respected.

Definition 4: A task Ti is schedulable on a processing
element pj , denoted Ti.pj , if its worst-case execution time pj
is less than or equal to its deadline. In this work, equations 7
and 8 are used to determine task schedulability.

Definition 5: An application is schedulable according to a
TAS algorithm if all of its tasks are schedulable.

Definition 6: An application is said to be feasible with
respect to a given heterogeneous many-core system if there
exists at least one TAS solution that can schedule all possible
sequences of tasks that may be generated by the application
on that system without missing any deadlines or violating any
inter-task dependency.

Definition 7: Given two tasks Ti and Tj , a third task Tk
can be composed out of Ti and Tj for mapping purposes if Ti
and Tj are sequential, with no intermediate observable state,
and cannot be pipelined.

B. ILP formulation of tasks-based scheduling

An application task graph G = (A,E) is a directed acyclic
graph (DAG) in which each vertex Ti ∈ A represents a
task and each edge e(Ti, Tj) ∈ E represents a dependency
between tasks Ti and Tj . Given a DAG G = (A,E), we want
to find a schedule that minimizes the finishing time of the
last critical task. For the formulation, let us assume that all
tasks in A are critical and Tk is the last task. We want to
assign to each task Ti ∈ A a pair (ts, tf) where ts and tf
represent the starting and finishing time of task Ti under a
given schedule θ. For all edge e(Ti, Tj) ∈ E,wi,j presents
the amount of data transferred from Ti to Tj during execution
(O(o1, o2, ..., om)Ti

∩ I(i1, i2, ..., in)Tj
= wi,j). For k

tasks and n processors, the exhaustive listing of schedules
will produce k!

(k−n)! schedules. This is prohibitive for large

problems. The user can limit the ILP runtime and find a
solution over a subset.

C. ILP formulation

The objective function is:

minimize Tk(tf) (1)

Subject to:

Ti(tf) ≤ dj (2)

Ti(ts) ≤ Ti(tf) (3)

if e(Ti, Tj) ∈ E Ti(tf) < Tj(ts) (4)

∀ e(Ti, Tj) ∈ E, Tj(ts)− Ti(tf) = di,j (5)

∀ (P (Ti) = pu , P (Tj) = pv), wi,j × bpu,pv ≤ di,j (6)

∀ Ti ∈ A,∀pu ∈ P,
E(Ti,pu) = (℘u × ci)

+ = (wi × hitratei,u × lminu)

+ = (wi × (1− hitratei,u)× lmaxu)

(7)

For Ti ∈ A, pu ∈ P, Ti(tf)− Ti(ts) ≥ E(Ti,pu) (8)

∀ Ti ∈ A, pu ∈ P, M(Ti, pu)− (E(Ti,pu) × bi,u) = 0 (9)

∀ Ti ∈ A,
n∑

u=1

bi,u = 1 (10)

∀ pu ∈ P,
k∑

i=1

M(Ti, pu) ≤ Tk(tf) (11)

D. Heuristic task-based scheduling algorithms

For applications with a large number of tasks and tight
constraints where the convergence of the ILP formulation onto
a satisfiable solution may take too long, we examine a set
of heuristics to provide a fairly effective alternative to the
ILP formulation. Heuristic H1 is very simple and converges
quickly. It assigns to each task a set of processing units based
on execution affinity, and tries to minimize processor-sharing
among those sets. Its output is a set of processors that can
be used for a task. In general it is good to select the fastest
processing unit out of the set as the final mapping processor.
Our second heuristic H2 takes into account task deadlines in
addition to processor affinity in mapping task to processors. It
tries to minimizes the finishing time per processor as opposed
to the global finishing time as done in the ILP formulation.

