Storing Efficiently Bioinformatics Workflows

Michel Kinsy and Zoé Lacroix
Arizona State University
PO Box 875706 Tempe AZ 85287-5706, USA

Abstract

We propose an efficient storage strategy to record
bioinformatics workflows. Our approach presents sci-
entists with a flexible design model that distinguishes
the scientific aim as o design protocol expressed against
an ontology from the implementations(s), scientific
workflows composed of bioinformatics services, and
their execution. The storage strategy presented in this
paper allows efficient access and constitutes the frame-
work for reasoning on scientific protocols and experi-
mentel dote.

1 Introduction

The field of bivinformatics has grown immensely in
the last 20 years; this growth is due to the intense
research efforts invested in analyzing protein struc-
tures and sequencing of genes. Those efforts have pro-
duced vast amounts of data and raised different storage
and query challenges not typically encountered with
business data. Various works have been done to ad-
dress the functionality and the capacity of scientific
databases [7]. These databases and repositories typ-
ically do not record the processes producing the data
they are storing, leaving scientists with no access to in-
formation relevant to data provenance needed to eval-
uate the quality of the results produced at execution.
Moreover, complete protocol information including the
description of the process and the selection of the re-
gources used to implement it is critical to reproduce
the experiment thus validates the scientific soundness
of the results. In the recent years different software
projects have been initiated to assist scientists to de-
sign, implement, and store their workflows and the data
collected by the execution of these workflows [12, 11, 2].
But these systems in their attempts to be general scien-
tific workflow design tools, have failed to provide pro-
tocol storage and to optimize the characteristics most
needed and useful in bioinformatics workflow design,
implementation, storage, and querying.

ProtocolDB is designed to provide scientists with
a software tool allowing them to design and manage

1-4244-1509-8/07/$25.00 ©2007 IEEE

1328

their workflows exploiting a domain consistent with the
semantics of the experiments, store, and query both
workflow design and implementation as well as the data
collected at workflow execution. In ProtocolDB, scien-
tific protocols record both the scientific aim of each task
and the description of its implementation. To offer flex-
ibility, we decompose each scientific protocol into two
components: design and implementation. Both the de-
gign and the implementation of a scientific protocol are
composed of coordinated tasks. Each task of the proto-
col design is defined by its input, output, and descrip-
tion. When an ontology is available to describe the
scientific objects and tasks involved in a scientific pro-
tocol, the input and output of each protocol design task
are defined by their respective concept classes. The
description of the task may be a relationship defined
between the input and output conceptual classes or a
description of a relationship not defined in the ontology.
The protocol implementation describes the selection of
resources used to implement each task of the protocol.
The description of an implementation task is the appli-
cation, or service (e.g., Web service [1], BioMOBY [13])
gelected to implement the corresponding design task.
The input (respectively output) of a protocol imple-
mentation task is the description of the data collection
input (respectively output) format of the service. In-
put data are instances of the input conceptual class of
the corresponding design task. A similar distinction of
the scientific aim from its implementation was noted in
[5] with workflow conceptualization and specification,
and in [3] with abstract and concrete workflows.

2 Motivating Example

Alternative Splicing (AS) is a splicing process of a
preemRNA sequence transcribed from one gene that
leads to different mature mRNA molecules thus to dif-
ferent functional proteins. Alternative splicing events
are produced by different arrangements of the exons of
a given gene. The Alternative Splicing Protocol (ASP)
we present in this section is currently supporting the
BioInformatics Pipeline Alternative Splicing Services

BIPASS [9].

The Alternative Splicing Protocol (ASP) takes a set
of transcripts as input and returns clusters of tran-
scripts aligned to a gene. The process of alignment
consists of an alignment of each transcript sequence
against each genomic sequence of a whole genome of
one or more organisms. This step is executed with
all known transcripts extracted from different public
databases. A clustering step immediately follows the
alignment step. That step allows delimiting the tran-
script region of a gene excluding its regulation region.
A cluster normally represents or may be representative
of all intermediate transcripts (from the pre-messenger-
RNA(s) to the mature messenger-RNA(s)) required to
obtain one or several functional translated proteins
from the same gene.

