
Time-Predictable Computer Architecture for Cyber-Physical Systems:
Digital Emulation of Power Electronics Systems

Michel Kinsy∗, Omer Khan∗†, Ivan Celanovic∗, Dusan Majstorovic‡, Nikola Celanovic‡, Srinivas Devadas∗
∗Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology, Cambridge, MA, USA 02139
†Department of Electrical and Computer Engineering
University of Massachusetts, Lowell, MA, USA 01854

‡Faculty of Technical Sciences
Novi Sad, Serbia

Abstract—The smart grid concept is a good example of a
complex cyber-physical system (CPS) that exhibits intricate
interplay between control, sensing, and communication infras-
tructure on one side, and power processing and actuation on
the other side. The more extensive use of computation, sensing,
and communication, tightly coupled with power processing,
calls for a fundamental reassessment of some of the prevail-
ing paradigms in the real-time control and communication
abstractions. Today these abstractions are mostly thought of
as embedded systems, and the overall framework needs to be
reformed in order to fully realize the potential of the emerging
field of cyber-physical systems.

This paper details the design and application of a new ultra-
high speed real-time emulation platform for Hardware-in-the-
Loop (HiL) testing and design of high-power power electronics
systems. Our real-time hardware emulation for HiL systems is
based on a reconfigurable, heterogeneous, multicore processor
architecture that emulates power electronics, and includes a
circuit compiler that translates graphic system models into
processor executable machine code. We present the hardware
architecture, and describe the process of power electronic
circuit compilation. This approach yields real-time execution on
the order of 1μs simulation time step (including input/output
latency) for a broad class of power electronics converters. To
the best of our knowledge, no current academic or industrial
HiL system has such a fast emulation response time. We present
HiL experimental results for three representative systems: a
variable speed induction motor drive, a utility grid connected
photovoltaic converter system, and a hybrid electric vehicle
motor drive.

Keywords-Cyber-Physical Systems, Power Electronics, Multi-
cores, Heterogeneous Architectures, FPGA, Network-on-Chip,
Switched Hybrid Automaton, Hardware-in-the-loop (HiL).

I. INTRODUCTION

Cyber-physical systems (CPS) refer to the integration

of computational and physical resources [1], and unlike

traditional embedded systems, CPS are more distributed and

interactive in nature. Applications of CPS range from small-

scale, safety critical, e.g., a pace maker controller, to large-

scale, distributed, like a smart grid. While these system have

great potential, they demand a fundamental reassessment

of some of the prevailing paradigms in computation and

communication abstractions.

The need to understand the dynamics and instabilities of

the early electrical power grid motivated Vannevar Bush to

develop the world’s first, mechanical, real-time simulator,

in the 1920’s. This is one of the earliest examples of an

advanced, reconfigurable, real-time scientific computational

machine that later came to be known as MIT’s Differential

Analyzer [2]. Today, we are witnessing a new revolution

that is poised to dramatically change the way our society

generates, distributes and uses electrical energy, and energy

in general. The push for green and sustainable energy future

is fueling the drive for a new smart grid, larger penetration

of renewable energy generation, hybrid and electric vehi-

cles, more efficient energy utilization, and better solutions

for large-scale energy storage. One of the key underlying

physical layers of the smart grid is power electronics.

Power electronics is a class of cyber-physical systems.

It comprises a real-time control layer, and power processing

layer. The real-time control part is sensing physical variables

(e.g., voltages, currents, speed, torque, temperature) based

on which it calculates control signals (e.g., switch gate drive

signals) for the power processing layer. The power process-

ing layer consists of semiconductor switches (e.g., mosfets,

IGBT’s) and energy storage elements (e.g., inductors, capac-

itors) that jointly provide the function of modulating electric

power parameters (e.g., voltage, current, frequency). Power

electronics can broadly be defined as solid state energy

conversion technology [3] that enables efficient and fully

controllable conversion of electrical power. To understand

how ubiquitous power electronics has become, consider a

few power converter examples: (1) Power electronics enables

power flow interface of solar photovoltaics with the grid;

(2) it provides an efficient interface between variable speed

wind turbines and the grid that enables maximum wind

power conversion; (3) it allows for power flow control

between electric vehicle motor and battery; and (4) it enables

power grid dynamic stabilization. Power electronics could

potentially reduce overall electricity consumption by more

than 30% [4]. In order for power electronics to reach this

point, advancements are needed in the area of Electronic

2011 32nd IEEE Real-Time Systems Symposium

1052-8725/11 $26.00 © 2011 IEEE

DOI 10.1109/RTSS.2011.35

305

�� ��

�� ��

�������	�
����

�����������

��	
��
�
��
��������

�

��

��

�

��

�

�

��

��

��������
�

��

��

��

��

��

��

���	��
���
�����		��

(a) Schematic diagram of a three-phase inverter driving induction
machine, commonly used in electric and hybrid vehicles.

���

���

������	
	����
�����

�

��

�

��

��
�����	�

���	�
����
��
��		��

���

���

���

���

���

���

���

���

���

���

��

�
�

��
�

�

�

�������	�

����
��������
��

(b) Schematic diagram of a PV panel with boost converter and three-level three
phase neutral-point clamped (NPC) inverter connected to utility grid.

Figure 1. Power Electronics Conversion Applications.

Design Automation (EDA) tools, among others. Design

automation could significantly reduce development cycles,

improve reliability, and accelerate the development of more

complex systems. In particular, we believe that an integrated

EDA tool would immensely benefit the area of automated

control testing and rapid design prototyping.