Ti(ts) ≤ Ti(tf) (3)

if e(Ti, Tj) ∈ E Ti(tf) < Tj(ts) (4)

∀ e(Ti, Tj) ∈ E, Tj(ts)− Ti(tf) = di,j (5)

∀ (P (Ti) = pu , P (Tj) = pv), wi,j × bpu,pv ≤ di,j (6)

∀ Ti ∈ A,∀pu ∈ P,
E(Ti,pu) = (℘u × ci)

+ = (wi × hitratei,u × lminu
)

+ = (wi × (1− hitratei,u)× lmaxu
)

(7)

For Ti ∈ A, pu ∈ P, Ti(tf)− Ti(ts) ≥ E(Ti,pu) (8)

∀ Ti ∈ A, pu ∈ P, M(Ti, pu)− (E(Ti,pu) × bi,u) = 0 (9)

∀ Ti ∈ A,
n∑

u=1

bi,u = 1 (10)

∀ pu ∈ P,
k∑

i=1

M(Ti, pu) ≤ Tk(tf) (11)

D. Heuristic task-based scheduling algorithms

For applications with large number of tasks and tight
constraints where the convergence of the ILP formulation onto
a satisfiable solution may take too long, we examine a set of
heuristics to provide a fairly effective alternative to the ILP
formulation. Heuristic 1(H1) is very simple and converges
quickly. It assigns to each task a set of processing units
based on execution affinity, and tries to minimize processor-
sharing among those sets. Its output is a set of processors
that can be used for a task. In general it is good to select
the fastest processing unit out of the set as the final mapping
processor. Our second heuristic 2 (H2) takes into account
task deadlines in addition to processor affinity in mapping
task to processors. It tries to minimizes the finishing time per
processor as opposed to the global finishing time as done in
the ILP formulation.

V. EVALUATION METHODOLOGY

To demonstrate the effectiveness of our scheduling algo-
rithms, we the Heracles multicore system framework [27], [28]
to construct eight different processor core configurations with
different execution power, enumerated below: 16-bit micro-
processor (Processor1), single-cycle MIPS core (Processor2),
7-stage single-threaded MIPS core (Processor3), 7-stage 2-
way threaded MIPS core (Processor4), Single lane vector
machine (Processor5), 2-lane vector machine (Processor6),
4-lane vector machine (Processor7), 8-lane vector machine
(Processor8). Power electronics is one of the key physical
layers of the smart grid that enables highly efficient and fully
controllable flow of electric power, and promises to deliver
up to 30% electric energy savings across all aspects of the

Algorithm 1 Minimizes intersections across all mapping sets
(H1).

Assumption: An application A composed of a number of
tasks, A = {T1, T2, ..., Tk} and a system with a list of
processing elements P = {p1, p2, ..., pn}.
Objective: Find a set of task-processor mapping S =
{S(T1), S(T2), ..., S(Tk)} such that: ∀ Ti ∈ A, S(Ti) =
{pu, ..., pv} with 1 ≤ u < v ≤ n while minimiz-
ing ∀(i, j) S(Ti) ∩ S(Tj).
Begin
∀ Ti ∈ A, S(Ti) = φ
for i = 1; i ≤ k; i++ : do

for j = 1; j ≤ n; j ++ : do
if (Ti . pj) then

S(Ti) = S(Ti) ∪ {pj}
end if

end for
end for
while (∀ Ti ∈ A, |S(Ti)| > 1 and ∀ (i, j) S(Ti)∩S(Tj) 6=
φ) do

if (∃ (Ti, Tj) | S(Ti) ∩ S(Tj) 6= φ) then
if ((|S(Ti)| > 1) ∧ (|S(Tj)| > 1)) then

S(Ti) =





S(Ti)− {S(Tmin) ∩ S(Ti)} where
S(Ti) ({S(Tmin) ∩ S(Ti)}

{pe} for any pe ∈ S(Ti) otherwise
end if

end if
end while
End

conversion of primary energy into electricity. A typical power
electronics system consists of an energy source interface, a
power converter, and a control unit Figure 2. We take two
representative power electronics system applications: namely,
a utility grid connected wind turbine converter system and a
hybrid electric vehicle motor drive system.

