
Low-Overhead Hard Real-time Aware Interconnect

Network Router
Michel A. Kinsy

Department of Computer and Information Science

University of Oregon

Email: mkinsy@cs.uoregon.edu

Srinivas Devadas

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Email: devadas@@mit.edu

Abstract—The increasing complexity of embedded systems is
accelerating the use of multicore processors in these systems. This
trend gives rise to new problems such as the sharing of on-chip
network resources among hard real-time and normal best effort
data traffic. We propose a network-on-chip router that provides
predictable and deterministic communication latency for hard
real-time data traffic while maintaining high concurrency and
throughput for best-effort/general-purpose traffic with minimal
hardware overhead. The proposed router requires less area than
non-interfering networks, and provides better Quality of Service
(QoS) in terms of predictability and determinism to hard real-
time traffic than priority-based routers. We present a deadlock-
free algorithm for decoupled routing of the two types of traffic.
We compare the area and power estimates of three different
router architectures with various QoS schemes using the IBM 45-
nm SOI CMOS technology cell library. Performance evaluations
are done using three realistic benchmark applications: a hybrid
electric vehicle application, a utility grid connected photovoltaic
converter system, and a variable speed induction motor drive
application.

I. INTRODUCTION

With multicore and many-core architectures becoming

mainstream computing platforms, they are deployed in many

computation environments that require concurrent execution

of different tasks. These tasks may require hard real-time

and/or normal computation support with certain inter-core

communications guarantees. Some data communications may

be highly latency-sensitive while others may not. The current

trend in system-on-chip (SoC) design is system-level inte-

gration of heterogeneous technologies consisting of a large

number of processing units such as programmable RISC cores,

memory, DSPs, and accelerator function units/ASIC [1], [2].

In fact, many control applications today have both general-

purpose and real-time requirements. These SoCs must guar-

antee: (1) real-time operation reactive to external events, like

traditional embedded systems; and (2) high average com-

puting throughput and programmability, like general purpose

multicore systems. In new automotive applications, dynamic

stability control (DSC) support and engine control systems are

coupled with advanced active safety programs, e.g., collision

avoidance algorithms, to help prevent the driver and vehicle

from a possible accident. Collision avoidance functionality

determines the safe approaching speed to the front car by

detecting the relative speed and distance through one or several

types of sensors, like video, laser, or ultrasound, etc., and

converting in hard real-time these parameters into a collision

avoidance strategy. These safety critical system components

are integrated onto a single chip with multimedia and com-

fort applications, e.g., seat-adjusted braking, fuel utilization

analysis, data streaming, and voice commands [3].

Dally et al [2] argue that an SoC, composed of a number

of hardware components: processors, DSPs, memories, pe-

ripheral controllers, and custom logic, should be connected

by a network that routes packets between them, instead of

connecting these modules via dedicated wires. Network-on-

chip (NoC) architectures constitute an effective data communi-

cation infrastructure, providing both flexible connectivity and

scalability [4].

A. Typical Virtual Channel Router

(a) Router architecture

VC
Allocator

!

Input
Port

VC state

crossbar
switch

Routing
Module

Switch
Allocator

Input
Port

VC state

Output
Port

!

!

Output
Port

(b) Router pipeline

Routing Computation
(RC)

Virtual Channel
Allocation (VA)

Switch Allocation
(SA)

Switch Traversal
(ST)

!

Fig. 1. Typical virtual-channel router architecture.

In conventional virtual-channel routers [5], the routing oper-

ation takes four steps or phases; namely, routing (RC), virtual-

channel allocation (VA), switch allocation (SA), and switch

traversal (ST), where each phase corresponds to a pipeline

stage in the router. When a head flit (the first flit of a packet)

arrives at an input channel, the router stores the flit in the buffer

for the allocated virtual channel and determines the next hop

for the packet (RC phase). Given the next hop, the router then

allocates a virtual channel in the next hop (VA phase). Finally,

the flit competes for a switch (SA phase); if the next hop can

accept the flit, it moves to the output port (ST phase). Figure 1

illustrates such a virtual-channel router (VCR).

