
Mystic: Mystifying IP Cores Using an Always-ON
FSM Obfuscation Method

Ehsan Aerabi, Ahmad Patooghy, Hamidreza Rezaei, Miguel Mark, Mahdi Fazeli, and Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory

Department of Electrical and Computer Engineering, Boston University

Abstract—The separation of manufacturing and design pro-
cesses in the integrated circuit industry to tackle the ever
increasing circuit complexity and time to market issues has
brought with it some major security challenges. Chief among
them is IP piracy by untrusted parties. Hardware obfuscation
which locks the functionality and modifies the structure of an
IP core to protect it from malicious modifications or piracy
has been proposed as a solution. In this paper, we develop an
efficient hardware obfuscation method, called Mystic (Mystifying
IP Cores), to protect IP cores from reverse engineering, IP over-
production, and IP piracy. The key idea behind Mystic is to
add additional state transitions to the original/functional FSM
(Finite State Machine) that are taken only when incorrect keys
are applied to the circuit. Using the proposed Mystic obfuscation
approach, the underlying functionality of the IP core is locked
and normal FSM transitions are only available to authorized
chip users. The synthesis results of ITC99 circuit benchmarks for
ASIC 45nm technology reveal that the Mystic protection method
imposes on average 5.14% area overhead, 5.21% delay overhead,
and 8.06% power consumption overheads while it exponentially
lowers the probability that an unauthorized user will gain access
to or derive the chip functionality.

I. INTRODUCTION

Growing complexity and critical time-to-market have played

key roles in the current semiconductor design and manufac-

turing supply chain landscape. For example, many fab-less

companies have emerged to take advantage of low-cost over-

seas foundries for IC production. Companies, such as ARM

Holdings, develop and sell their soft intellectual properties

(IP) to other chip manufacturers for the hard implementations.

There is a large international market for these pre-built, veri-

fied and ready-to-use soft IP designs. Under this globalization

trend, IP piracy has become an increasing concern which

has drawn a great deal of research and investment from both

academia and industry [1]. For instance, an untrusted party

can reverse-engineer and steal an IP core and then claim

ownership, resell or over-produce it [2].

Logic Masking is a set of IP piracy prevention methods

which obfuscate the circuit’s main functionality to prevent

unauthorized access to the chip’s functionality. The circuit

cannot properly operate until the owner activates it by means

of an activation key. Logic masking is generally achieved by

inserting Key Gates e.g XOR/XNOR/MUX/AND/OR into the

original combinational circuit, each of which is driven by a

bit of the activation key. These key gates mask the circuit’s

functionality in a way that only a unique correct key can

neutralize their effects. After chip fabrication, the secret key

is programmed usually in a secure internal EEPROM memory

and the masked IP is unlocked by the owner.

In order to maximize the mismatch points between the

masked circuit and the original circuit when comparing them

by formal methods, Chakraborty et. al [3] proposed a method

based on fan-in and fan-out cones in the circuit. Rajendran et.
al [4] presented another logic masking method in which key

gates have more effect on each other. This hinders attacker’s

effort to reveal the key by feeding the circuit with specific

inputs and propagating uncorrelated key bits to the outputs.

Using the concept of Fault Propagation, [5] tries to perform

a proper key gate insertion. The aim is to have nearly 50%

of the wrong output bits when a wrong key-vector is applied.

By choosing appropriate nets to insert XOR/XNOR gates, one

can achieve 50% correctness in the Hamming Distance (HD)

among outputs for the valid key and invalid key. Using the

MUX primitive as key-gates instead of XOR/XNOR has been

proposed in [6] and [5]. When supplied key-inputs are correct,

the MUXs pass the correct input, otherwise they pass a wrong

value coming from other parts of the circuit. Overall, the goal

in [5] is to achieve a high HD between the correct and wrong

keys.
Sequential circuit masking methods try to obfuscate the

finite state machine (FSM) of the circuit at the system level

perspective. Under this set of approaches, the original state

transitions are modified in a way that only a unique sequence

of keys can drive it through its correct transitions. Otherwise,

the system is lost in out-of-order or fake states.
Chakraborty et. al proposed an FSM-based method called