To illustrate power electronics conversion, consider two

representative applications: induction machine drive for

electric and hybrid car applications, and power electronics

converter for photovoltaic applications. Figure 1(a) shows a

schematic diagram of an electric car drive-train that com-

prises a power electronics converter and a tightly integrated

real-time controller. The power electronics converter consists

of six semiconductor switches (IGBT’s with anti-parallel

diodes), a DC-link capacitor, and a filter that controls posi-

tion, speed and torque of the induction machine. The second

example is a power electronics converter for photovoltaic

applications that provides a dynamic power flow interface

between the photovoltaic panel and the utility grid. This

system is shown in Figure 1(b) and it comprises a power

electronics converter and a real-time controller. Although the

power converter has twice as many semiconductor switches,

it has a similar overall structure as the induction machine

drive.

In this paper, we propose a new software/hardware co-

design EDA platform and a time-predictable, heterogeneous

multicore architecture for comprehensive testing and vali-

dation of power electronics controller hardware, firmware,

and software performance by means of high-fidelity, real-

time emulation of power electronics in Hardware-in-the-
Loop (HiL) configuration. In HiL testing configuration, the

power electronics converter is replaced by our ultra-fast real-

time emulator that interacts with the controller via high-

speed physical input/output interfaces. From the controller

point of view, the emulation should be seamless, i.e., there

should be no distinction between the real-time control of the

physical plant and the hardware emulator.

The paper is organized in five sections. Section II frames

the challenges facing the design automation and testing

of power electronics. Sections III, IV, and V describe the

proposed framework and architecture for real-time hardware

emulation. Section VI compares the fidelity of the proposed

real-time emulator with the real power electronics system,

and presents two more design examples. Section VII sum-

marizes the paper.

II. DESIGN REQUIREMENTS FOR POWER ELECTRONICS

SYSTEMS

Today, power electronics engineers mostly rely on off-line

simulations in the early design stage, and on hardware

prototypes–low voltage simulators–in the final stages of

the design and testing. However, off-line simulations are

generally slow and only provide a certain level of func-

tional faithfulness, especially when modeling an embedded

controller and its interactions. Hardware emulation in HiL
configuration enables more realistic testing while reducing

the complexity and cost. The key benefits of real-time

emulation for HiL testing are: (1) accelerated testing and

validation; (2) reduced testing time needed in the laboratory;

(3) simulation of all operating points and scenarios that are

difficult or impossible to recreate with a real system (4) fault

injection capability; and (5) real-time access to all signals

that are difficult to measure and quantify in a real system.

The automotive industry has been using HiL simulation

as an ubiquitous tool for testing the engine control unit

(ECU). Connecting an ECU to a real-time simulator of a

car enables exhaustive testing of the ECU. In computer

engineering, hardware emulation, or in-circuit emulation, is

used in processor design by using another system (hardware

emulator) that imitates the behavior of the system under test.

In power electronics, replacing the power converter, grid,

and electromechanical components with a real-time digital

emulation takes high-power hardware out of the testing en-

vironment with minimal loss of fidelity (from the controller

306

point of view). However, high-fidelity testing of power elec-

tronics requires a real-time emulation system with: (1) ultra-

low latency and high-speed simulation (∼1μs); (2) ability

to simulate switched and nonlinear systems; (3) flexible

modeling; (4) ease of use, and (5) variable levels of modeling

abstractions. Most HiL simulators, based on off-the-shelf

processors, exhibit large latencies on the order of 50μs.

Yet, power converters operate at switching frequencies of

∼10kHz, thus limiting the fidelity and applicability of HiL

platforms based on the standard general-purpose processors.

III. PROPOSED MODELING APPROACH

Power electronics system design and verification require

tightly coupled software and hardware environment. This

arises from the fact that these systems can be complex,

hybrid, and include analog hardware, synchronous and asyn-

chronous discrete hardware, custom software, and compu-

tational intensive algorithms over a large amount of data.

The real-time inputs and outputs required by these systems,

for in-system testing critical to verification, impose further

constraints on the software/hardware partition of the design

flow, the mapping of circuit topology onto the hardware,

and runtime computation and communication of the power

electronics blocks. Mismatch at the software/hardware inter-

face can severely reduce system flexibility, and can lead to

degradation of performance in both throughput and latency.

This interface also has a direct effect on the design flow

process, for example, on circuit model specification. In other

words, schematic editing of the power electronics systems

is done offline, and falls under the software partition of

the platform, which can be executed on a general-purpose

computer. This also means that if the circuit topology

changes or the characteristics of a component changes, e.g.,

inductance value for an inductor, then a new compilation

and hardware mapping process must be initiated.

Power electronics simulation algorithms can broadly be

divided into two main categories [5], [6]: (1) nodal analysis

based (e.g., SPICE), and (2) state-space equation based

(e.g., Matlab Simulink). Most modern power electronics

simulation tools are based on the state space model formu-

lation. State space modeling approach for power electronics

circuits can be further divided into two subcategories [5]:

fixed matrix, and variable matrix modeling approach. In

the fixed matrix approach, all the non-linear elements (e.g.,

switching elements such as mosfets, diodes etc.) are mod-

eled via nonlinear current-voltage elements which warrant

uniform system description, i.e., fixed state-space matrix

size. For example, when the switch changes the conduction

state from “off” state to “on” state, the equivalent switch

impedance changes the value from high impedance to low

impedance during the switching time. On the other hand,

in the variable matrix approach, switches are treated as

ideal switches with instantaneous transition from one state

to another (most commonly with piece-wise linear charac-

teristic). Hence, every combination of the switches in the

circuit is described as a unique state-space representation.