B. Predictability in virtual channel router

Unfortunately, virtual-channel based routing in multicore

systems in general, and SoCs in particular, further weak-

ens the notion of predictability and determinism so critical

to hard real-time inter-core communications. The fact that

various traffic must compete for physical link access leads

to non-deterministic data transfer delays. Therefore the main

drawback of conventional NoCs is their inadequacy in la-

tency predictability. A few techniques, such as express virtual

channels [6], dedicated virtual channels, priority-based NoC

routing [7], QoS at the network level [8], and RTOS support

for NoC-based architectures [9], have been used to mitigate

the lack of deterministic latency guarantees in NoC-based

communications. Still, they have not been able to meet the

hard real-time constraints required by many distributed real-

time applications.

The two main design requirements for the on-chip commu-

nication layer in these SoCs are: (1) hard real-time processes

have absolute deadlines that must be met, and this includes

processing time at the cores and inter-core data transfer

latencies; (2) the network-on-chip is a shared resource and it

needs to be used by all processes (real-time and best-effort).

In this work, we propose a novel network-on-chip router,

called the Hard Real-time Support (HRES) router. It provides

predictable and deterministic communication latency for real-

time data traffic while maintaining high concurrency and

throughput for normal/general-purpose traffic with minimal

hardware overhead. Specific key contributions are as follows:

• Decoupling of hard real-time and best effort traffic by

designing a two-datapath router;

• Routing algorithm to maximize link throughput, guaran-

tee hard real-time timing constraints, and provide fairness

of link utilization among the two classes of traffic;

• Acknowledgment-free, retransmission-free, lossless,

bufferless, table-based routing;

• Deadlock and livelock freedom guarantees with no mod-

ification to the buffered datapath of the router, and low

hardware overhead for supporting hard real-time commu-

nications.

II. RELATED WORK

There are several research efforts with the goal of providing

some amount of predictability at different architectural levels

in multi-processor systems. At the interconnect network level

for example, Grot et al [10] propose a new lightweight

topology-aware QoS architecture that provides service guar-

antees for applications such as consolidated servers on CMPs

and real-time SoCs. But to reduced hardware complexity, they

adopt a scheme that restricts the areas on the chip where QoS

is guaranteed. Our approach provides hard real-time support

throughout the chip at low hardware complexity. Shi and

Burns [7] also present a method for evaluating at design

time the schedulability of a traffic-flow set with different

quality of service (QoS) requirements in a real-time SoC/NoC

communication platform. Their approach uses priority-based

wormhole switching policy and off-line schedulability analysis

of traffic-flows. In this paper, the router and routing algo-

rithm are flexible to support run-time application scheduling.

Æthereal [11] is a generalized NoC architecture that uses a

centralized scheduler and time-division multiplexing to allo-

cate link bandwidth to provide guaranteed throughput. Authors

made the point that with higher average latency, time-division

multiplexed access is not ideal for high-priority control traffic.

Kakoee et al [12] propose ReliNoC, a network-on-chip archi-

tecture that can withstand failures, while maintaining not only

basic connectivity, but also quality-of-service support based

on packet priorities. This work primarily focuses on QoS in

the presence failure. Das et al present in [13] an application-

aware prioritization approach for On-Chip Networks. The

main idea is to divide processor execution time into phases,

rank applications within a phase based on stall-time criticality,

and have all routers in the network prioritize packets based

on their applications’ ranks. To overcome the lower resource

utilization associated with traditional QoS routers, Rijpkema

et al in [14] present a prototype router implementation which

combines guaranteed throughput and best-effort routers by

sharing resources. The IBM Colony router [5] found in the

ASCI White supercomputer uses a hybrid datapath packet

routing architecture. The router has three crossbars, and one

of those crossbars is used by packets to cut through the router

when contention is low to reduce latency. This architecture

informs some of the decisions made in designing our HRES

router.

III. HRES ROUTER ARCHITECTURE

As described in Section I, a flit routing operation generally

takes four steps. Resource sharing conflict may arise in three

of those four stages: at the buffer read and route computation

level, at the virtual-channel allocation level, and at the switch

arbitration level. The alternative to the multi-stage routing

scheme is the bufferless approach. Bufferless routing generally

consists of arbitrating between two flits competing for the

same physically link at each network router or node. The flit

that wins access to the link continues through the network

competing for link access at each node. Some type of acknowl-

edgment mechanism is implemented to inform the source node

of a successful transmission or a failure. Commonly, time-out

or negative acknowledge schemes are used for the acknowl-

edgment [15]. Although the process as just described generally

has lower network traversal latency than the buffered approach,

dropping of flits even with acknowledgment mechanism makes

data communication through the bufferless datapath less pre-

dictable and deterministic, both key desirable characteristics

for effective hard real-time communication.