A. Utility Grid Connected Wind Turbine

The general control strategy in wind turbine consists of
limiting the power delivery to the grid under high wind by
doing a stall control, or an active stall, or even a pitch control.
To converge to the proper strategy, the control algorithm may
need a reference emulator of the physical system to check
system responses, interfaces, and failure modes. Figure 2
shows a typical functional block of such system, and Figure 4
shows the profiled task graph of our wind turbine application.
Figure 3 reports the execution time of all tasks on each
processor type.

B. Hybrid Electric Vehicle

Hybrid electric vehicles (HEVs) use two power sources;
internal combustion and electric. They are fuel efficient be-
cause of their electric motor drive. The motor drive, with a

V. EVALUATION METHODOLOGY

To demonstrate the effectiveness of our scheduling algo-
rithms, we use the Heracles multicore system framework [27],
[28] to construct eight different processor core configurations
with different execution power, enumerated below: 16-bit
microprocessor (Processor1), single-cycle MIPS core (Proces-
sor2), 7-stage single-threaded MIPS core (Processor3), 7-stage
2-way threaded MIPS core (Processor4), Single lane vector
machine (Processor5), 2-lane vector machine (Processor6),
4-lane vector machine (Processor7), 8-lane vector machine
(Processor8). Power electronics is one of the key physical
layers of the smart grid that enables highly efficient and fully
controllable flow of electric power, and promises to deliver
up to 30% electric energy savings across all aspects of the
conversion of primary energy into electricity. A typical power
electronics system consists of an energy source interface, a
power converter, and a control unit. We take two representative
power electronics system applications: namely, a utility grid
connected wind turbine converter system and a hybrid electric
vehicle motor drive system.

A. Utility Grid Connected Wind Turbine

The general control strategy in a wind turbine consists of
limiting the power delivery to the grid under high wind by
doing a stall control, or an active stall, or even a pitch control.

Start of
 System-Step

Diversion
 Load

Utility
 Meter

Wind Turbine
 Sensors

Battery
 Bank

Rectifier

Inverter

Power Grid
 Sensors

Previous
State

 Variables

Previous
Distributed

 Control
 State

Input
Collector

State
Selection

Continuous
State 1

Continuous
State 2

Continuous
State 3

Continuous
State 4

State
Variables

Emulator
Data Storage

Control
SystemInput

Analysis Control
Algorithm

Monitoring
Unit

Monitoring
Unit

 Data Storage

Distributed
Control

Output
Signals

Actuators

System
 Components

End of
 System-Step

Fig. 4. Task-graph of the wind turbine system application.

Algorithm 2 Minimizes the finishing time on each processor
(H2).

Assumption: An application A composed of a number of
tasks, A = {T1, T2, ..., Tk} and a system with a list of
processing elements P = {p1, p2, ..., pn}.
Objective: Find a set of task-processor mapping
{S(p1), S(p2), ..., S(pk)} such that ∀ pi ∈ P, S(pi) =

{Ta, ..., Tb} where D(pi) = minimum(
k∑
u=1

d′u).

d′u =

{
du where Tu . pi
0 otherwise

Begin
∀ pi ∈ P, S(pi) = φ and D(pi) = 0
for i = 1; i ≤ n; i++ : do

for j = 1; j ≤ k; j ++ : do
if (Tj . pi) then

S(pi) = S(pi) ∪ {Tj}
D(pi)+ = dj

end if
end for

end for
for i = 1; i ≤ n; i++ : do

for j = 1; j ≤ n; j ++ : do
∀ Tu ∈ S(pi):
if ((Tu ∈ S(pj)) ∧ (D(pj) < D(pi))) then

S(pi) = S(pi)− {Tu}
D(pi)− = du

end if
end for

end for
End

controlled inverter system, is needed to deliver powerful and
efficient drive to the electric motor. In general, HEV motor
drive systems can operates in two modes; namely, conventional
mode and regenerative breaking mode. In conventional mode,
the internal combustion engine supplies the voltage that passes
through the inverter block to drive the induction motor;
whereas in the regenerative breaking mode, the induction
machine acts as a generator and the inverter block acts as
a three-phase rectifier.