HARPOON [7], which adds a finite state machine to the IP

core netlist. The FSM outputs are connected to the internal

nodes of the circuit via some XOR gates. Therefore, the circuit

cannot properly work until the output of the added FSM be-

comes logical zero. Zhang et. al presented an IP protection and

FPGA licensing scheme which combined FSM masking with

PUFs (Physical Unclonable Function) [8]. Recently, Sumathi

et. al [9] published an FSM-based IP protection to improve

the HARPOON approach.
The contribution of this paper is two fold.

• A new hardware attack specification: although substantial

research has been done on sequential logic masking, we

show that most of the previous sequential logic masking

techniques are vulnerable to FSM Separation Attack.

• A new obfuscation method: to address this weakness, we

propose an FSM-based logic masking technique at the

RTL level. The proposed method can effectively protect

against FSM Separation Attacks as well as the recently

presented SAT attacks [10], [11].

626

2018 IEEE Computer Society Annual Symposium on VLSI

2159-3477/18/$31.00 ©2018 IEEE
DOI 10.1109/ISVLSI.2018.00119

This paper is organized as follows. In Section II, we pro-

vide a brief overview of the previously proposed obfuscation

methods. Section III introduces our proposed attack method. In

Section IV, we explain our proposed FSM encoding method

and show how it overcomes the mentioned weakness using

an illustrative case. Section V contains an explanation of the

experimental system setup and results. Finally, Section VI

concludes the paper.

II. BACKGROUNDS

Logic masking protection mechanisms can be divided into

“sequential logic” and “combinational logic” protections. For

sequential logic circuits, the protection method is applied to

the state transition graph of the circuit by adding extra states

with the aim of masking or authenticating [9], [3], [12], [13].

Almost all of the previously proposed sequential encodings

are based on the concept illustrated in Figure 1. As shown

in the figure, a set of obfuscated states is added to the FSM

of the original design. The circuit starts from an initial state

in the obfuscated states set. In this initial state, the circuit

is locked and its produced outputs are intentionally wrong.

To successfully traverse the obfuscated states and enter the

original states of the circuit, one must apply to the input(s)

the correct sequence of i0 to in for (n+1) consecutive clock

cycles. Exiting the obfuscated states will lead to the first state

within the normal FSM, T0. Therefore, the circuit will now

correctly respond to inputs since outputs here are functions

of inputs and the original FSM states. If k is the number of

primary inputs which are applied to the obfuscated states, then

an attacker needs to potentially perform 2k × 2n searches to

unlock the circuit.

For the combinational logic circuits, some extra gates

(XOR/XNOR or multiplexer) are inserted into the original

combinational circuit. Each obfuscating gate has an input that

is derived from the secret key, so that the correct combination

of the key bits would neutralize the masking effect of these

gates. Consequently, an incorrect input key will lead to incor-

rect circuit functionality. XOR/XNOR gates could be inserted

randomly in the circuit as expressed in [14], but there is no

guarantee of the circuit malfunctioning if the wrong keys are

used as input. Some researchers [3] have tried to improve

the robustness of these obfuscation methods by combining

combinational and sequential techniques. To achieve this goal,

the outputs of obfuscated states e.g., S0 to Sn−1 are connected

to Modification Cells which are extra logic inserted into the

circuit’s combinational part (See Figure 2). While the circuit

is in the obfuscated states, the outputs of S0 to Sn−1 enable

the Modification Cells and disables normal circuit operation.

The Modification Cell combines the original net of the circuit

(p) with a high fan-in signal borrowed from another part of

the circuit to add more obfuscation.

The output of the Modification Cell is often expressed as an

output = p · f̄ + p̄ · g · f where f is the obfuscation enabling

signal, f = 1 when the circuit is in the obfuscated states and

otherwise f = 0. p is the original net and g is the high fan-in

net. Since f is a function of S0 to Sn−1, it evaluates to zero

Fig. 1. General block diagram of FSM encoding methods.