This leads to a system description with an N state space

formulation where upper bound on the number of state-

space representations is N = 2m; m is the number of

switches. This is the upper-bound on the number of state-

space formulations since the circuit constraints will deem a

number of circuit configurations not feasible due to inherent

topological constraints. Our approach to high-speed low-

latency simulation of power electronics circuits is based on

a switched hybrid system framework, which on one side

is naturally suited for the description of power electronics

circuits, and on the other side naturally lends itself to digital

architecture implementation [7], [8].

A. Switched Hybrid Automaton

The proposed switched hybrid system approach to power

electronics converter modeling relies on piece-wise lin-

ear passive elements, piece-wise linear switches, current

and voltage sources (both controlled and idependent). The

switched hybrid system model is given in the state space

form, as:

ẋ(t) = Aqx(t) +Bqu(t) (1)

where x(t) ∈ X ⊂ Rn is the continuous state space

vector, Aq ∈ Rn×n; Bq ∈ Rn×m; and u ∈ Rm is the

input vector. Any discrete state of the circuit belongs to

a finite set Q = {q1..qn} and further defines the given

state space representation. Every discrete state qi therefore

has a unique dynamic behavior associated with it that

defines the operation of the circuit. In this framework one

can also define a mode, denoted mq , where q ∈ Q, is

the operation of the system defined by given state space

ẋ(t) = Aqx(t) +Bqu(t) and a given q.

Definition 1 (Switched Hybrid Automaton) A switched

hybrid system is a collection H = (Q,X, f,E,G) where:

Q = {q1..qn} is set of discrete states, X ⊆ Rn is the

continuous state space; f : Q �→ (X �→ Rn) assigns to every

discrete state a continuous vector field on X; E ⊆ Q × Q
is a collection of discrete transitions; G : E �→ 2X assigns

each e = (q, q′) ∈ E a guard.

The state space representation of hybrid automaton

modes, as defined in Equation 1, can be discretized. We use

the exact discretization method via state-transition matrix.

The discretized state space system matrices, for a given

mode are given as:

ẋ(k + 1) = Ad(q)x(k) +Bd(q)u(k) (2)

y(k) = Cd(q)x(k) +Dd(q)u(k) (3)

g(k) = Cgd(q)x(k) +Dgd(q)u(k) (4)

where k is the discrete time, y is the output vec-

tor, g is the guard vector (it is treated as the out-

put vector). In the discretized form, the set of matrices

307

S1

+

D1
L

Vin C R

(a) Schematic diagram of boost converter.

q1

q0

q2

)()()(11 tuBtxAtx qq ���

)()()(22 tuBtxAtx qq ���

)()()(33 tuBtxAtx qq ���

)(tu)(tx

}{gm

)(tgds q

m2

m1

m0

(b) Boost converter switching states
representation.

q1

q0

q2

)()()(

)()()(

)()()1(

11

11

11

kuDkxCkg

kuDkxCky

kuBkxAkx

qgdqgd

qdqd

qdqd

��

��

����

)(ku
)(
)1(

ky
kx �

)(kgm

)(kgds
q

)()()(

)()()(

)()()1(

22

22

22

kuDkxCkg

kuDkxCky

kuBkxAkx

qgdqgd

qdqd

qdqd

��

��

����

)()()(

)()()(

)()()1(

33

33

33

kuDkxCkg

kuDkxCky

kuBkxAkx

qgdqgd

qdqd

qdqd

��

��

����

m2

m1

m0

(c) Block diagram of boost converter
Discrete Hybrid Automaton.

Figure 2. Hybrid Modeling of the boost converter.

{Ad(q), Bd(q), Cd(q), Dd(q), Cgd(q), Dgd(q)} define the dy-

namic behavior of the system.

B. Example Switched Hybrid Model of a Boost Converter

A standard boost converter is given in Figure 2(a), com-

prising of an inductor, capacitor, load resistor, DC voltage

source, ideal diode and an ideal switch. Although there

are four possible combinations for the switching states in

practical systems, we will only consider the three as shown

in Figure 2(b). The equivalent block diagram description

of the Discrete Hybrid Automaton for the boost converter is

given in Figure 2(c). The three combinations of the switches

define a set of discrete states Q = {q0, q1, q2}, which define

three modes {m0,m1,m2}. The modes can be defined in

the following way:

Mode m0

u̇c(t) = − 1

RC
uc(t) (5)

E = {e00, e01, e02} (6)

g00 : gds = 0 ∧ Vin − uc > 0; (7)

g01 : gds = 0 ∧ Vin − uc > 0; (8)

g02 : gds = 1 ∧ Vin − uc > 0; (9)

where uc is the capacitor voltage, Vin is input voltage

source, gds is the digital input gate drive signal control-

ling the switch S1, E = {e00, e01, e02} is the collec-

tion of discrete transitions for the given mode m0 and

G = {g00, g01, g02} is the set of guards associated with a

corresponding discrete transition from E.

C. Computational Complexity

The discrete Hybrid Automaton approach to modeling

of power electronics circuits exhibit deterministic and time

bounded execution. In addition, due to minimal circuit rep-

resentation it has the potential to be efficiently implemented

on an application-specific digital architecture. One of the

drawbacks of this approach is the exponential growth of

the number of DHA modes, as a function of switching

elements. Indeed, the number of modes is 2n where n is

the number of switches. This poses a serious challenge

for using this approach for complex systems due to the

exponential increase in memory resources on one side,

and the exponential complexity increase of the finite state

machine.

In order to alleviate exponential growth of the problem,

we propose an approach to partition the circuit into sub-

circuits that communicate via slower state space variables.

Although we have devised a partitioning algorithm, the

detail presentation of the algorithm is beyond the scope of

this paper. For example, if a circuit is partitioned into two

subcircuits with n and m switches respectively, the total

number of modes will be 2n + 2m instead of 2n+m. Once

a circuit is partitioned, every partition is modeled as an

independent Discrete Hybrid Automaton, while independent

DHA’s communicate via input-output variables.

