
BRISC-V: An Open-Source Architecture Design Space
Exploration Toolbox

Sahan Bandara, Alan Ehret, Donato Kava and Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory

Department of Electrical and Computer Engineering, Boston University
Boston, Massachusetts, 02134, USA

{sahanb, ehretaj, dkava, mkinsy}@bu.edu

ABSTRACT
In this work, we introduce a platform for register-transfer level
(RTL) architecture design space exploration. The platform is an
open-source, parameterized, synthesizable set of RTL modules for
designing RISC-V based single and multi-core architecture systems.
The platform is designed with a high degree of modularity. It pro-
vides highly-parameterized, composable RTL modules for fast and
accurate exploration of different RISC-V based core complexities,
multi-level caching and memory organizations, system topologies,
router architectures, and routing schemes. The platform can be
used for both RTL simulation and FPGA based emulation. The
hardware modules are implemented in synthesizable Verilog using
no vendor-specific blocks. The platform includes a RISC-V com-
piler toolchain to assist in developing software for the cores, a
web-based system configuration graphical user interface (GUI) and
a web-based RISC-V assembly simulator. The platform supports
a myriad of RISC-V architectures, ranging from a simple single
cycle processor to a multi-core SoC with a complex memory hierar-
chy and a network-on-chip. The modules are designed to support
incremental additions and modifications. The interfaces between
components are particularly designed to allow parts of the pro-
cessor such as whole cache modules, cores or individual pipeline
stages, to be modified or replaced without impacting the rest of
the system. The platform allows researchers to quickly instantiate
complete working RISC-V multi-core systems with synthesizable
RTL and make targeted modifications to fit their needs. The com-
plete platform (including Verilog source code) can be downloaded
at https://ascslab.org/research/briscv/explorer/explorer.html.

KEYWORDS
Computer architecture design exploration, RISC-V, FPGA, Synthe-
sizable, Open Source, Verilog.

1 INTRODUCTION
Designing, building, and testing multi-core, many-core and even
single-core processor systems is a difficult and time consuming task.
Designers are faced with numerous design decisions that, when
taken as a whole, impact performance in subtle ways. With the
ever increasing size and complexity of multi-core and many-core
systems, the time and effort needed for development is quickly rais-
ing the barrier to entry for design space exploration and research.
This growing obstacle to multi-core system design creates a need
for a flexible micro-architecture design space exploration platform.
However, there are many challenges involved with creating such
a platform. Salient research questions related to creating such a

platform include: (1) What aspects of a multi-core system are rele-
vant to micro-architecture design space exploration? (2) How can
a design space exploration platform provide ease of use and rapid
exploration while maintaining the speed and accuracy of FPGA-
based emulation? (3) How can the size of the design space covered
by a platform be maximized to provide support for a wide range of
systems and research?

To address these questions and challenges, we present an open-
source platform for RISC-V multi-core system micro-architecture
design space exploration. The key components of this platform are:

• A modular, parameterized, synthesizable multi-core RISC-V
hardware system written in Verilog.

• A RISC-V toolchain to compile a user’s code for bare-metal
execution on the hardware system.

• A RISC-V assembly simulator to test a user’s software inde-
pendently of the hardware system.

• A hardware system configuration graphical user interface
to visualize and generate multi-core hardware systems.

The name of the platform is withheld to maintain anonymity.
Current research that would benefit from fast micro-architecture

design space exploration ranges from the development of efficient
network on-chip (NoC) [12] to cache timing side channel elimina-
tion [5] to heterogeneous [8] or adaptive architecture design [4].
Indeed, there is still active research related to every subsystem in
a multi-core design. As such, our platform supports design space
exploration for: (1) RISC-V cores, with various pipeline depths and
configurations; (2) the cache subsystem with user selectable sizes
and associativities; (3) a main memory subsystem with support for
on-chip block RAM (BRAM) or off-chip memory; and (4) a parame-
terized on-chip network supporting a variety of router designs and
routing algorithms.