Fig. 2. Combinational logic obfuscation using modification cells.

whenever the obfuscated FSM goes through the Unlocking
Transitions and reaches the normal FSM.

III. FSM SEPARATION ATTACK

In this section we describe the FSM Separation Attack
which can exponentially reduce the search space for attackers

to unlock an obfuscated circuit. This builds on the work

presented in [15] with key clarifications to the attack steps

and concrete implementations of the attack on real circuits.

Suppose a circuit which is jointly protected using FSM

and combinational obfuscation methods as described in the

previous section. We know that the circuit has some memory

elements storing its obfuscated S0 to Sn−1, and original T0

to Tm−1 states along with some combinational parts. The

resilience of the circuit relies on the fact that the attacker

cannot distinguish between the added state elements S0 to

Sn−1 and the original ones T0 to Tm−1. If an attacker can

manage to find the added states, they would be able to traverse

all 2n value space of S0 to Sn−1 to find out which one unlocks

the circuit; then they can set it to obtain the normal operation

of the circuit illegally. The FSM separation attack has three

stages:

• In stage one, the circuit HDL code is used by an attacker

to divide the combinational and sequential parts of the

circuit. Note that this is possible since FSM memory

elements can be easily distinguished from combinational

part of a given IP core. However, since the attacker does

not know how many state elements were added to the

original circuit, the attack moves to stage two.

• For stage two, the attacker has to assume all possible

values for n from 1 to L where L is the total number of

state elements of the circuit, L = m + n. The attacker

needs to figure out which subset of L states are the added

Si’s. Assuming n̂ as a hypothesis for n, there are
(
L
n̂

)
possible combinations for S0 to Sn̂−1.

627

• In the final stage, for each hypothesis, the attacker needs

to (i) eliminate flip-flops which are assumed to be the

(added) obfuscation ones, (ii) put zero as their outputs

and (iii) see if their elimination unlocks the circuit.

It is an iterative attack where the second and third stages

will loop until the circuit is unlocked and produces a valid

response. The total number of trials that the attacker needs to

unlock the circuit can be computed by Equation (1).

Ψ =

L∑
n̂=1

(
L

n̂

)
= 2L (1)

It is worth noting that this number differs from the search

space presented in [3] i.e., (2m×k) where m is the number of

a circuit’s obfuscated states and k is the number of a circuit’s

primary inputs. 2L could still be a large number of states

with a large number of flip flops, but n̂ is generally a very

small number due to the overhead associated with the added

FSM. Hence, the iteration loop will terminate much sooner

than exhausting the entire 2L space. We will show this fact

in an experimental study later in the section. A key aspect of

the FSM separation attack is that its search space does not

depend on the number of circuit inputs k. In fact, this attack

reduces the attack complexity by separating the combinational

and sequential parts of the circuit.

To examine the impacts of this complexity reduction, let

us consider the following synthetic [3] and real examples.

Assuming k = n = 16, the computation space is 2256 ≈ 1077

which is infeasible to search. For real commercial IP cores,

we consider NEO430 and ao68000, two CISC (Complex

Instruction-Set Computers) open core CPUs. These IPs are

relatively big circuits e.g., 3500 VHDL lines for ao68000.

They are well within the range of real world circuits.

The NEO430 and ao68000 have 860 and 724 memory

elements i.e., flip-flops, respectively. However, the largest logic

block in these CISC IPs is a 5-bit state variable and therefore

less than 25 = 32 states. Obviously a large portion of memory

elements in each IP is used to store processed data and a very

little portion is used as state holders. This means that when

a designer chooses a bigger number for n to make it more

difficult for the attacker to traverse the computational space,

the hardware overhead should be considered with respect to

the number of memory elements which are doing state holding.