A single protocol design step such as the alignment
step of ASP may be mapped to a complex implemen-
tation protocol. The motivations for such a complex
implementation protocol are detailed and analyzed in
[8]. The protocol implementation corresponding to the
alignment task of ASP is composed of seven tasks il-
lustrated in Figure 1.

FH

AT s1

s1/s2}._+1’ F

mloE

s1
s2

Figure 1. Initial Design Task Decomposition

First the input sequences are retrieved from lo-
cal or public data sources. Transcript Data Fil-
tering/Queries (TAFQ) and Genomic Data Filter-
ing/Queries (GAFQ) denote queries against local or
external databases to retrieve the input sequence query
and the sequence database against which it is aligned.
The input sequences are submitted to BLAT, an align-
ment tool that eliminates roughly all sequences not
likely to produce a fine alignment with the input.
S1 and S2 denote the Transcript and Genome data
flows respectively, and BLAT is selected to implement
AT1. Once the first alignment step is performed,
the first 10% of the output are selected (F). Then
the aligned transcripts are extracted from the previous
steps (branch 1) and the aligned genomic sequences are
extracted from the previous step (branch 2). Fat de-
notes the filtering function that removes all transcripts
aligned but failed under a given threshold percentage
value. EGS extracts the exact part of the matching
genomic sequences and adds a defined number of bases
in upstream and downstream of the extracted genomic
sequence. The resulting transcript sequences S1 and
genomic sequences S2 are submitted to a second align-

1-4244-1509-8/07/$25.00 ©2007 IEEE

ment tool that performs a fine alignment step. AT2 is
implemented with SIM4 while S1°/S2’ represents the
final output of the whole alignment.

3 Protocol Model Analysis

Scientific workflows expressed in workflow system
such as Taverna [12], Kepler [11], or SemanticBio [10]
are typically driven by interoperability. They are com-
posed of bioinformatics services that are connected se-
quentially or in parallel for execution. These systems
do not offer a protocol analysis that could generate
an equivalent protocol that could be more efficient for
storage purposes, execution, or data provenance anal-
ysis. In this section we analyze scientific protocols and
show that Petri nets offer a valuable model to represent
and optimize scientific protocols.

An equivalent representation of the protocol shown
in Figure 1 with a Finite State Machine (FSM) with a
Source state and a Sink state (introduced for complete-
ness) is shown in Figure 2. The FSM representation of
the protocol may easily be converted into a Petri net
by representing each state or edge of the FSM by a
firing transition or process.

Figure 2. FSM of Design Task

The Petri net obtained from the transformation of
the above automaton is shown in Figure 3. Such rep-
resentation is an abstraction of the dataflow that cap-
tures the internal structure resulting from the sequen-
tial or parallel connectors used to define the protocol.

m TORQ -

Source /

Figure 3. Petri Net of Design Task

The incidence matrix of the protocol is defined by
A = (ay), where aij = e(t, pi) - e(ps, 4), and where
tiis a transition (e.g., AT1), pi is a process (e.g., p4),
and e(n, m) is the number of incoming edges from n to
m.

Example The incidence matrix A of the alignment
protocal illustrated in Figure 2 is computed as follows.
Each column corresponds to a process g, ..., p10 and
each raw corresponds to a workflow transition Source,
TDFQ, GDFQ, AT1, F, Fat, EGS, AT2, and Sink.
The incidence matrix obtained from the Petri net of
the design task decomposition is shown in Figure 4.

1 1 o o o0 0 0 0o 0 0 O
-1 0 1 6 o0 0 O 0 0 0 O
o -1 0 1 0 i o0 0o 0o 0 0
0o 0 -1 -1 1 600 o 0 0 O
o0 0 0 -1 0 1 o0 0 0
o 0o o0 0 0 0 -1 1 1 0 0
o0 o0 0 0 -1 0 0 -1 1 0
o 0o o0 0 O 0 0 -1 0 -1 1
o0 o0 0 0 0 0 0o 0 0 -1

Figure 4. ASP incidence matrix

The Petri net simulates the workflow as follows. The
initial state is represented by a vector @y and each firing
vector identifies the transition fired in the Petri net.
Given a state o; and a firing vector ¢y, @31 = & + 03 A.