IV. PROPOSED SOFTWARE ARCHITECTURE

The overall system architecture has a unifying layered de-

sign framework. Figure 3(a) illustrates this layered approach

and shows the structure of our application decomposed into

sets of subtasks where each set represents a particular level

of abstraction. The software environment has three layers,

the power electronics modeling layer, formulation and analy-

sis layer, and finally the synthesis and simulation layer. Since

the software platform is both general-purpose and embedded

in nature, we focus on three key aspects, namely, abstraction,

308

�������	
����

�����
�	�
���	�
������������

������

���
��
��	
����� ��	
����

���������
��������

���
��
������	�

������
��	

�	�
���	�
������������

�������
����������������������
�
����
�������
��	����������������
�
��������� ��
��	�

��!�����
�"�� ��
�����

������
���
#��
��

$�
���

#%
���
��

���
����

��������

(a) System Architecture Layers

Schematic
Editor Netlist &

documentation

System
Synthesizer

Real-Time
Control

Graphic User
Interface

Virtual
Oscilloscope

Software Application Modules

Offline
Simulator

Automated
Testing Scripts

Real
Oscilloscope

Off-Chip
Memory

Hardware

(b) Software/Hardware Data Flow.

Figure 3. EDA Software/Hardware System Architecture.

structure, and modularity, with the goal of an adaptable

software system for power electronics design, simulation,

and real-time emulation.

The first layer is made out of the schematic editor and

the circuit netlist abstractor. The Schematic Editor gives

designers the ability to convert their power electronics

systems specification into model representations, where they

can capture component values, connectivity, and character-

istics. These components range from linear circuit elements,

like resistors, inductors, and capacitors, to machine models,

including semiconductor devices, like diode and IGBTs, and

voltage and current, independent and controlled, sources.

The library of components has predefined power electron-

ics switching blocks, such as a three-phase diode rectifier

block, and control circuit blocks, such as a three-phase

carrier-based pulse width modulator (PWM). The component

library can also contain user-defined modules or blocks.

Given a power electronics circuit, the Netlist Extractor
generates the associated list of components used, their

values, and connectivity. It also performs a node annotation

of the circuit, which is essential for model analysis. The

netlist extractor also provides circuit metadata, such as

the hierarchical composition and degree of idealization of

components. The hybrid model formulation is done through

the System Synthesizer, which generates the set of matrices

representing the discrete states of the power electronics

systems, transition equations, control functions, and output

signals. The synthesizer output files can be fed either through

the offline simulator, or through the real-time controller to be

mapped onto the the hardware. The Offline Simulator simply

takes the state space equations, transition equations, and

control functions (both preset and actively user controlled)

and emits via the Virtual Oscilloscope the corresponding

transient output signals.

The Real-Time Control Graphic User Interface performs

the mapping of the synthesis of the power electronics system

onto the hardware, depending on switching blocks and

component blocks signal communications. This mapping

consists primarily of loading state-space equation matrices

and transition data to memory, emulation execution bit files

onto cores, and on-chip network configuration bits. This

software control unit allows for both automated scripts and

the user to control in real-time the hardware emulation

of the power electronics systems under test. Figure 3(b)

illustrates the data flow in the software, and intermodule

communications. (We use the C++ programming language

for data manipulations and Python for scripting and graphic

user interfaces.)

V. PROPOSED HARDWARE MULTICORE ARCHITECTURE

For power electronics, traditional approaches using off-

the-shelf single core or multicore general-purpose processor

or FPGA’s (Field Programmable Gate Array), are unlikely

to meet such demands. Indeed, generic general-purpose

architectures use deep pipelines, complex memory hierarchy,

and non-deterministic operating systems which often fail

to meet the hard real-time constraints. On the other hand,

FPGA’s lack coarse-grained design abstractions and force

designers to become experts in digital hardware design, and

to spend significant design time building and verifying the

hardware platform on which to emulate or verify their power

electronics design.

As an alternative, we propose and develop MARTHA
(Multicore Architecture for Real-Time Hybrid Applications),

a heterogeneous, reconfigurable multicore architecture, de-

signed to meet the high computation throughput, deter-

ministic, and low-latency requirements for a spectrum of

cyber-physical systems (e.g., power, electronics, biomolec-

ular networks, mechanical systems, financial systems). We

implement MARTHA on an FPGA providing an easier pro-

gramming abstraction to the user.

MARTHA has the following processing structures for

computation:

309

�������

��	
	��
��
�������

��	
	��
��������

�������
��
�������

�������
��������

�������
��
�������

�������������
�������

������

��	�������

��������	� ��

(a) Datapath of the Vector Processing Core.

�������	
�

��

������	�
����

����

(b) Lanes of the Vector Processing Core.

Figure 4. MARTHA’s Vector Core.

• Vector machine style core(s): used to model linear dy-

namics of power electronics, with fast, parallel, matrix

manipulation operations.

• General-purpose MIPS-core(s): used for mode transi-

tions, controls, monitoring, and data collection.

• DSP cores: used for I/O conditioning, analog/digital

communication, and for non-linear machine models.

• Programmable core: employed to model certain signal

sources, and to implement on-chip control functions.