The main challenge is to guarantee the hard deadline of

certain packets while promoting a high degree of communi-

cation concurrency, optimal bandwidth utilization, as well as

predictability, determinism, and low latency, with no signifi-

cant area or power increase. The HRES-router uses a hybrid

datapath with an interface identical to the conventional virtual-

channel router shown in Figure 1. This simplifies the interface

verification and allows for quick and seamless integration of

the router into existing SoCs with little or no system-level

change. Data communications are grouped into two categories:

guaranteed latency for hard real-time traffic and best effort

latency for general-purpose traffic. Note that traditional quality

of service based on priority can still be used in the case of

best effort latency traffic.

A. Router Input Port Micro-Architecture

Flit type at the network interface is expanded by a single bit

to mark the flit as hard real-time or normal traffic. Flits coming

in to the router have two datapaths, one for real-time traffic

or guaranteed latency and one for general-purpose (non real-

time) traffic or best effort latency. Just as the virtual-channel

(VC) bits are read from the incoming flit for VC allocation,

the service bit is read from the flit. If the guaranteed latency

bit is set to 1, the flit is not buffered, it is directly routed to

the real-time crossbar. The datapath for general-purpose (non

real-time) traffic consists of input buffers storing flits while

they are waiting to be forwarded to the next hop. When a non

real-time flit is ready to move, the switch connects an input

buffer to an appropriate output channel via a series of actions:

route computation, virtual-channel at the next hop allocation,

and finally switch allocation. These stages are pipelined and

stalled in case of resource contention.

B. Switching structures and Switch Allocations

Output

Port

Switch

Allocator

Guaranteed Service
Selector

Input

Port

VC State

1

VC

Allocator

Routing

Module

Fig. 2. Switching logic of the two types of traffic.

There are two crossbars at the router, one for the buffered

general-purpose traffic and one for the bufferless real-time

traffic. Figure 2 illustrates switching structures and their loca-

tions on the datapath. As previously mentioned, the buffered

datapath is left unmodified. The only added logic is on the

output port side. In addition for the switch allocator to grant

requests, it now also checks that granted requests are not

blocked by real-time flits during link traversal. If it is the case,

the switch allocator proceeds as though the port request lost

switch allocation. This modification is not on the critical path

logic and can be done without introducing another cycle in the

pipeline or affecting the timing characteristics of the datapath

logic. In the Verilog code for the conventional virtual-channel

router, a switch allocation stall is done on a VC at a port

when request is 1 and grant is 0. In the HRES-router switch

allocation stall is done on a VC at a port when request is 1
and grant is 0, or when valid bit for real-time flit assigned to

the port is 1.

Hard real-time communications are more predictable in

terms of source and destination processing elements partici-

pating in the transactions. This is due to the fact that these

transactions are event-driven, and event handlers mapping

is generally done offline. We use this property of real-time

communication to derive the algorithm for determining routes.

The details of the algorithm are presented in Section IV. In

the HRES router, the switch for the bufferless traffic is sup-

plemented with a programmable guaranteed-service selector

table. This approach prevents flit dropping and removes the

need for acknowledgment (and acknowledgment logic) while

constraining route selection minimally. Once routes are deter-

mined, routers are pre-configured by setting the proper selector

bits at each router. For a 5-port router, the real-time traffic

switch consists of five 5-to-1 multiplexers set up offline and

per-application. The guaranteed-service selector table allows

multiple concurrent real-time traffic through a router as long as

there is no sharing of physical links. Two types of real-time

communications are supported in the HRES-router; one-to-

one and one-to-many. Many-to-one will undoubtedly introduce

potential conflicts. It is worth noting that in this router, one-

to-many data communications are automatically supported

with no additional logic. It has been shown that for low to

medium network load, significant network power savings, with

minimal performance loss, can be made with bufferless routing

[15], [16]. Therefore, one can envision disabling the buffered

datapath at the routers even in the absence of real-time traffic

for power savings under low network traffic applications.

C. Other router architectures considered

VC
Allocator

!

Input
Port

VC state

crossbar
switch

Routing
Module

Switch
Allocator

Input
Port

VC state

Output
Port

!

!

Output
Port

!

crossbar
switch

Guaranteed Service
Selector

(a) Two-network router.