Example Firing the transition Fat corresponds to the
firing vector [0,0,0,0,0,1,0,0,0]. From the initial state
T = [0,0,0,0,0,0,0,0,0,0,0], the successive applica-
tion of firing rules generates the covering tree of the
workflow illusirated in Figure 5. The coverability tree
is the set of all states of the system reachable from the
initial state and thus represents all valid implementa-
tiong that match the design task. There are various
algorithms proposed to efficiently and automatically
determine the covering tree [, 6].

The approach allows the representation (thus the
storage) of complex implementation workflows in the
terms of a simple mathematical model which conserves
gemantics and use syntaxes that can be traced back to
the original design. Furthermore, although the graph
only represents data dependencies, the model is robust
enough to support other types of dependencies. For ex-
ample, in addition to the data dependencies we could
associate with each task a time constraint as follows.
For each task 7, there is a couple (3., ¢) where ¢, repre-
sents the earliest time the task can be executed and ¢; is
the latest time the task can be executed to preserve the
over dependencies in the workflow. The time constraint
capacity of the model allows ug to not only optimize a
design in terms of steps but also in term of scheduling
for query planning. Other paramaters may be asso-
ciated to tasks to capture various measures relevant
to workflow execution. Such analysis so far has been
greatly ignored by other bioinformatics workflow data

1-4244-1509-8/07/$25.00 ©2007 IEEE

1330

Initial State x0 [0,0,0,0,0,0,0,0,0,0,0]
Source

[1,1,0,0,0,0,0,0,0,0,0]

TDFQ DFQ

[0,1,1,00,00,00,00 [1,0071,0100000

GDFQ TDFQ

[0,0,1,1,0,1,0,0,0,0,0
AT

A,
[0,0,0,0,1,1,0,0,0,0,0
F
[0,0,0,0,0.1,1,0,0,0,01

Fat

[0,0,0,0,0,‘1 0,1,1,00
EGS

[0,00,0,000,1,0,1,d
ATZ

[0,0,0,00,00,0,0,0,1

Sink

Initial State xo [0,0,0,0,0,0,0,0,0,0.0

Figure 5. Coverability Tree of the Petri Net

analygis and storage approaches. It is crucial when
dealing with these vast amounts of data and the sort
of data intensive analyses over large distributed sys-
tems as encountered in bioinformatics to have a model
that also addresses workflow performance.

4 Workflow Implementation Model

In our approach a workflow implemeniation is
achieved in two steps: an #mplementation specification
step where the workflow is expressed in terms of tan-
gible, available resources: such ag input and output
format or data type, laboratory tools and applications;
and a design/implementation mapping.

4.1

The implementation protocel that represents the ex-
ecutable workflow is consistent with the design pro-
tocol which captures the semantics of the workflow.
If a given design task translates into a composition
of tasks in the implementation model, a local refine-
ment of the design task is created and attached to the
specific implementation such that each implementation
task is mapped directly to a design task. The fact

Implementation Specification

that the design is abstracted and represented by a ma-
trix automatically promotes modularity of the design
through a matrix partitioning! and fully supports re-
decomposition at the implementation stage. Matrix
partitioning is a mature technique for splitting a very
large matrix into smaller, easier to store and more man-
ageable sub-matrices for which key characteristics are
easily determined. In this model as in any graph matrix
representation, depending on the complexity and the
size of the workflow, incidence matrix can be large and
filled with zeros, therefore matrix partitioning allows
conformity in storage, reduction in redundant data and
block grouping for modularity.