Interleaved memory structure is used to increase the data

transfer rate between the main memory and computational

resources. These cores communicate via shared memory and

a mesh network of dedicated registers, where routes are pre-

computed, configured, and are static for each system under

test. This interconnect network architecture is tailored for

deterministic and ultra-low latency. Using these processing

structures, the proposed architecture may be realized with

varying level of parallelism and connectivity, depending on

the computational complexity and distribution of the class

of CPS one wants to support. This heterogeneity in the

architecture is completely dictated by the complex inter-

actions between software and hardware, hardware and I/O

interfaces, analog and digital signals, and real-time controls

and digital monitoring, as seen in power electronics. Our

current implementation is optimized for real-time emulation,

prototyping, estimation of power electronics systems and

controllers. It is flexible enough to cover a wide range of

power electronics systems, from a simple buck converter to

a multi-level converter.

A. Vector Core Architecture

Real-time embedded systems require a significant amount

of fast computation. One of the most common, but compu-

tationally expensive operations in these systems is matrix

vector multiplication (MVM). From a hardware design view,

matrix operations exhibit the sort of fine-grained data paral-

lelism and computational predictability that works well with

the computer architecture of the Single Instruction, Multiple

Data (SIMD) class, in particular, vector processor machines.

The advantages of such an architecture are well documented

in [9], [10].

Vector processors are characterized by vector registers,

vector instructions, hardwired control, and interleaved (bank)

memory system. The vector processing cores in MARTHA
are RISC style with vector operands, and the instruction set

architecture (ISA) is based on the industry standard MIPS

scalar ISA [11] extended to support vector operations. For

most power electronics systems design and testing, full-

precision floating-point is not needed. Therefore our vector

processing units are optimized for fixed-point computations.

Figure 4(a) illustrates the datapath of the core. Each vector

register per core is 8-entry, 128-bit, divided into four 32-

bit parts for the four lanes (Figure 4(b)). There is also an

8-entry 32-bit scalar register unit used for scalar or scalar-

vector operations. The vector length register (VLR) holds the

number of elements in a vector operation. In the absence of

a cache, the instruction buffer is used to stream in multiple

instructions at the same time from memory. The Load Unit
serves as the main control logic to the memory. It takes care

of the addressing of the memory, using a base and a stride,

to automatically load vector instructions, and to initiate N
loads or stores over multiple memory banks.

The most important operation in this functional unit is the

address generation. The vector stride is simply the number

of memory locations separating elements that are merged to

form a single vector operation. Our vector core also supports

chaining, which allows for the result of one operation to be

made immediately available to the next operation without

passing through the vector registers. This is particularly

useful for fast multiply-and-accumulate operations in matrix

multiplication. For conditional operation on the elements

of a vector, we use vector masks. The vector mask is

loaded with a vector test instruction and the vector operation

executed only on the elements whose the corresponding

entry in the vector mask is set to 1.

Each lane has a 6-stage multiplier chained to a 3-stage

310

accumulator. For sparse matrices, the general vector machine

operation of scatter-gather is used. The scatter operation

consists of storing the vector elements across multiple banks

using the index vector. The gather operation consists of

taking an index vector and getting the vector elements at

the addresses obtained by adding the base-address and the

index vector offsets.

B. General Purpose MIPS-core Architecture

The MIPS (Microprocessor without Interlocked Pipeline

Stages) processing unit in MARTHA consists of an integer-

based 7-stage Core. MIPS is a register-based RISC architec-

ture widely used in commercial products and for teaching

purposes [12]. Our implementation is very standard and

configured to run a large class of embedded software. It is a

fully-bypassed, single-issue, in-order pipelined architecture,

with no branch predictor or branch delay slot, running MIPS-

III instruction set architecture (ISA) without floating point.

C. Digital Signal Processing (DSP) Core Architecture

The Digital Signal Processing (DSP) unit is used for

signal domain conversions. Our DSP core can handle an

array of signal types: audio and speech signal processing,

sonar and radar signal processing, geological and biomedical

signal processing, etc. It is standard and built around a finite

impulse response (FIR) filter. Although similar to the MIPS

unit in microarchitecture, it is less generic and designed with

signal processing in mind. As such, it has extra multipliers

and pipelines to allow for faster signal processing.

D. Memory System Organization

The emphasis in traditional general-purpose, multilevel

memory systems is to minimize the average data access time,

to improve overall system performance. In contrast, power

electronic emulation, like most CPS, require predictable and

repeatable execution time.

In our initial design, we propose instruction and data

caches, and instruction fetch and data memory access take

two cycles. Instruction address is issued at I-Fetch 1 stage

and on a cache hit, the actual instruction appears in the

I-Fetch 2 stage. Stall and bypass signals are modified to

support the extended pipeline. Data memory (cache) is

implemented over D-Memory 1 and D-Memory 2 stages. For

a read, the memory address is presented to the cache in the

D-Memory 1 stage and the data on a cache hit appears in the

D-Memory 2 stage. On a memory write, we also check in the

D-Memory 2 stage that there is a cache hit before continuing

execution. Instructions are issued and executed in-order, and

the data memory accesses are also in-order. Although having

caches does improve the overall average data access, it

does decrease system predictability. Furthermore, when the

system switches discrete state, matrices associated to the

continuous mode change, caches need to be flushed, which

makes the system cache-hit rate close to 70%.

For the proposed MARTHA architecture, we adopt a

cacheless memory system with multiple concurrent accesses

to hide the fixed data access time. MARTHA features bank-

based or interleaved flat memory system, where the on-

chip and off-chip memory organization is fully exposed.

The uniform access time of each memory data makes the

performance highly predictable and reasonably fast for these

classes of CPS. MARTHA has a wide main memory, with

independent memory banks. There are 8 memory banks,

which allow for up to 8 concurrent memory accesses, and

increase the overall system memory bandwidth by 8-fold.

This approach provides better parallelism and resilience to

bank failure. Each bank has separate data and address lines,

and the implementation of the bank-based memory is also

relatively simple. The low-order bits of the address are used

to select the appropriate bank, and the higher-order bits are

used to address the location within the memory bank. In our

current implementation, each bank is 8MB.