For example [3] has reported 18.44 and 15.88 percent over-

heads for only six added state elements. These sample circuits

confirm that in the real world, (1) parameter m is not very large

and (2) overheads of using a large number of obfuscating states

i.e., parameter n can be very high. To investigate the effects

of FSM separation attacks against existing protection schemes

on real circuits, we studied the feasibility of these attacks on

ISCAS’89 circuits. In our evaluations, we used the largest

circuits namely (a) s38417 circuit with 28 primary inputs

and 1635 D-type flip-flops and (b) s38584 circuit with 38

inputs and 1425 D-type flip-flops. The circuits are synthesized

targeting the Spartan-6 FPGA board using the Xilinx ISE

Design Suite operating at 100 MHz.

TABLE I
SUCCESSFUL ATTACK TIME ESTIMATION FOR ISCAS CIRCUITS

OBFUSCATED BY TRADITIONAL METHODS.

 Number of Added State Elements
Circuit #FF 1 2 3 4 5 6 7 8 9 10
S298 14 3 μs 33 μs 203 μs 968 μs 3 ms 13 ms 42 ms 122 ms 326 ms 817 ms

S344 15 4 μs 38 μs 242 μs 1 ms 5 ms 18 ms 61 ms 183 ms 510 ms 1 s

S349 15 4 μs 38 μs 242 μs 1 ms 5 ms 18 ms 61 ms 183 ms 510 ms 1 s

S526 22 5 μs 74 μs 649 μs 4 ms 24 ms 118 ms 508 ms 1 s 7 s 23 s

S641 19 5 μs 57 μs 442 μs 2 ms 13 ms 57 ms 222 ms 777 ms 2 s 7 s

S713 19 5 μs 57 μs 442 μs 2 ms 13 ms 57 ms 222 ms 777 ms 2 s 7 s

S838 32 8 μs 148 μs 1 ms 16 ms 125 ms 815 ms 4 s 23 s 1 M 7 M

S1196 18 4 μs 52 μs 384 μs 2 ms 10 ms 44 ms 164 ms 555 ms 1 s 5 s

S1238 18 4 μs 52 μs 384 μs 2 ms 10 ms 44 ms 164 ms 555 ms 1 s 5 s

S1423 74 18 μs 731 μs 19 ms 375 ms 6 s 1 M 15 M 2 H 1 D 9 D

S1488 6 1 μs 8 μs 29 μs 82 μs 197 μs 428 μs 857 μs 1 ms 2 ms 4 ms

S5378 179 45 μs 4 ms 251 ms 11 s 7 M 3 H 4 D 96 D 6 Y 105 Y

S9234 211 53 μs 5 ms 408 ms 22 s 15 M 9 H 12 D 346 D 23 Y 517 Y

For the sake of fairness, we used the same simulation setup

as used in [3]. We added two extra d-type flip-flops and

inserted four XOR gates into high fan-in nets in s38417 and

s38584 circuits. Based on normal calculations, an exhaustive
attack will test 238×4 = 2152 inputs to unlock the s38584

circuit, and 228×4 = 2112 inputs for the s38417 circuit. These

circuits were assumed unbreakable for a polynomial time

attack scheme. However, we showed that if an FSM separation

attack is occurs, the circuit degenerates into lower orders.

To attack the s38417 circuit, we assume 1 to 1635 of flip-

flops as FSM masking ones and check our hypothesis. This

attack is accomplished in a short time, since only two of the

1635 flip-flops are intended to do FSM encoding i.e., the cir-

cuit has just 4 obfuscating states. The search took 1, 340, 703
clock cycles in our simulation environment. This means that it

took about 335 milliseconds to attack the obfuscated s38417

circuit. We performed the same FSM separation attack on the

obfuscated circuit of s38584 and were able to break the circuit

in only 254 milliseconds. It should be noted that the FSM state

elements in ISCAS’89 circuits are not distinguishable from

the rest of the memory elements, otherwise the attack could

be significantly faster.

Table I estimates the FSM separation attack duration time

for some of the other ISCAS circuits when different numbers

of flip-flops are used in the obfuscating FSM. In this table

we have examined up to 10 added obfuscation flip-flops and

calculated the required time for a successful FSM separation

attack. For those circuits with a large number of flip-flops (e.g

S9234 and S5378) the attack time is in order of hundreds of

years (which is still assumed a feasible attack on distributed

and parallel systems). Nevertheless, we can conclude that

regardless of the circuit size, using a separated obfuscating

FSM to lock the chip cannot protect the chip especially when

the number of memory elements in the obfuscating FSM is not

very high (see S1488 results with 6 flip-flops in Table I). On

the other hand, adding a large number of obfuscating states

implies an unacceptable overhead on the protected circuit.