0o -1 0 1 0 1 0 0 0 0
= L | 0 0
0 0 0 0 —-1f0 1

0 0 0 0 0
0O 0 0 0 o0
0O 0 0 0 0

0O 0 0 0 0

0 0 0

1 ; 0 0 0 0 0 0 0 0 0

=1 0 1 o 0f0 O 0 0 0 0
0
0

A= 0 0 0 0
1
0
0

0 -1 0
=1 0
0 0

SRR ("

Figure 6. Matrix Partitioning

Example We partition the ASP incidence matrix (see
Figure 6) and although the matrix partitioning was, in
this example, arbitrary the resulting sub-matrices are
still coherent sub-graphs of the Petri net illustrated in
Figure 7, demonstrating the consistency of the design
and the robustness and the degree of modularity of the
model.

A

Source /
\ Pl GDFQ o3

Figure 7. Sub-workflows

Such modeling supports add-ons and updates which
can be easily performed without the overhead of refor-
matting the whole design graph. For example in our

1Experimen‘us on Sparse Matrix Partitioning by S. Riyavongy.
CERFACS Working Note WN/PA /03/32 CERFACS, 42 Avenue
G. Coriolis, 31057 Toulouse Cedex, France.

1-4244-1509-8/07/$25.00 ©2007 IEEE

1331

Table 1. Graph Storage Table

Source | Destination | Weight of the Edge
Source TDFQ 1
Source GDFQ 1
TDFQ AT1 1
GDFQ AT1 1
AT1 r 1
r AT2 1
Fat EGS 1
Fat AT2 1
EGS AT2 1
AT2 Sink 1

current illustration design we could replace the pro-
cess pd by some complex sub-graph without modify-
ing the rest of the design and only be concerned with
the consistency of the data representing the edge com-
ing and leaving p4. It is worth noticing that to fully
support and reinforce data dependencies or other con-
strains during decomposition, uniformity and unique-
ness in the naming (IDs) of tasks must be adopted by
the designer, but this requirement is not an additional
overhead because the storage and the query of tasks
already imposed such requirement on the overall work-
flow design. This technique also allows the system to
search for certain patterns in the design and to up-
date a given design by searching for the most common
decomposition of a design task at the implementation
stage.

4.2 Workflow Storage Schema

The storage of the design workflow is done at two
different levels of abstraction, although any one of them
fully expresses the design. First the graph is stored
in a table (source, destination, weight of edge). For
any given two connected tasks in the workflow, the
source attribute is the preceding task’s name or 1D, the
destination attribute is the successor task of the source,
and the weight of edge is the number of data edges
from the source’s output to the destination’s input. For
example the graph storage corresponding to Figure 2
is displayed in Table 1.

The graph table could be the only record of the
workflow, but the computation and analysis of the
Petri net and its matrix would have to be computed
for each implementation of the workflow. To eliminate
this calculation we propose to store a compressed ver-
sion of its incidence matrix. This solution will avoid
massive matrix data storage because. Indeed as the
workflow gets largeer the matrix size increases, even
with the matrix partitioning. The compression matrix
storage has the following schema: (#, process pjm ,...,

process pin, Wm,...,wn), where wm,..., wn are the nu-
meric values of at,pjm.. ati,pin found in the matrix,
with ati,pj= non zero. For example, A will be repre-
sented with (Source, p0, pl, 1, 1), (TDFQ, p0, p2, -1,
1), ..., (sink, p10, -1) and recorded as follows.

Workflow | 10| Name Creator
Design

Date of Update Task_Table | Matrix_Table
Creation

28

051202007 | 0811672007 ™ Tt

Matrix Data
D:MTI

Transition Transition Name

Process | Edge

Source Weight
1

TDFQ
GDFQ
ATL
05 ¥

Fat
EGS
AT2
Sink

>

p1 1

5 Conclusion and Future Work

ProtocolDB currently under development at Ari-
zona State University is a system for scientific proto-
col management, including creating, storing, querying,
and analyzing scientific workflows. The key compo-
nents of the system consist of a friendly user interface
to design and implement workflows, a robust relational
database to store workflows and their associated data.
In this paper we present preliminary results related to
strategies for optimal protocol representation to opti-
mize protocol access. Future work will focus on exploit-
ing workflow equivalences to improve workflow execu-
tion, workflow storage, and reasoning on data prove-
nance.