The hardware system is written in synthesizable Verilog with
no vendor specific IP blocks. This implementation enables RTL
simulation, in addition to the fast FPGA-based emulation necessary
for large, yet accurate, design space exploration. Parameterization
and modularity allow for rapid changes to the design of the system.
Individual modules (e.g. core pipeline stages or cache replacement
policies) as well as whole subsystems (e.g. core, cache or NoC de-
signs) can be customized or replaced independently of each other.
This allows users to make changes to their relevant systems without
the need to modify or understand implementation details of other
aspects of the system. The platform provides multiple implemen-
tations of core, cache, memory and NoC subsystems for users to
choose from. Parameterized modules allow users to quickly change
settings of the system, such as cache size, cache associativity, or

ar
X

iv
:1

90
8.

09
99

2v
1

 [
cs

.A
R

]
 2

7
A

ug
 2

01
9

https://ascslab.org/research/briscv/explorer/explorer.html

number of cores. Such parameters enable the fine tuning of a micro-
architecture after the appropriate hardware modules have been
selected.

The software tools included in the platform facilitate rapid de-
sign space exploration by streamlining the platform work flow.
Including the necessary toolchain allows users to develop software
for their design space exploration quickly and run it on a variety of
system configurations. The platform’s RISC-V assembly simulator
can be used to create a golden model of program execution and
fine tune software before testing it on the hardware system. These
golden models can accelerate debugging efforts by providing an
expected execution flow. The hardware system configuration GUI
allows users to select core types and features, cache sizes, and as-
sociativities, bus-based or NoC- based interconnects, among many
other parameters. Visualizations of the configuration promptly give
users an understanding of their system. Users can use the GUI to
generate an RTL implementation of the system, allowing them to
easily make and visualize changes, before producing a new design.
The modularity that comes with support for interchangeable core,
cache, memory, and NoC subsystems (and their internal modules)
enables a wide breadth of design space for exploration, without any
RTL modifications to the base platform. In order to maximize the
explorable design space, every aspect of the platform is open-source.
Users looking to expand the number of supported subsystems or
add experimental features can do so by modifying or extending the
Verilog RTL of the base system.

The use of RISC-V, an open ISA that is freely available, adds ad-
ditional possibilities for design space exploration with its modular
nature and numerous extension specifications [14] [13]. Users can
add custom instruction set extensions to support experimental ar-
chitecture features or custom hardware accelerators. The openness
and the option for custom extensions makes RISC-V an excellent
ISA for design space exploration. This platform uses version 2.2 of
the RISC-V User-Level ISA [14]

The complete platform (including Verilog source code) can be
downloaded at https://ascslab.org/research/briscv/explorer/explorer.
html.

2 RELATEDWORK
Other work has developed configurable processors and tools to
facilitate varying degrees of design space exploration. One such tool,
Heracles [7] [6], is based on the MIPS ISA and runs on theWindows
operating system. Everything needed to create a synthesizable
system is included with Heracles. A GUI enables users to specify
their system and generate Verilog code for it. Two core types, each
with one or two hardware threads, can be selected for use in multi-
core systems. A dummy core is included to test different on-chip
network designs. Cache hierarchies can involve one or two levels
of direct mapped caches. A cross compiler allows programmers
to write parallel code for a multi-core MIPS architecture. A wide
variety of NoC routing configuration options are available in the
NoC configuration of Heracles.

Heracles and our platform share similar goals, however, Heracles
is more limited in the number of core and cache configurations
available. Additionally, the use of RISC-V in our platform makes
extending the ISA easier, given RISC-V’s opcodes dedicated to user

defined instructions [14]. These improvements in our platform
create a richer and larger explorable design space.

The Soft Processor Rapid Exploration Environment (SPREE) tool
provides another MIPS-based design space exploration tool [9] [16].
SPREE explores such trade-offs in micro-architectural details as
pipeline depth, hazard detection implementation, as well as ISA
features like branch delay slots and application-specific register
management. However, the design space covered by SPREE is lim-
ited to the cores in a processing system. Additionally, only single
core designs are supported by SPREE. Our platform offers a more
complete design space exploration, with support for multi-core
systems with core, cache, memory and NoC configuration options.