628

In this paper, we propose a method where the robustness of

obfuscation does not depend on the number of added states.

Since it checks for the correct key before every FSM transition,

it can be used for any desired level of obfuscation.

IV. THE PROPOSED Mystic METHOD

In order to reduce the chance of a successful attack,

we believe that the added obfuscating FSM should not be

completely separated from the original FSM. We propose a

masking technique that is active during the whole operation of

the circuit in its lifetime. The technique combines original and

obfuscated states and significantly reduces the probability of

an attack successfully unlocking the target circuit. As shown in

Figure 3, the circuit starts working from an original state and

works correctly. However, in each state in the circuit’s FSM, a

set of the key bits should be correct in order for the FSM to go

through the correct transition and operate consistently. On a

wrong key, the FSM goes to a wrong state which will perturb

the entire computation for the rest of the circuit operation.

The key underpinning of the proposed technique is the

concept that a designer may add more state transitions and/or

additional states to mask the original FSM. Going back to

Figure 1, it should be highlighted that the proposed method

actually adds a Locking Transition to the model in opposite

direction of the Unlocking Transition. To compensate for a

small state space, a designer may add extra states as a means

of increasing the transition candidates for the masking process.

We propose an iterative masking algorithm to systematically

add obfuscation transitions or states to a given circuit. On

each iteration, the algorithm chooses a state to which an extra

obfuscating transition is going to be added. To choose an

appropriate state, we propose a simple but effective Security
Metric that can be assigned to each state s as Equation (2)

SMs =
OutEdges

KeyCounts + 1
(2)

where OutEdges is the total number of transitions started

from the state s and KeyCounts is the number obfuscating

transitions which have been previously added to state s during

the masking process. One general observation is that the

states with high OutEdge tend to be more critical in the

operation of the FSM. Therefore, an intuitive and judicious

way for selecting the order of states to guard when all the

circuit states cannot be guarded is to use the OutEdge degree.

In addition, having the KeyCount on the denominator of

the metric gradually decreases the importance of previously

masked states. Locking transitions are added to the original

circuit’s FSM in a manner that allows the circuits to check

their activation keys at runtime. Whenever the input key is not

valid, the circuit follows one of the added Locking transitions
and goes to an intentionally wrong state.

Algorithm 1 presents the masking procedure. It receives

an input key K and an FSM graph F . First, in lines 2 and

3, it prepares two lists for storing KeyCounts and Security

Metrics associated with each state. Then in lines 5 to 8,

it calculates initial security metrics for all states. The main

masking iterations start from line 10. For each key bit K[j],

Fig. 3. Our proposed FSM encoding methods.

Algorithm 1: The Proposed Masking Algorithm

Input: Key K
Input: FSM graph F with SF states and EF edges

Result: Obfuscated FSM graph F
1 // Initialization
2 Define zero-initialized list of integers KeyCount with

size of |SF |;
3 Define zero-initialized list of floats SecMetric with size

of |SF |;
4 // Calculating Security Metrics
5 for i← 1 to |SF | do
6 OutEdge← number of edges in EF starting from

SF [i];
7 SecMetric[i]← OutEdge

KeyCount[i]+1 ;

8 end for
9 // Masking F

10 for j ← 1 to |K| do
11 m← index of the largest value in SecMetric;
12 Add to EF an edge from SF [m] to a random state in

SF with K̄[j] activator;

13 //Update Security Metric for SF [m]
14 KeyCount[m]← KeyCount[m] + 1;

15 SecMetric[m]← OutEdge
KeyCount[m]+1 ;

16 end for
17 Return F ;

Fig. 4. An example of the proposed masking algorithm.