Switch

Allocator

VC

Allocator

…

Input

Port

VC state

Routing

Module

Input

Port

VC state

Output

Port

…

…

Output

Port

…

crossbar

switch

(b) Single shared crossbar router.

Fig. 3. Other alternative designs.

One approach to guarantee fixed latencies for the real-

time traffic is to have a two-network routing scheme, where

the real-time and the normal traffic share no physical link.

Figure 3(a) shows such a router. The key disadvantages of

this type of router are duplication of wires and logic that

lead to more cell area, shown in Table I, and changes in

the network interface compared to the conventional router.

A third router architecture considered consists of a single

large crossbar, where the switch arbitration logic is modified

to give priority to the real-time traffic. Figure 3(b) depicts

this router architecture. This approach increases the switch

arbitration datapath and adds to the router critical path. The

arbiter must serialize real-time and normal traffic requests.

All three routers use the same table-based routing algorithm

presented in Section IV.

Number ports Cell area

HRES router 392 47190.44

Two-Network router 721 51766.84

Single crossbar router 392 52812.94

TABLE I
AREA COMPARISON OF ROUTER ARCHITECTURES.

IV. ROUTING ALGORITHM

Algorithms used to compute routes in network-on-chip

(NoC) architectures, generally fall under two categories: obliv-

ious and dynamic [17]. For the normal traffic using the

buffered datapath, any traditional routing algorithm will still

work and under the same assumptions. For bufferless, conflict-

free, hard real-time traffic, the routing scheme is slightly more

restricted. Oblivious routing with table-based support for both

minimal and non-minimal routing is more appropriate. Con-

sidering application communication characteristics in terms

of the real-time data constraints and normal data bandwidth

requirements, the routing algorithm establishes the real-time

traffic routes statically and offline. The key challenge is to

find a fair and an effective tradeoff between load balancing of

the network, to avoid premature congestion or lack of forward

progress of normal traffic, and low data communication latency

for both types of traffic.

A. Definitions and routing formulation

We first introduce standard definitions of flow networks.

Definition 1: A flow fi is a data communication/traffic pat-

tern from one processing element–source node si–to another

processing element–destination node ti.
The set of packets/flits part of flow fi passing through the

network link from node u to node v consuming bandwidth

and/or buffer space during a certain time interval is represented

with the real-valued function f(u, v). We may have multiple

flows with the same source and destination.

Definition 2: Given a multicore topology, we can derive

a network flow G(V,E), a directed graph, where an edge

(u, v) ∈ E represents a physical inter-router link and has

capacity c(u, v). The capacities c(u, v) are the available band-

widths on edges. If (u, v) /∈ E, then c(u, v) = 0.

Definition 3: For the purpose of differentiating between

real-time flows from normal flows, we denote real-time flow

i from node si to node ti as fi[r]. We also introduce c[i](u, v)
(the upper bound on flow demand fi[r]), w[i](u, v) (a real-

valued weight function for the edge (u, v)), and ki (the

maximum number flow fi[r] can be divided for routing).

We use the following mixed-integer linear programming

(MILP) formulation to compute the set of admissible or

feasible routes for the real-time flows.

Minimize
∑

i

∑

(u,v)∈E

fi[r](u, v) · wi[r](u, v) (1)

subject to:

∀i, ∀(u, v) ∈ E fi[r](u, v) ∈ S[r](u, v),
∣

∣S[r](u, v)
∣

∣ ≤ 1
(2)

0 ≤
∑

i

fi[r](u, v) ≤ c[i](u, v) ≤ c(u, v) (3)

∀(u, v) ∈ E (
∑

i

fi(u, v) +
∑

i

fi[r](u, v)) ≤ c(u, v) (4)

∀i fi[r] ∈ Ki[r],
∣

∣Ki[r]

∣

∣ ≤ ki (5)

∀i, ∀j ∈ {1, ..., ki}

∑

(u,v)∈E f(i,j)[r](u, v)

f(i,j)[r]
≤ deadlinei

(6)