The free and open nature of RISC-V means that numerous open-
source implementations are available. A few of these, for example, a
size optimized core named PicoRV32 [15] and a Linux capable core
named RV12 from RoaLogic [11], include SoCs generated with the
Rocket Chip Generator [3]. Many more implementations exist, but
for brevity they are omitted. While the RISC-V implementations
mentioned offer some level of configuration, none of them support
multi-core, cache, or NoC design space exploration in the way
our platform does. Table 1 compares the configuration options
and features available for design space exploration in each of the
referenced works.

Pic
oR
V3
2

RV
12

Ro
ck
et
Ch
ip

SP
RE
E
He
rac
les

Ou
r P
lat
for
m

Core ✓ ✓ ✓ ✓ ✓ ✓
Cache ✓ ✓ ✓ ✓

Memory ✓ ✓
Interconnect ✓ ✓
Multi-Core ✓ ✓ ✓

Extensible ISA ✓ ✓ ✓ ✓
GUI ✓ ✓

Table 1: A comparison of configurable subsystems and fea-
tures available in popular configurable processors.

3 PLATFORM OVERVIEW
A typical workflow in the platform (shown in Figure 1) starts with
developing the software application to be run on the hardware sys-
tem. Software is compiled with either the GNU or LLVM compiler
toolchain for RISC-V. The included compiler scripts support simple
multi-processing and multi-threading environments.

After developing the application, users can determine perfor-
mance requirements as well as power and area constraints. Given
the system requirements, a user can begin setting parameters for
the core, cache, memory and NoC subsystems. Users can set these
parameters with the hardware configuration GUI discussed in Sec-
tion 8.1. Users requiring a small processor to handle embedded
applications might select a small single cycle core with a simple
BRAM memory, while a user developing a large distributed multi-
core system could opt for the more complex pipelined or out-of-
order cores, with large caches and a memory controller for off-chip
memory. Users developing a system for a single application can
optimize the cache subsystem by selecting line size, associativity,

2

https://ascslab.org/research/briscv/explorer/explorer.html
https://ascslab.org/research/briscv/explorer/explorer.html

Application
(Single or Multi-
threaded C/C++)

RISC-V Cross
Compiler

Hardware Aware
Application

Mapping

Processing
Element
Selection

Memory
Organization
Configuration

NoC Topology
and Routing

Settings

RTL
Simulation

FPGA
Emulation

Software
Environment

Hardware
Design

System
Evaluation

Load
Program

Analysis and
Synthesis

Rewrite Application

Re-Design
Hardware

Figure 1: A typical workflow for the platform.

and number of line values best suited to the memory access pattern
of the application. For instance, if the application has high spatial
locality, then a larger line size can be selected. If users are designing
a large many-core processor they can experiment with different
NoC topologies and routing algorithms to determine which one
gives the best performance for their constraints.

The test benches included in the hardware system can be used to
simulate the processing system and verify that the user’s program
executes correctly. Tests for the sample programs included in the
toolbox have been automated to report a pass or fail result to ac-
celerate development of custom features. After passing simulation
tests, the hardware system can be synthesized for implementation
on an FPGA. The ability to generate a processing system rapidly
allows users to iterate their design in the event that their require-
ments are not met by the initial system. At any point in the design
flow, users can easily go back and tweak the design to meet their
constraints better. Quickly iterating a design enables users to de-
velop the hardware and software systems together, facilitating a
thorough design space exploration.

4 PLATFORM CORE DESCRIPTIONS
A single cycle processor is presented as a baseline for processor
design, emulation, and analysis. For users to explore the impact
pipeline depth has on performance and area, the platform includes
five- and seven-cycle pipelined processors. For users to explore
instruction extensions and a wide variety of micro-architecture fea-
tures, the platform includes a super-scalar out-of-order processor.