629

the algorithm finds the state SF [m] with the highest security

metric value and then adds a transition Ekey=K̄[j] starting

from SF [m] which ends at a random (not already connected)

state. The transition Ekey=K̄[j] shifts the FSM to a wrong state

whenever the attacker’s key bit is not equal to the correct value

K[j].
To illustrate the operation of the proposed Mystic algorithm,

we applied it to the FSM graph shown in Figure 4-A. As

shown in this figure, the highest Security Metric belongs to

states S1 and S4 due to their higher outEdge degree which

is equal to 2. Security Metric for the other five states is 1.

Therefore the first bits of the key are negated and inserted

as obfuscating transition of state S1 in Figure 4-B and state

S4 in Figure 4-C. By updating the security metrics, we have

all states with security metrics of 1. The algorithm chooses a

random state on each iteration (S5 and S6 on Figure 4-D and

4-E) and adds an obfuscating transition to them. This process

continues until all bits of the activation key are used. Note that

it is possible for a transition to have multiple key bits or even

a function of key bits as an activating function on obfuscating

transitions. To answer the question of wether we have multiple

key bits activator or not, we have to compare |K| with |SF |.
If |K| ≥ |SF |, we have some states with multiple key bits

activators, but when |K| < |SF | we can manage to have no

such state. Since allowing multiple key bits as activator i)

increases the hardware overhead of our proposed method and

ii) loses the termination condition of our proposed masking

algorithm, in this example we bound the number of added

obfuscating transitions to 4.

In terms of estimating the obfuscation level of Mystic, it is

important to note that each state is obfuscated using a subset

of the masking key. All of the key bits in that subset should be

correct for the FSM to perform a single transition correctly.

Similarly, for the following transition, another subset of the

key bits should be correct. From the attacker’s perspective,

for each state, a subset of the key bits needs to be guessed

correctly. For key hypothesis checking, the attacker needs to

test all possible values for all combinations of key subsets with

different lengths. The compute complexity of this verification

operation is:

φ =

|K|∑
k=1

(|K|
k

)
2k (3)

It is worth noting that the key size |K| in (3) is much bigger

than the number of states in the circuit, L. In fact, probability

of correctly passing a state by an unauthorized attacker is 1
φ .

Generally, the attacker’s only reference to evaluate the

correctness of a key guess is the output of the circuit i.e.,

a correct output. Under the Mystic obfuscation method, the

attacker does not have any reference output, especially when

it comes to large IP cores like CPUs and cryptographic cores.

This constitutes another important security feature of the

Mystic technique to further reduce the chance of a successful

attack. Because these large IPs oftentimes do not produce

meaningful intermediate outputs, the attack must pass several

transitions correctly to produce a meaningful output. Without

TABLE II
OVERHEADS OF THREE SAMPLE OBFUSCATED IP CORES USING

Mystic SYNTHESIZED FOR A XILINX VIRTEX-7 FAMILY FPGA.

RISC IP Core CR16 IP Core AES IP Core

Slices Slice
LLUTs

Slice
RReg. Slices Slice

LLUTs
Slice
RReg. Slices Slice

LLUTs
Slice
RReg.

Key
LLength

1490 1825447313301920421110732873824 0
1492 1828447313291920421110752873824 1
1516 1841447413351922421110792876824 4
1593 1899449113591931421310892894826 8
1689 2014454913962172422110942991831 16
1803 2288467814162354429611023224847 32
1898 2413479214892567438411313489859 64
1972 2698488115642931443212533755863 96
2299 2984515316793456450313904093872 128
1750 2198466214332352429811423229841 AVG

an intermediate output, an attacker would need to guess all the

key bits used in several states. Therefore the probability that an

unauthorized attacker generates a meaningful output is reduced

to 1
φv where v is the average number of cycles needed to

produce the next meaningful output of the obfuscated circuit.