The real-valued weights w[i](u, v) are selected per applica-

tion. A uniform weight of 1.0 will try to minimize the hop

count. A good heuristic is a weight selection that is the inverse

proportion of the number of adjacent nodes. This approach

assigns higher weights to edge links, because flows using these

edges have less path selection diversity. ki allows a real-time

flow fi[r] to be spread across k different paths if the application

permits. This MILP formulation, which routes real-time traffic

in a predictable and deterministic fashion, also makes the

splitting of flows more manageable because it eliminates many

of the problems encountered with buffered flow splitting, such

as out-of-order packets delivery and destination buffering and

rearrangements of packets. deadlinei is derived from the ap-

plication specification, and Equation 6 enforces the condition

that each sub-flow f(i,j)[r] of flow fi[r] is routed through a

path where the deadline can be met. Although the algorithm

allows splitting of real-time flows to relax routing constraints,

no guarantee is made on the optimality of splits, since the

classical splittable flow and unsplittable flow problems are NP-

hard [18]. Equation 2 simply constrains the link (u, v) to be

used by at most one real-time flow. For the routing of normal

flows and virtual-channel allocation, any traditional routing

algorithm (oblivious or adaptive) and VC allocation scheme

(static or dynamic) can be used.

B. Quality of service (QoS)

Quality of service is the method for guaranteeing that band-

width and buffer utilization by the various flows in the network

is done in a matter that promotes throughput fairness and

latency fairness. QoS in this work needs to be ensured for each

flow type and among flows of the same type. Real-time traffic

is contention-free, therefore to enforce throughput fairness

and avoid starvation of normal flows, the variable c[i](u, v)
is used to ensure a minimum bandwidth availability to normal

flows. The flow splitting property of the routing algorithm

allows real-time flows that violate the minimal bandwidth

threshold to be split. Due to the deterministic nature of real-

time flow paths, any adverse effect of the splitting, e.g., out-

of-order packets/flits, can be resolved through sender-receiver

synchronization. Latency fairness is partially controlled by the

application. In some cases, deterministic latency, especially

for real-time flows, may be more important than low latency.

The real-valued weights w[i](u, v) are used to control the

latency fairness of real-time flows and load-balancing of the

network at the routing level. For throughput fairness and

latency fairness among buffered traffic, any traditional fairness

mechanism can be applied.

C. Deadlock and livelock

The algorithm for routing real-time traffic is deadlock-

free because it assumes bufferless paths and no sharing of a

physical link. Similarly, it is livelock-free because there is no

run-time misrouting of flow. Deadlock-freedom and livelock-

freedom for normal traffic must be independently ensured by

the algorithm used to route normal flows.

V. EVALUATION

We use the Heracles RTL-based multicore design platform

[19], [20] to evaluate the HRES-router and the proposed

routing algorithm. The Heracles design environment uses

synthesizable MIPS cores, supports shared-memory, and has

a compiler for C/C++ applications.

A. Router Configurations

We construct five different router configurations:

1) a virtual-channel reservation-based QoS (v-QoS) router:

VCs are statically partitioned into two sets, one set

is used by the real-time flows and the other by the

best effort flows. VC allocation per packet is done

dynamically within a set;

2) a priority-based QoS (p-QoS) router: real-time flows are

assigned the highest priorities, and packets can only be

given VCs off the same priority. Physical link access is

also prioritized;

3) a lossy bufferless (L-Bless) router with acknowledg-

ment;

4) a lossless bufferless (Ls-Bless) router: to void packet loss

and retransmission we use a routing table to statically

configure routes using the algorithm designed for the

HRES-router;

5) our proposed HRES-router.

For the virtual-channel based routers, we use 2 VCs, 4 VCs,

and 8 VCs per port configurations.

B. Benchmarks

To test the efficiency the various routing techniques, we ex-

plore three benchmark applications: one from the automotive

industry, hybrid electric vehicle (HEV), one smart grid system

application, utility grid connected photovoltaic converter sys-

tem (smart-grid), and a third one from the industrial motor

control domain, variable speed induction motor drive (mo-

tor drive). These applications have fast switching electronic

components and their control and monitoring require high-

performance and hard real-time computation guarantees. We

profile the applications and construct a directed task-graph for

each application. We group tasks and inter-task communica-

tions under best-effort and hard real-time depending on the

application functional requirements.