Power Electronics

Power electronics
converters

Power electronics
control

inputs'

The'heart'of'the'system'is'the'control'
electrical'grid'

Controller

in
pu
t

po
we
r

ou
tp
ut

po
we
r

sources'

Real9:me''Emulator'(reference)'

Input'Analysis'sensors'…'inputs' Control'algorithm' actuators' …' outputs'

monitoring'unit'
Off9line''
database'

Other''
distributed''
controls'

data'storage'

data'
storage'

SoC$

One(chip(
solu5on(

Hard'real9:me'communica:on'traffic'
SoH/best'effort'communica:on'traffic'

Fig. 2. Wind turbine system application modules.

0	

5000	

10000	

15000	

20000	

25000	

st
ar
t	
 	

U
M
	
 	
 I	
 	
 R	

	

DL
	
 	

BB
	
 	

PG
	
 	

W
T	

	

PS
V	

	

PD
C	

	

IA
	
 	

IC
	
 	

CA
	
 	

M
U
	
 	

SS
	
 	

M
U
DS

	
 	

CS
1	

	

CS
2	

	

CS
3	

	

CS
4	

	

SV
	
 	

ED
S	

	

CS
	
 	

DC
	
 	

O
S	

	

A	

	

SC
	
 	

en
d	

	

Ex
ec
u&

on
	
 T
im

e	

(n
s)
	

Tasks	

Processor1	

Processor2	

Processor3	

Processor4	

Processor5	

Processor6	

Processor7	

Processor8	

Fig. 3. Total execution time for all tasks in the wind turbine application per
processor.

C. Results

In this section, we present the output of our three scheduling
algorithms. In general, H1performs poorly compare to the the
ILP-based mapping, because it does not takes into account
many of the system architectural features. If compute-intensive
task is inadvertently mapped into a weaker core it can impact
the whole application execution time. H2 performs better
H1, and it is within 20% to 70% of the ILP-based mapping
efficiency.

VI. CONCLUSION

We present in this work an ILP formulation and two non-
iterative heuristics that can handle different application perfor-
mance targets and architectural features for scheduling a task-
based application onto a heterogenous many-core architecture.
We use RTL-based heterogenous many-core systems and real
power electronics applications for evaluations of mapping al-
gorithms. In the future we will expand on these algorithms and
compare them with implementable closely related schemes.

To converge to the proper strategy, the control algorithm may
need a reference emulator of the physical system to check
system responses, interfaces, and failure modes. Figure 3
shows the profiled task graph of our wind turbine application.
Figure 2 reports the execution time of all tasks on each
processor type.

0	

5000	

10000	

15000	

20000	

25000	

st
ar
t	
 	

U
M
	
 	
 I	
 	
 R	

	

DL
	
 	

BB
	
 	

PG
	
 	

W
T	

	

PS
V	

	

PD
C	

	

IA
	
 	

IC
	
 	

CA
	
 	

M
U
	
 	

SS
	
 	

M
U
DS

	
 	

CS
1	

	

CS
2	

	

CS
3	

	

CS
4	

	

SV
	
 	

ED
S	

	

CS
	
 	

DC
	
 	

O
S	

	

A	

	

SC
	
 	

en
d	

	

Ex
ec
u&

on
	
 T
im

e	

(n
s)
	

Tasks	

Processor1	

Processor2	

Processor3	

Processor4	

Processor5	

Processor6	

Processor7	

Processor8	

Fig. 2. Total execution time for all tasks in the wind turbine application per
processor.

B. Hybrid Electric Vehicle

Hybrid electric vehicles (HEVs) use two power sources;
internal combustion and electric. They are fuel efficient be-
cause of their electric motor drive. The motor drive, with a

controlled inverter system, is needed to deliver powerful and
efficient drive to the electric motor. In general, HEV motor
drive systems can operate in two modes; namely, conventional
mode and regenerative breaking mode. In conventional mode,
the internal combustion engine supplies the voltage that passes
through the inverter block to drive the induction motor;
whereas in the regenerative breaking mode, the induction
machine acts as a generator and the inverter block acts as
a three-phase rectifier.
C. Results

In this section, we present the output of our three scheduling
algorithms. In general, H1performs poorly when compared to
the ILP-based mapping, because it does not take into account
many of the system architectural features. If a compute-
intensive task is inadvertently mapped into a weaker core it
can impact the whole application execution time. H2 performs
better then H1, and it is within 20% to 70% of the ILP-based
mapping efficiency.