V. Mystic HARDWARE OVERHEADS

To evaluate hardware overheads of the Mystic technique, we

have developed a CAD tool in Python. The tool takes the RTL

description of a circuit, extracts the state machine and then

obfuscates it using the key provided by the user. Finally, the

original FSM inside the circuit is replaced with the obfuscated

FSM for heightened security. We performed our experiments

on three benchmarks circuits of 1) AES cryptographic core,

2) A RISC processor and 3) CR16 microprocessor. Results of

the synthesis for both FPGA and ASIC implementations are

compared with those of the recent approach proposed in [8].

A. FPGA Implementation Results
The synthesis results of the three benchmarks on the Xilinx

Virtex-7 xc7vx330t FPGA board are shown in Table II. The

first row in this table shows the hardware utilization for the

three normal benchmarks with no obfuscation. We performed

the obfuscation under 1, 4, 5, 16, 32, 64, 96, and 128 widths

of key. Based on the results, overhead growth is not very

sharp i.e., we have the highest area overhead of 14% for

the RISC IP Core benchmark when the obfuscation key of

128 bits is used. The main reason of such a relatively low

overhead is that the FSM part is not normally a large portion

of the whole digital circuit. It can be seen that the key length

growth mostly affects the number of used LUTs in the FPGA

implementation. Since the proposed masking algorithm does

random selections in some steps, we repeated the obfuscation

process of benchmarks with 128-bit key for 10 times. Figure

5b shows the average overheads when a 128-bit obfuscation

is done on benchmarks. We have also compared the Mystic
method with a recent work presented in [8] in terms of

area, delay, and power. Figure 5a illustrates the overheads

comparison between Mystic and the PUF-FSM based method.

B. ASIC Implementation Results
In the second set of experiments, we added the ITC99 circuit

benchmarks to the three mentioned cores. We synthesized

630

18
.5

3%

10
.6

3%

8.
13

%

2.
88

%

52
.0

2%

49
.7

1%

17
.7

7%

0.
30

%

L U T S S L I C E S D E L A Y P O W E R

AV
ER

AG
E

 O
VE

RH
EA

D
S

Mystic
Zhang et. Al

(a) FPGA resource overheads for Mystic and [8].

2.
18

%

2.
17

%

4.
34

%

12
.5

2%

21
.6

2%

20
.5

9%

6.
62

%

7.
86

%

15
.5

5%

A E S C R 1 6 I P R I S C I P

AV
ER

AG
E

O
F

O
VE

RH
EA

D

Slice Registers Slice LUTs Occupied Slices

(b) Mystic overheads per obfuscated IP cores.

1.
80

%

1.
38

%

0.
22

%

0.
85

%

6.
89

%

7.
05

%

2.
49

%

10
.6

2%

12
.0

6%

0%
2%
4%
6%
8%

10%
12%
14%

A E S C R 1 6 R I S C

OV
ER

HE
AD

 (%
)

Area

Dynamic Power

Maximum Delay

(c) Mystic ASIC implementation overheads.

Fig. 5. FPGA Virtex-7 and ASIC 45nm technology implementations resource utilization results.

TABLE III
OVERHEAD RESULTS FOR ITC99 CIRCUIT BENCHMARKS

SYNTHESIZED FOR AN ASIC 45NM TECHNOLOGY.

CCircuit Design Overheads (%)
Area Delay Power

b01 3.14 2.55 5.63
b002 3.05 2.41 5.88
b03 2.11 1.89 4.12
b04 2.14 1.95 4.05
b05 2.89 2.23 5.41
b06 3.12 2.65 5.88
b07 3.16 2.89 5.69
b08 2.88 2.11 5.01
b09 2.96 2.32 4.87
b10 3.99 2.96 6.56
b11 3.55 2.88 6.74
b12 4.55 3.98 7.86
b13 4.14 3.87 7.42
b14 6.08 8.97 10.56
b15 4.84 5.44 8.67
b17 4.96 5.23 8.91
b18 8.06 8.88 11.65
b19 9.34 9.76 11.98
b20 9.55 9.95 12.58
b21 9.61 10.58 12.74
b22 10.88 12.65 14.23
b30 8.54 8.53 10.89

Average 5.14 5.21 8.06

all 26 circuits using the Synopsis Design Compiler tool for

45nm technology and overheads are logged. The area, dynamic

power and maximum delay overheads of the three IP cores

with respect to their non-obfuscated versions are shown in

Figure 5c. The AES circuit has the lowest overheads and

RISC processor has the highest. This is due to more complex

combinational part of the AES circuit in comparison with its

simple sequential logic. The Mystic method does not add any

additional state to the FSM. Instead it adds extra combinational

logic to produce the transition guard considering the key

inputs. Table III shows the overheads for an obfuscated ITC99

circuit benchmark by Mystic for the ASIC 45nm technology.