There are two modes of communication between process-

ing units and the main memory in architecture, namely, di-

rect bus-based communications and indirect network-based

communications, both with fixed latencies. Memory traffic

consists of packets, where a packet is composed of an

address, a data block (of one or more words), and some

control bits. The control bits in MARTHA consist of the

encoding of the source and destination, number of words in

the packet, and error checking bits.

This cacheless memory structure also allows us to com-

pletely bypass the expensive and complex hardware logic

involved in providing cache-line replacement and coherence

policies. Furthermore, the data access time is deterministic

for all data communication in the system. For a given static

traffic route, the data access time is simply a function of the

memory in/out time; network core sending time; path length

(number of routers traversed); routing time (in the current

architecture is 1 cycle), and network core receiving time.

E. Interconnect Network

Traditionally, systems-on-chip (SoCs) use buses to estab-

lish communications between the different on-chip compo-

nents, but due to the lack of scalability of wired connections

between components, network-on-chip (NoC) architectures

have been introduced as an effective data communication

infrastructure [13], [14]. Therefore to provide scalability,

MARTHA uses NoC architecture for its data communication.

Although virtual channels are generally used at the router,

they also introduce complex buffer allocation logic and

arbitration among buffers to access physical links, which

lead to non-deterministic data transfer delays. For power

electronics applications multicore architectures, where non-

deterministic communication delays are not desired, a

bufferless routing scheme seems more appropriate, and

our system results reflect that. The router for MARTHA
is bufferless with a very simple logic consisting of 4-

311

to-1 multiplexers with, per application, pre-configuration

selectors.

One important aspect of NoC design is the interface

through which the processing units are connected to the

network. This aspect of the design deals with the conversion

of data traffic coming from the processors, or microproces-

sors, into packets that can be routed inside the Network-on-

chip, and the reconstruction of packets into data traffic at the

opposite side when exiting the NoC. Since the focus of this

design is on power electronics with real-time constraints and

fast communication, we adopt a very simple register-based

interface.

The interface and communication protocol rely on the

compiler to map out routes, and cores use dedicated registers

to communicate. The proposed design has eight registers

− four outgoing registers and four incoming registers, one

pair per neighbor. This interface logic is found in all the

processing structures (e.g., General purpose MIPS core(s),

Vector core(s), DSP core(s)).

F. On-Chip Data Routing

The routing algorithm in MARTHA, static and offline,

determines routes considering the cyber-physical applica-

tion’s communication characteristics, in this case, the power

electronics topology. Our main challenge is a fair and an

effective tradeoff between load balancing in the network,

to avoid congestion and dropping of packets, since routers

are bufferless, and communication latency minimization,

since these applications are real-time and demand a bounded

time-step. To that end, MARTHA’s oblivious routing scheme

uses a function corresponding to minimizing the maxi-

mum channel load (MCL) across all network links, while

providing a mechanism for controlling the average path

length. The core premise of this approach is to efficiently

balance network load, while having the shortest possible

path lengths and keeping the router architecture simple and

fast. Our algorithm, based on [15], exploits knowledge of

estimated bandwidths for all or a subset of data transfers in a

given power electronics topology, and focuses on optimizing

satisfaction of bandwidth demand and latency of individual

data transfers. This scheme is livelock and deadlock free,

producing routes that can be minimal or non-minimal in

an effort to globally optimize the real-time application

throughput fidelity. Once routes are determined, they are

pre-configured by setting the proper selector bits at each

router.

This routing table is set to allow multiple concurrent data

transfers through a router as long as there is no sharing

of physical links. Figure 5 shows an example of possible

routes allowed. Note that two types of communications are

supported in the MARTHA architecture, one-to-one and one-

to-many. We disallow many-to-one due to potential conflicts

and the fact that there is no arbitration or buffer at the

routers.

�� �� ��

�� �� ��

	�
� ��

��

Figure 5. Network Possible Routes Configurations.

VI. RESULTS AND EVALUATION

To demonstrate the fidelity and the versatility of our full

electronic systems design and automation approach, and our

integrated software/hardware system solution, we present

Hardware-in-the-Loop simulations of three representative

systems: namely, a variable speed induction motor drive, a

utility grid connected photovoltaic converter system, and a

hybrid electric vehicle motor drive.

The modular design of MARTHA allows for different

instances of the architecture to be realized with a varying

level of parallelism, hardware complexity, heterogeneity, and

scale. In addition to the four FPGA prototypes described

below, we also model a software-only baseline architecture

(CPU).

A. Hardware Models and Methods

With the computation units described in Section V, we

construct four variations of the proposed architecture. In

the first system configuration, we have a Single MIPS Core
(SMC) to execute the application and a DSP unit for I/O

communication with the board simulating the environmental

variables. The second configuration has an Homogenous
mesh network of eight MIPS Cores (HMC) with two DSPs.

The third system configuration, called MARTHA-I, shown in

Figure 6, comprises:

������������
���	
��

���

����

�������
���

��������
���������������

	�

	�

	�

	�

���

���

	�

�
���
	

���

Figure 6. MARTHA-I Architecture.

312

	�
�������
���	
����
�

���������������
��

���

���
���

�����	��
���

����	��
���

����������

 �������
���	�
���������

 �������
���	�
���������

��

��

��

��

��

��

�� ��

��

��

���

�!��

�!��

�!��

�!��

���������	����

Figure 7. MARTHA-II with Motor Drive Model Mapping.

• one RISC MIPS core,

• one four-lane chained vector core for fast and parallel

matrix computation,

• one digital signal processor (DSP),

• a 16-bit programmable microprocessor,

• one memory controller for off-chip communication, and

• bank style main memory.