VI. CONCLUSION

We present in this work an ILP formulation and two
non-iterative heuristics that can handle different application
performance targets and architectural features for scheduling a
task-based application onto a heterogeneous many-core archi-
tecture. We use RTL-based heterogeneous many-core systems
and real power electronics applications for evaluations of
mapping algorithms. In the future we will expand on these
algorithms and compare them with closely related schemes.

REFERENCES

[1] http://www.tilera.com/, “Tilera tile-gx processor,” 2012.
[2] D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,
M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki,
and K. Yazawa, “The design and implementation of a first-generation
cell processor,” in Solid-State Circuits Conference, 2005. Digest of
Technical Papers. ISSCC. 2005 IEEE International, pp. 184 –592 Vol.
1, Feb. 2005.

[3] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubi-
atowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
and K. Yelick, “A view of the parallel computing landscape,” Commun.
ACM, vol. 52, pp. 56–67, Oct. 2009.

[4] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st annual international
symposium on Computer architecture, ISCA ’04, (Washington, DC,
USA), pp. 64–, IEEE Computer Society, 2004.

[5] H. Kopetz, Real-Time Systems : Design Principles for Distributed
Embedded Applications (The International Series in Engineering and
Computer Science). Springer, Apr. 1997.

[6] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Computer Architecture (ISCA), 2012 39th Annual
International Symposium on, pp. 213 –224, June 2012.

[7] J. Chen and L. John, “Efficient program scheduling for heterogeneous
multi-core processors,” in Design Automation Conference, 2009. DAC
’09. 46th ACM/IEEE, pp. 927 –930, July 2009.

[8] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient oper-
ating system scheduling for performance-asymmetric multi-core archi-
tectures,” in Supercomputing, 2007. SC ’07. Proceedings of the 2007
ACM/IEEE Conference on, pp. 1 –11, Nov. 2007.

[9] M. Garey and D. Johnson, “Complexity results for multiprocessor
scheduling under resource constraints,” SIAM Journal on Computing,
vol. 4, no. 4, pp. 397–411, 1975.

[10] D. Karger, C. Stein, and J. Wein, “Scheduling algorithms,” 1997.

Start of
 System-Step

Diversion
 Load

Utility
 Meter

Wind Turbine
 Sensors

Battery
 Bank

Rectifier

Inverter

Power Grid
 Sensors

Previous
State

 Variables

Previous
Distributed

 Control
 State

Input
Collector

State
Selection

Continuous
State 1

Continuous
State 2

Continuous
State 3

Continuous
State 4

State
Variables

Emulator
Data Storage

Control
SystemInput

Analysis Control
Algorithm

Monitoring
Unit

Monitoring
Unit

 Data Storage

Distributed
Control

Output
Signals

Actuators

System
 Components

End of
 System-Step

Fig. 3. Task-graph of the wind turbine system application.

0	

200	

400	

600	

800	

1000	

1200	

1400	

st
ar
t/
p8

	

DL

/p
4	

UM
/p
4	

W
T/
p6

	

BB

/p
3	

R/
p4

	

I/p

4	

PG

/p
7	

PS
V/
p6

	

PD

C/
p8

	

IA
/p
8	

M
U/

p7
	

CA
/p
8	

IC
/p
8	

SS
/p
8	

CS
1/
p7

	

CS
2/
p7

	

CS
3/
p7

	

CS
4/
p7

	

M
UD

S/
p6

	

SV

/p
7	

ED
S/
p4

	

CS
/p
8	

O
S/
p8

	

DC

/p
8	

A/
p7

	

SC
/p
8	

en
d/
p7

	

Ex
ec
u&

on
	
 T
im

e	

(n
s)
	

Task-­‐to-­‐processor	
 Mapping	

Start	

Finish	

(a) ILP schedule solution for the wind turbine
system application.