VI. CONCLUSIONS

In this paper, we showed that the previously proposed FSM

obfuscation methods can be easily broken with a simple FSM
separation attack. This attack is able to break secure-through-

obfuscation circuits with a very low time complexity. We also

presented an always-on obfuscating method which acts as a

security watchdog at runtime and throughout the lifetime of

the chip. When an attacker applies the first wrong key, this

action activates the security watchdog and the chip goes to an

intentionally wrong state resulting in incorrect functionality.

Since the proposed method has a runtime defense mechanism

and covers the lifetime of the chip, it is also robust against SAT

attacks. The synthesis results and the comparative study with

previous obfuscation methods show that the proposed method

provides stronger circuit obfuscation guarantees with better

efficiency in terms of area, delay, and power consumption.

VII. ACKNOWLEDGMENTS

This research is partially supported by the NSF grant (No.

CNS- 1745808).
REFERENCES

[1] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411–1424,
2016.

[2] “Innovation Is at Risk as Semiconductor Equipment and Materials
Industry Loses up to $4 Billion Annually Due to IP Infringement,”
http://www.marketwired.com, [Online; accessed 12-July-2017].

[3] R. S. Chakraborty and S. Bhunia, “Harpoon: An obfuscation-based soc
design methodology for hardware protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, 2009.

[4] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proceedings of the 49th Annual Design Automa-
tion Conference, ser. DAC ’12. New York, NY, USA: ACM, 2012, pp.
83–89.

[5] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu,
and R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions
on Computers, vol. 64, no. 2, pp. 410–424, 2015.

[6] A. Nejat, D. Hely, and V. Beroulle, “Facilitating side channel analysis by
obfuscation for hardware trojan detection,” in 2015 10th International
Design Test Symposium (IDT), 2015, pp. 129–134.

[7] R. S. Chakraborty and S. B., “Rtl hardware ip protection using key-
based control and data flow obfuscation,” in Proceedings International
Conference on VLSI Design, ser. VLSID ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 405–410.

[8] J. Zhang, Y. Lin, Y. Lyu, and G. Qu, “A puf-fsm binding scheme for
fpga ip protection and pay-per-device licensing,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 6, pp. 1137–1150, 2015.

[9] G. Sumathi, L. Srivani, D. T. Murthy, A. Kumar, K. Madhusoodanan,
and S. A. V. S. Murty, “Structural modification based netlist obfuscation
technique for plds,” in 2016 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET), 2016,
pp. 1418–1423.

[10] C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incremental
sat-based reverse engineering of camouflaged logic circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. PP, no. 99, pp. 1–1, 2017.

[11] M. E. Massad, S. Garg, and M. V. Tripunitara, “Integrated circuit (ic)
decamouflaging: Reverse engineering camouflaged ics within minutes,”
in NDSS, 2015.

[12] T. Meade, S. Zhang, and Y. Jin, “Ip protection through gate-level
netlist security enhancement,” Integration, the VLSI Journal, vol. 58,
no. Supplement C, pp. 563 – 570, 2017.

[13] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall,
“Interlocking obfuscation for anti-tamper hardware,” in Proceedings of
the Eighth Annual Cyber Security and Information Intelligence Research
Workshop. ACM, 2013, p. 8.

[14] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, vol. 43, no. 10, pp. 30–38, 2010.

[15] T. Meade, Z. Zhao, S. Zhang, D. Pan, and Y. Jin, “Revisit sequential
logic obfuscation: Attacks and defenses,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1–4.

631