4.1 Single Cycle Processor
The single cycle processor implements the RV32I instruction set
withmodules designed around the “textbook” fetch, decode, execute,
memory, and write-back stages of a processor [10]. This processor
serves as the base for other cores; as such, it has been designed to
be as simple as possible. The modules in the single cycle processor
are reused or wrapped with additional logic to support features
such as pipelining and data forwarding. A block diagram of the
processor is shown in Figure 2. The single cycle processor has
instruction and data memory interfaces compatible with every
cache and memory subsystem provided in the platform. Due to
the single cycle operation, NOPs are inserted between BRAM or
off-chip memory accesses. An asynchronous memory is provided
to avoid NOPs, but it cannot be implemented in FPGA BRAM and
must be kept small to prevent the memory from using too many
device resources.

By using the Verilog hex output from the included compiler
toolchain described in Section 8.2, users are able to compile a bare-
metal C program and run it on an FPGA implementation of the

processor. Synthesis results have been collected and are shown in
Table 4. Note that the Logic Element usage is high because the
memory is implemented in Look Up Tables (LUT), because of the
asynchronous memory system used.

Register
File

I-Mem
Interface

D-Mem
Interface

rs1 Br
an

ch

Write Enable

I-V
al

id

In
st

ru
ct

io
n

I-A
dd

r O
ut

Next PC
select

rs2

rd

Lo
ad

/S
to

re

W
R

 A
dd

r

Control
Unit

D-Valid

WR Data

R
D

 D
at

a
D

-A
dd

r O
ut

Target
PC

Equal+4

PC

Equal

Imm
Select

ALU

Figure 2: RV32I single cycle core.

4.2 Five Stage Pipeline
The five stage processor is implemented by using the base mod-
ules from the single cycle processor as a starting point and adding
pipeline registers between the combinational fetch, decode, exe-
cute, memory and writeback modules. The single cycle control logic
module is wrapped with additional logic to support the stall and
bypass signals needed for pipelining. Introducing multiple instruc-
tions in flight demonstrates how hazard resolution must consider
bypassing, stalling, and pipeline flushing.

Pipelining allows for a higher clock frequency; however, NOPs
are still inserted between synchronous memory operations because
there is no pipeline register between the address input and data
output of thememory interfaces. Asynchronousmemoriesmust still
be used to avoid NOPs between instruction fetches. Note, however,
that the addition of pipeline stages allows some synthesis tools
to implement an asynchronous main memory (without caches) in
FPGA BRAM. The five-stage pipelined processor has two variants.
The first uses only pipeline stalls and flushes when a pipeline hazard
is detected. The second implements data forwarding to avoid stalls
for most hazards. Stalling and forwarding logic is wrapped around
the base control unit used in the single cycle core. A multiplexer is
wrapped around the decode logic to output forwarded data when
needed. Wrapping the base modules to build the five stage pipeline
maximizes IP reuse and allows for user base module customizations
to be carried through their core design space.

Register
File

I-Mem
Interface

Fetch Decode Execute Memory WB

D-Mem
Interface

rs1 Br
an

ch

Write Enable

I-V
al

id

In
st

ru
ct

io
n

I-A
dd

r O
ut

Next PC
select

rs2

rd

Lo
ad

/S
to

re

W
R

 A
dd

r

Control
Unit

D-Valid

WR Data

R
D

 D
at

a
D

-A
dd

r O
ut

Target
PC

Equal+4

PC

Equal

Imm
Select

ALU

Figure 3: RV32I five-stage pipelined core.

3

4.3 Seven Stage Pipeline
The seven-stage pipelined processor builds on the base modules in
the single cycle processor and the pipeline related modules intro-
duced with the five stage processor. It adds registers between the
address inputs and data outputs of the memory interfaces to avoid
inserting NOPs while waiting for synchronous memory operations.
With these extra pipeline stages, BRAM reads and cache hits no
longer need to insert NOPs. The additional pipeline stages can be
seen in the seven stage pipeline block diagram shown in Figure 4.