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

st
ar
t/
p6

	

DL

/p
8	

UM
/p
5	

W
T/
p8

	

BB

/p
8	

R/
p3

	

I/p

4	

PG

/p
8	

PS
V/
p6

	

PD

C/
p1

	

IA
/p
6	

M
U/

p1
	

CA
/p
8	

IC
/p
7	

SS
/p
6	

CS
1/
p6

	

CS
2/
p6

	

CS
3/
p6

	

CS
4/
p6

	

M
UD

S/
p8

	

SV

/p
8	

ED
S/
p8

	

CS
/p
4	

O
S/
p8

	

DC

/p
8	

A/
p8

	

SC
/p
8	

en
d/
p7

	

Ex
ec
u&

on
	
 T
im

e	

(n
s)
	

Task-­‐to-­‐processor	
 Mapping	

Start	

Finish	

(b) H1 schedule solution for the wind turbine
system application.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

st
ar
t/
p2

	

DL

/p
8	

UM
/p
7	

W
T/
p8

	

BB

/p
8	

R/
p5

	

I/p

6	

PG

/p
8	

PS
V/
p8

	

PD

C/
p8

	

IA
/p
8	

M
U/

p5
	

CA
/p
8	

IC
/p
7	

SS
/p
7	

CS
1/
p6

	

CS
2/
p7

	

CS
3/
p6

	

CS
4/
p6

	

M
UD

S/
p7

	

SV

/p
8	

ED
S/
p8

	

CS
/p
7	

OS
/p
7	

DC
/p
8	

A/
p6

	

SC
/p
8	

en
d/
p5

	

Ex
ec
u&

on
	
 T
im

e	

(n
s)
	

Task-­‐to-­‐processor	
 Mapping	

Start	

Finish	

(c) H2 schedule solution for the wind turbine
system application.

Fig. 4. Scheduling of wind turbine system application

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

st
ar
t/
p8

	

G
P/
p5

	

CR

/p
3	

E/
p8

	

C/
p5

	

BP

/p
3	

SM
/p
4	

PG
/p
3	

SG
/p
4	

PS
V/
p7

	

PD

C/
p7

	

IA
/p
8	

CA
/p
8	

M
U
/p
6	

G
E/
p8

	

SS
/p
8	

CS
1/
p8

	

CS
2/
p7

	

CS
3/
p8

	

SV

/p
8	

CS
/p
8	

ED
S/
p5

	

M
U
D
S/
p4

	

O
S/
p8

	

D
C/
p7

	

A/
p7

	

SC
/p
8	

en
d/
p8

	

Ex
ec
u&

on
	
 T
im

e	

(n
s)
	

Task-­‐to-­‐processor	
 Mapping	

Start	

Finish	

(a) ILP schedule solution for the hybrid elec-
tric vehicle application.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

st
ar
t/
p2

	

G
P/
p8

	

CR

/p
8	

E/
p7

	

C/
p8

	

BP

/p
8	

SM
/p
5	

PG
/p
5	

SG
/p
8	

PS
V/
p5

	

PD

C/
p6

	

IA
/p
4	

CA
/p
8	

M
U
/p
6	

G
E/
p7

	

SS
/p
6	

CS
1/
p6

	

CS
2/
p6

	

CS
3/
p6

	

SV

/p
8	

CS
/p
2	

ED
S/
p8

	

M
U
DS

/p
8	

O
S/
p8

	

DC

/p
7	

A/
p8

	

SC
/p
8	

en
d/
p2

	

Ex
ec
u&

on
	
 T
im

e	

(n
s)
	

Task-­‐to-­‐processor	
 Mapping	

Start	

Finish	

(b) H1 schedule solution for the hybrid electric
vehicle application.