C. Results and Comparisons

1) Area and Power Estimates: Area and power estimates

are done using Synopsys Design Compiler with an IBM 45-nm

SOI CMOS technology cell library. Typical operating point is

1.0 V, 25 C, and worst-case is 0.9 V, 125 C. Figure 4 shows

the area utilization per router with different virtual-channel

configurations. Overall, VC-based router occupies significantly

more cell area than bufferless router. The total cell area of

the lossless bufferless router is less than 3% of the area

recorded for the 2-virtual-channel VCR. Across different VC

configurations, the HRES router takes less than 3% more

cell area on average to build. This shows that the HRES

router, which guarantees predictability, determinism, and low

latency for hard real-time of packets while maintaining all the

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

!"

'!!!!"

#!!!!"

(!!!!"

$!!!!"

)!!!!"

%!!!!"

*!!!!"

&!!!!"

+!!!!"

,-./0123-124"

5-167-./0123-124"

8-924"7:44"2;:2"

Fig. 4. Total cell area utilization per router.

functionalities of the conventional VC router, has negligible

area overhead. Figure 5 shows the power consumption per

router. Power summary does not include the clock tree power.

The power consumption per router is inline with the area

estimates. HRES router has comparable power consumption

to the conventional VC router. Dynamic power is lower than

the cell leakage power because application-based switching

activity is not taken into account.

<-=:;">.?@"A;:6B=097C01D"273E03:B"

!"

!F#"

!F$"

!F%"

!F&"

'"

'F#"

!"

)"

'!"

')"

#!"

#)"

GH12.07""

,:44"4:2I2D:"

Fig. 5. Total power consumption per router.

Table II shows the clocking speed of the various routers per

number of virtual channels. The conventional VC router runs

the fastest around 6.7GHz, but it has 4 pipeline stages. On

the other hand bufferless routers are single stage and run close

to 3.6GHz. The HRES router, which architecturally inherits

from both, runs closer to the bufferless router speed.

v-QoS p-QoS HRES L-Bless Ls-Bless

2-VC 6.67 5.88 3.45 3.70 3.57

4-VC 6.25 5.56 2.94 3.70 3.57

8-VC 5 5 2.78 3.70 3.57

TABLE II
CLOCKING SPEED OF ROUTERS.

2) Throughput and Latency Results: We use the Heracles

default setup: 2D-mesh, 46-bit flits, 8 VC depth, and variable

packet length. We run our benchmark applications on a 16-

core system synthesized on the Virtex6 XC6VL75T. We use

XY-routing for all routers except Ls-Bless and HRES. Since

our benchmarks are control applications we can increase the

network traffic by increasing the number of state variables and

monitoring variables in the application.

Figures 6(a), 6(b), and 6(c) show the throughput results for

the HEV applications for 2 VCs, 4 VCs, and 8 VCs respec-

tively. Other applications show similar trends. In Figure 7(a)

we present the total system step latency per router for the smart

grid application, and Figure 7(b) shows the average per hop

latency using the motor drive application. Overall, the HRES-

router outperforms other routers in terms of throughput and

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

Number of state and monitoring variables

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
p

a
c
k
e

ts
 r

e
c
e

iv
e

d
 i
n

 o
n

e
 s

y
s
te

m
 s

te
p

HEV

L−Bless

Ls−Bless

v−QoS

p−QoS

HRES

(a) Using 2 Virtual channels per port.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

Number of state and monitoring variables

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
p
a
c
k
e
ts

 r
e
c
e
iv

e
d
 i
n
 o

n
e
 s

y
s
te

m
 s

te
p

HEV

v−QoS

p−QoS

HRES

(b) Using 4 Virtual channels per port.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

Number of state and monitoring variables

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
p
a
c
k
e
ts

 r
e
c
e
iv

e
d
 i
n
 o

n
e
 s

y
s
te

m
 s

te
p

HEV

v−QoS

p−QoS

HRES

(c) Using 8 Virtual channels per port.

Fig. 6. Throughput results for the HEV application.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7
x 10

5

Number of state and monitoring variables

T
o

ta
l
s
y
s
te

m
 s

te
p

 l
a

te
n

c
y
(c

y
c
le

s
)

Smart Grid

L−Bless

Ls−Bless

v−QoS

p−QoS

HRES

(a) System step latency.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Number of state and monitoring variables

A
v
e

ra
g

e
 h

o
p

 l
a

te
n

c
y
(c

y
c
le

s
)

Motor Drive

L−Bless

Ls−Bless

v−QoS

p−QoS

HRES

(b) Average per hop latency.