Acknowledgments This research was partially supported
by the National Science Foundation® (grants I1S 0223042,
I1S 0431174, IIS 0612273, and IIS 0738906). Michel Kinsy
conducted the work while completing his undergraduate
studies at ASU. The authors would like to thank Piotr Wlo-
darczyk and Christophe Legendre for their valuable input,
and Natalia Kwasnikowska and Jan Van den Bussche for
multiple discussions on scientific workflows.

References

[1] David Booth and Canyang Kevin Liu. Web Ser-
vices Description Language (WSDL) Version 2.0
Part 0: Primer. W3C Working Draft, Decem-
ber 2004. http://www.w3.org/TR/2004/WD-wsdl20-
primer-20041221/.

2Any opinion, finding, and conclusion or recommendation ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

1-4244-1509-8/07/$25.00 ©2007 IEEE

1332

[2] David Churches, Gabor Gombas, Andrew Harrison,
Jason Maassen, Craig Robinson, Matthew Shields, lan
Taylor, and Ian Wang. Programming Scientific and
Distributed Workflow with Triana Services. Inter-

national Journal on Concurrency and Computation:
Practice and Ezperience, 18(10):1021-1037, 2006.

Ewa Deelman, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Sonal Patil, Mei-Hui Su,
Karan Vahi, and Miron Livny. Pegasus: Mapping Sci-
entific Workflows onto the Grid. In Furopean Across
Grids Conference, pages 11-20, 2004.

Alain Finkel. Decidability of the termination problem
for completely specified protocols. Distributed Com-
puting, 7(3):129-135, 1994.

Nada Hashmi, Sung Lee, and Michael P. Cummings.
Abstracting workflows: unifying bioinformatics task
conceptualization and specification through semantic
web services. In W3C Workshop on Semantic Web for
Life Sciences, Cambridge, Massachusetts, USA, 2004.

Didier Cristani Alain Jean-Marie and Christine Coves.
Petri net analysis: Complexity and finite coverability
graph in modular design. Studies in Informatics and
Control, 14(1):54-64, 2005.

Z.0é Lacroix and Terence Critchlow, editors. Bioinfor-
matics: Managing Scientific Data. Morgan Kaufmann

Publishing, 2003.

Z0é Lacroix and Christophe Legendre. Analysis of a
Scientific Protocol: Selecting Suitable Resources. In
First IEEE International Workshop on Service Ori-
ented Technologies for Biological Databases and Tools,
In conjunction with ICWS/SCC, pages 130-137, 2007.

Z0é Lacroix, Christophe Legendre, Louiga Raschid,
and Ben Snyder. BIPASS: Biolnformatics Pipelines
Alternative Splicing Services. Nucleic Acids Research,
Web Server Issue: W292-6, July 2007.

Z0é Lacroix and Hervé Ménager. SemanticBio: Build-
ing Conceptual Scientific Workflows over Web Ser-
vices. In Data Integration in the Life Sciences, volume
3615 of Lecture Notes in Computer Science, pages 296—
299. Springer, 2005.

Bertram Ludé&scher, Ilkay Altintas, Chad Berkley, Dan
Higgins, Efrat Jaeger, Matthew Jones, Edward A. Lee,
Jing Tao, and Yang Zhao. Scientific Workflow Man-
agement and the KEPLER System. Concurrency and
Computation: Practice and Ezperience, Special Issue

on Scientific Workflows, 18(10):1039-1065, 2005.
Thomas M. Oinn, Matthew Addis, Justin Ferris, Dar-

ren Marvin, Martin Senger, R. Mark Greenwood,
Tim Carver, Kevin Glover, Matthew R. Pocock, Anil
Wipat, and Peter Li. Taverna: a tool for the com-
position and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045-3054, 2004.

Mark D. Wilkinson and Matthew Links. BloMOBY: an
open-source biological web services proposal. Briefings
in Bioinformatics, 3(4):331-341, December 2002.

(3]

(4]

(5]

(6]

(7]

(8]

(9

(10]

(1]

[12]

(13]