0	

500	

1000	

1500	

2000	

2500	

3000	

st
ar
t/
p2

	

GP

/p
8	

CR
/p
8	

E/
p7

	

C/
p8

	

BP

/p
8	

SM
/p
5	

PG
/p
5	

SG
/p
8	

PS
V/
p8

	

PD

C/
p8

	

IA
/p
8	

CA
/p
8	

M
U
/p
5	

GE
/p
7	

SS
/p
8	

CS
1/
p6

	

CS
2/
p7

	

CS
3/
p6

	

SV

/p
8	

CS
/p
7	

ED
S/
p8

	

M
U
DS

/p
8	

O
S/
p7

	

DC

/p
4	

A/
p6

	

SC
/p
7	

en
d/
p6

	

Ex
ec
u&

on
	
 T
im

e	

(n
s)
	

Task-­‐to-­‐processor	
 Mapping	

Start	

Finish	

(c) H2 schedule solution for the hybrid electric
vehicle application.

Fig. 5. Scheduling of hybrid electric vehicle application

[11] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, K. C,
and P. Wong, “Theory and practice in parallel job scheduling,” 1994.

[12] T. Yang and A. Gerasoulis, “Dsc: Scheduling parallel tasks on an
unbounded number of processors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, pp. 951–967.

[13] M. R. Garey and D. S. Johnson, “Two-processor scheduling with start-
times and deadlines,” SIAM Journal on Computing, vol. 6, pp. 416–426,
1977.

[14] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” 1999.

[15] M. Becchi and P. Crowley, “Dynamic thread assignment on heteroge-
neous multiprocessor architectures,” in Proceedings of the 3rd confer-
ence on Computing frontiers, CF ’06, pp. 29–40, ACM, 2006.

[16] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in Proceedings of the 5th European conference
on Computer systems, EuroSys ’10, pp. 125–138, ACM, 2010.

[17] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson, “On the
scalability of real-time scheduling algorithms on multicore platforms: A
case study,” 2008.

[18] K. Ramamritham and J. Stankovic, “Scheduling algorithms and operat-
ing systems support for real-time systems,” Proceedings of the IEEE,
vol. 82, pp. 55 –67, Jan. 1994.

[19] A. Burns, “Scheduling hard real-time systems: a review,” Software
Engineering Journal, vol. 6, pp. 116 –128, May 1991.

[20] H. Topcuoglu and M. you Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 13, pp. 260–274, 2002.

[21] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling
for multiprogrammed multiprocessors,” in In Proceedings of the Tenth

Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), Puerto Vallarta, pp. 119–129, 1998.

[22] S. Chaudhuri, R. A. Walker, and J. E. Mitchell, “Analyzing and exploit-
ing the structure of the constraints in the ilp approach to the scheduling
problem,” IEEE Transactions on VLSI Systems, vol. 2, pp. 456–471,
1994.

[23] Y. Yi, W. Han, X. Zhao, A. Erdogan, and T. Arslan, “An ilp formulation
for task mapping and scheduling on multi-core architectures,” in Design,
Automation Test in Europe Conference Exhibition, 2009. DATE ’09.,
pp. 33 –38, April 2009.

[24] N. B. Lakshminarayana, J. Lee, and H. Kim, “Age based scheduling
for asymmetric multiprocessors,” in Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, SC
’09, pp. 25:1–25:12, ACM, 2009.

[25] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “Hass: a scheduler for
heterogeneous multicore systems,” SIGOPS Oper. Syst. Rev., vol. 43,
pp. 66–75, Apr. 2009.

[26] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, pp. 35:1–35:44,
Oct. 2011.

[27] M. Kinsy, M. Pellauer, and S. Devadas, “Heracles: Fully synthesizable
parameterized mips-based multicore system,” in Field Programmable
Logic and Applications (FPL), 2011 International Conference on,
pp. 356 –362, Sept. 2011.

[28] M. A. Kinsy, M. Pellauer, and S. Devadas, “Heracles: A tool for fast rtl-
based design space exploration of multicore processors,” in Proceedings
of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA ’13, pp. 125–134, ACM, 2013.