The fourth configuration, called MARTHA-II, as shown in

Figure 7, comprises:

• two RISC MIPS cores,

• two four-lane chained vector cores for fast and parallel

matrix computation,

• two digital signal processors (DSP),

• 16-bit programmable microprocessor,

• 8-bit programmable microprocessor,

• two memory controllers for off-chip communication,

and

• bank style main memory.

MARTHA-II is intended to show the scalability of the

MARTHA architecture, and how subsystem-parallelism can

be supported. In addition to the computation and commu-

nications structures, Figure 7 shows the partitioning and

mapping of the variable speed motor drive benchmark ap-

plication onto MARTHA-II.
The proposed MARTHA and baseline (SMC and HMC)

architectures are designed using verilog register transfer

language (RTL) and synthesized using Xilinx ISE Design

Suite 11.5, with Virtex-5 LX330T as the platform board. On

the board, the 7-stage MIPS core, for example, runs at 162.5

MHz, and uses 1.3% available registers and 2.6% of the

available lookup tables. The virtual-channel router synthesis

requires 1.3% and 1% FPGA resources respectively for the

number of registers and lookup tables. The vector core uses

about 12% of the available FPGA resources. For the DSP

block we use the Virtex-5 DSP48E slices (each slice can

provide support for a 25 x 18 bit multiplier). The DSP block

uses 12% of the board DSP48E resources.

We compare the end-to-end execution time for our power

electronics applications on all five system configurations.

Figure 8 shows the end-to-end system-step latency for the

different platforms. For the hardware-in-the-loop testing, we

use the MARTHA-II configuration.

B. Variable Speed Induction Motor Drive

The variable speed drive consists of a three-phase voltage

source, a three-phase diode bridge rectifier, a DC-link, a

three-phase two-level voltage-source inverter, an output filter

and an induction machine. To illustrate the fidelity of our

real-time digital emulation platform, we run in parallel an

industrial grade open-loop variable speed drive, ABB ACS-

150, and our real-time hardware emulator, both driven from

the same controller. Figure 9 shows the experimental setup,

313

"�

#"""�

$"""�

%"""�

&"""�

'"""�

("""�

)"""�

*"""�

���� ���� ���� ������+	� ������+		�

�
��
��
��
��
��
��
��
�
��
��
	�

�
��
��
��
�

�
�
��

�
��
��
��
��
��
�

�
�
����
,������������
���
�-���
���
������������������
�-��
��������
�����
���������������

��

����

��

����

��

����

���	
���� ���	
�����

Figure 8. End-to-End Latency Comparison on all five systems for the three power electronics applications.

�������	�
���
��
����������������
������������������	�����	����������

����
��
������������������������������������
����!���	�!
�������������"
�!����

�#��$%&���
�'��"���"��
���(��
��
����
��������������������������!���	�!
���

�������������(�
��
�#�

���

���

Figure 9. Motor-drive experimental setup for parallel physical system and real-time digital emulator testing.

where the same controller is used for both the real system

and the real-time emulated system.

Figure 10 shows the system comprising the three-phase

diode rectifier and three-phase two-level IGBT inverter.

Measured waveforms on both the real system and the

emulator are shown in Figure 11(a) with almost one-to-one

matching. Emulator response latency is measured to be less

than 1.3μs, as shown in Figure 11(b). The ACS-150 is a 0.5

horsepower, three-phase, 240 volt inverter, with a switching

frequency up to 16kHz.

C. Utility Grid Connected Photovoltaic Converter System

To illustrate, that beyond the real-time high-fidelity, our

EDA environment also provides support for flexible model-

ing, design, prototyping, and HiL testing for a wide range

of applications, we present another example system: a grid

connected photovoltaic converter system. Figure 12(a) shows

a two-stage utility grid connected photovoltaic converter

model, that consists of a photovoltaic panel module, boost

converter, a three-level NPC inverter, an input filter, and a

grid. Figure 12(b) shows voltages Vab and Vbc on channels

1 and 2, respectively.

D. Hybrid Electric Vehicle Motor Drive

In recent years, we have witnessed a significant increase

in the development efforts focused on hybrid and elec-

tric vehicle drivetrains. Being a safety critical application,

these system require ever increasing attention to testing and

verification of power electronics designs. Standard vehicle

HiL simulators can provide good fidelity for mechanical

systems while lacking speed and latency to simulate power

electronics subsystems. In this example, we present HiL

simulation, based on the proposed platform, of a typical elec-

tric vehicle drivetrain with an induction machine, two-level

voltage source inverter, and battery as shown in Figure 13(a).

High-fidelity HiL simulation enables engineers to observe all

the fine details, e.g., DC-link and battery current, induction

machine currents, and even common mode voltages.

Figure 13 shows a simplified voltage-source inverter

model of the system, with switching frequency of 4 kHz.

Figure 8 shows the end-to-end system-step latency for the

different platforms. Results presented for these three appli-

cations are for the MARTHA-II configuration.

314

�������	�
�	�	��������	� �	�	�

��
��������
 �� ������ ����

��������

�������	���������	��

�

�����
������ �

�����
������ �

�����
������ �

� ����

������

��������

������

� ������

� ����

� �
�

��������

��������

� �������	���������	��

��������

������

��������

������

����

����

������

��
��������
 �� ���� ������

�

����������

��������

������

(a) Schematic diagram of the motor drive model of a three-phase rectifier,
two-level voltage source inverter, filter and induction machine.

(b) Experimental measurements of the real-time emulation
system rectifier input current, line to line inverter voltage,
and stator current (channels 1, 2, and 3).