Fig. 7. Latency results per router.

latency. Overall the proposed router requires less area than

non-interfering networks, and provides better QoS in terms of

predictability and determinism to hard real-time traffic than

priority-based routers. It also outperforms other routers in

terms of throughput and latency.

VI. CONCLUSIONS

In this paper, we propose a network-on-chip router that

provides predictable and deterministic communication latency

for real-time data traffic, while maintaining high concurrency

and throughput for normal/general-purpose traffic with min-

imal hardware overhead. The proposed router requires less

area than non-interfering networks, and provides better QoS

in terms of predictability and determinism to hard real-time

traffic than priority-based routers. With the HRES-router, we

are able to realize these design goals: low latency, ability to

easily integrate best-effort and hard real-time services, high

effective bandwidth utilization, with low hardware overhead.

REFERENCES

[1] W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor system-on-chip
(mpsoc) technology,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 27, pp. 1701 –1713, oct. 2008.

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” in Proc. of the 38th Design Automation

Conference (DAC), June 2001.

[3] V. von Tils, “Trends and challenges in automotive electronics,” in Power

Semiconductor Devices and IC’s, 2006. ISPSD 2006. IEEE International

Symposium on, pp. 1 –3, june 2006.

[4] A. Ivanov and G. D. Micheli, “The Network-on-Chip Paradigm in
Practice and Research,” Design & Test of Computers, vol. 22, no. 5,
pp. 399–403, 2005.

[5] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2003.
[6] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual channels:

towards the ideal interconnection fabric,” in Proceedings of the 34th

annual international symposium on Computer architecture, ISCA ’07,
(New York, NY, USA), pp. 150–161, ACM, 2007.

[7] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in Networks-on-Chip, 2008. NoCS

2008. Second ACM/IEEE International Symposium on, april 2008.
[8] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Qnoc: Qos architec-

ture and design process for network on chip,” J. Syst. Archit., vol. 50,
pp. 105–128, Feb. 2004.

[9] J. Madsen, S. Mahadevan, K. Virk, and M. Gonzalez, “Network-on-
chip modeling for system-level multiprocessor simulation,” in Real-Time

Systems Symposium, 2003. RTSS 2003. 24th IEEE, dec. 2003.
[10] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-noc: a

heterogeneous network-on-chip architecture for scalability and service
guarantees,” in Proceedings of the 38th annual international symposium

on Computer architecture, ISCA ’11, (New York, NY, USA), pp. 401–
412, ACM, 2011.

[11] K. Goossens, J. Dielissen, and A. Radulescu, “æthereal network on chip:
Concepts, architectures, and implementations,” IEEE Des. Test, vol. 22,
pp. 414–421, Sept. 2005.

[12] M. Kakoee, V. Bertacco, and L. Benini, “Relinoc: A reliable network
for priority-based on-chip communication,” in Design, Automation Test

in Europe Conference Exhibition (DATE), 2011, pp. 1 –6, march 2011.
[13] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-aware

prioritization mechanisms for on-chip networks,” in Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, (New York, NY, USA), pp. 280–291, ACM, 2009.

[14] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. V.
Meerbergen, P. Wielage, and E. Waterlander, “Trade offs in the design
of a router with both guaranteed and best-effort services for networks
on chip,” pp. 350–355, 2003.

[15] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” SIGARCH Comput. Archit. News, vol. 37, June 2009.

[16] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis, “Eval-
uating bufferless flow control for on-chip networks,” in Proceedings of

the 2010 Fourth ACM/IEEE International Symposium on Networks-on-

Chip, NOCS ’10, (Washington, DC, USA), pp. 9–16, IEEE Computer
Society, 2010.

[17] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” Computer, vol. 26, no. 2, pp. 62–76, 1993.

[18] J. M. Kleinberg, Approximation algorithms for disjoint paths problems.
PhD thesis, Massachusetts Institute of Technology, 1996. Supervisor-
Michel X. Goemans.

[19] M. Kinsy, M. Pellauer, and S. Devadas, “Heracles: Fully synthesizable
parameterized mips-based multicore system,” in Field Programmable

Logic and Applications (FPL), 2011 International Conference on,
pp. 356 –362, Sept. 2011.

[20] M. A. Kinsy, M. Pellauer, and S. Devadas, “Heracles: A tool for fast rtl-
based design space exploration of multicore processors,” in Proceedings

of the ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, FPGA ’13, (New York, NY, USA), pp. 125–134, ACM,
2013.