Figure 10. Variable Speed Induction Motor Drive Application Experimental Results.

(a) Experimental measurements of the line-to-line inverter
voltage and the motor phase current of the physical system
are shown on channels 2 and 4, and the matching real-time
hardware emulator waveforms are on channels 1 and 3.

�
�
�

�

�� ������

�	
���
���
�������������������������������
�����������

 ����
���
���!���������
�

"�
�������!����
����#�
���������������������
�����������

(b) Three-phase inverter line-to-line voltage response on the physical
system, and real time emulation system to a gate drive signal.

Figure 11. High-Fidelity Emulation of Variable Speed Induction Motor Drive Application.

VII. CONCLUSION

In this paper, we show an example of how using a com-

bination of old and new computer architecture techniques,

one can design a new class of heterogeneous computation

platforms to support the emerging field of cyber-physical

systems. Our main goals in this presentation are to highlight

the modeling and the computation needs of power electron-

ics systems, a class of CPS, to show how these systems are

intrinsically parallel and distributed in nature, and argue that

they require heterogeneous architectures for fast emulation.

In addition, the proposed platform brings a true emulator

performance to the control design and test engineer’s desk.

It enables a high-fidelity (with 1μs latency and emulation

time-step), safe, and fully realistic testing and validation of

detailed aspects of power electronics systems. To the best

of our knowledge, no current academic or industrial HiL

system, for hybrid systems, or power electronics systems,

has such a fast emulation response time.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,”
in International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC),
May 2008, invited Paper. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/427.html

[2] L. Owens, Vannevar Bush and the differential analyzer: the
text and context of an early computer. San Diego, CA, USA:
Academic Press Professional, Inc., 1991. [Online]. Available:
http://portal.acm.org/citation.cfm?id=132180.132183

[3] R. W. Erickson and D. Maksimovic, Fundamentals of Power
Electronics, 2nd ed. Springer, 2001.

[4] F. C. Lee and et. al, “Power electronics system integration–
a cpes perspective,” 14th IEEE Power Electronics Society
Newsletter, vol. 20, 2008.

[5] J. Kassakian, “Simulating power electronic systems-a new
approach,” Proceedings of the IEEE, vol. 67, no. 10, pp. 1428
– 1439, October 1979.

[6] N. Mohan, W. Robbins, T. Undeland, R. Nilssen, and O. Mo,
“Simulation of power electronic and motion control systems-

315

����

����

����

��������

���	���	

������

��	��	

����

�
�

����

�
�

��	��	 ������
��

������
����

�

������

�

������

�

������

������

��	��	

����

�	�	

�������
���������������� � ������ ����

��	��	

������

� �
��
�

�������
������������� � �����

�
��
�

������

����

����
������

��	��	

��������

����

��	��	

�

�
��
�

������

����

������

(a) Schematic diagram of the PV panel, boost converter, three-level
voltage source inverter, filter and utility grid.

(b) Experimental measurements of the real time emulator
variables, line to line inverter voltages, output current,
and upper DC-link voltage.

Figure 12. Utility Grid Connected Photovoltaic Converter System Application.

�������	
�	
��� ���	��
�	

��
����
���

�

����

����������������	��������� ������	

����

�
�

����

�

����� ��

�

����

�

�
�

(a) Schematic diagram of the hybrid electric vehicle motor drive with
battery model, two-level voltage source inverter, and induction machine.

(b) Experimental measurements of the real time emula-
tion system waveforms, DC link current, rotor current,
and inverter output line-to-line voltage.

Figure 13. Hybrid Electric Vehicle Motor Drive System Application.

an overview,” Proceedings of the IEEE, vol. 82, no. 8, pp.
1287 –1302, Aug. 1994.

[7] M. Senesky, G. Eirea, and T. Koo, “Hybrid modelling and
control of power electronics,” in Hybrid Systems: Computa-
tion and Control, ser. Lecture Notes in Computer Science,
O. Maler and A. Pnueli, Eds. Springer Berlin / Heidelberg,
2003, vol. 2623, pp. 450–465.

[8] T. Geyer, F. Torrisi, and M. Morari, “Efficient mode enumer-
ation of compositional hybrid systems,” in Hybrid Systems:
Computation and Control, ser. Lecture Notes in Computer
Science, O. Maler and A. Pnueli, Eds. Springer Berlin /
Heidelberg, 2003, vol. 2623, pp. 216–232.

[9] M. Dowd, “An example risc vector machine
architecture,” SIGARCH Comput. Archit. News, vol. 16,
pp. 91–99, March 1988. [Online]. Available:
http://doi.acm.org/10.1145/44571.44579

[10] K. Asanovic, “Vector microprocessors,” Ph.D. dissertation,
University of California, Berkeley, 1998.

[11] G. Kane and J. Heinrich, MIPS RISC architectures. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1992.

[12] D. Patterson and J. Hennessy, Computer Organization and
Design: The Hardware/software Interface. Morgan Kauf-
mann, 2005.

[13] W. J. Dally and B. Towles, “Route Packets, Not Wires:
On-Chip Interconnection Networks,” in Proc. of the 38th

Design Automation Conference (DAC), Jun. 2001. [Online].
Available: http://citeseer.ist.psu.edu/dally01route.html

[14] A. Ivanov and G. D. Micheli, “The Network-on-Chip
Paradigm in Practice and Research,” Design & Test of Com-
puters, vol. 22, no. 5, pp. 399–403, 2005.

[15] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk,
and S. Devadas, “Application-aware deadlock-free oblivious
routing,” in Proceedings of the 36th annual international
symposium on Computer architecture, ser. ISCA ’09. New
York, NY, USA: ACM, 2009, pp. 208–219.

316