Placing extra stages between the memory interface input and
outputs enables logic to check that a memory read is valid while the
next operation is issued. Operations in cacheless implementations
with on-chip BRAM will always be valid; however, the addition of
caches means that cache misses could delay valid read data. In the
event of a cache miss, the received data is marked invalid by the
memory and the processor stalls until the requested memory has
been retrieved. On cache hits, execution continues normally with no
inserted NOPs. The extra registers in the seven stage pipeline yield
an improvedmaximum clock frequency. The extra pipeline registers
lead to simplified control logic, resulting in a slightly reduced area.
Synthesis results for the seven stage pipeline are shown in Table 4.

Register
File

I-Mem
Interface

Fetch 1 Fetch 2 Decode Execute Mem 1 Mem 2 WB

D-Mem
Interface

rs1 Br
an

ch

Write Enable

I-V
al

id

In
st

ru
ct

io
n

I-A
dd

r O
ut

Next PC
select

rs2

rd

Lo
ad

/S
to

re

W
R

 A
dd

r

Control
Unit

D-Valid

WR Data

R
D

 D
at

a
D

-A
dd

r O
ut

Target
PC

Equal+4

PC

Equal

Imm
Select

ALU

Figure 4: RV32I seven-stage pipelined core.

4.4 Out of Order Processor
The Out-Of-Order (OOO) core enables exploration of advanced ar-
chitectural features including a superscalar architecture, instruction
scheduling, and complex hazard resolution. The OOO processor
supports out-of-order execution with in order commit. The number
of ALUs has been parameterized to allow users to explore the impact
of a varying number of functional units on processor performance.

The OOO processor implements the RV32F instruction set ex-
tension to create more opportunities for out-of-order execution.
In order to support the floating point extension, a floating point
register file and floating-point execution units were added to the
processor. The base decode and control units have been expanded
with extra logic to support the new floating point instructions.

The OOO core adds three multi-cycle modules to the processor
pipeline: (1) an instruction queue, (2) a scheduler, and (3) a commit
stage. These three stages do not reuse any of the base modules from
the in-order cores discussed previously. Figure 5 shows a block
diagram of the OOO micro-architecture.

In the out-of-order processor, instructions are fetched and de-
coded before being placed in the new instruction queue stage. The
instruction queue length can be modified by the user to trade off

 Integer

Register
File

I-Mem
Interface

Fetch 1 Fetch 2 Decode Execute Memory & Commit

D-Mem
Interface

Write Enable

I-V
al

id

In
st

ru
ct

io
n

I-A
dd

r O
ut

Next PC
select

LD/
ST

Ad
dr

Control
Unit

D-Valid

WR Data

R
D

 D
at

a
D

-A
dd

r O
ut

Target
PC

Equal+4

PC

Equal

Imm
Select

In
st

ru
ct

io
n

Q

ue
ue

Sc
he

du
le

r

Float
Register

File

I-ALU

F-ALU

Decoded
Instruction

Decode
Logic

C
om

m
it

St
ag

e

R
e-

or
de

r B
uf

fe
r

Queue/Schedule

W
R

 D
at

a
LD

/S
T

Figure 5: RV32IF Out-of-order core.

performance and area. The queue is implemented as a priority
queue, in which the highest priority (longest waiting) instruction
without any hazards is scheduled next.

The scheduler module supports a parameterized number of float-
ing point and integer ALUs. When both an instruction and an ALU
are ready, the scheduler assigns the instruction to the available
ALU. After the instruction has completed its execution with re-
spect to the ALU, it continues through the pipeline into the commit
stage. Up to one instruction is scheduled each clock cycle. ALUs
can be pipelined to ensure their utilization remains high, offering
yet another design space exploration trade off.

Memory operations wait in the commit module until the mem-
ory access has completed. Instructions in the commit module are
buffered and sent to the writeback unit in order. Instructions are
re-ordered based on the priorities used in the instruction queue. An
instruction’s ‘rd’ value is stored in a table in the instruction queue
stage. Hazards are detected by comparing the ‘rd’ values of in-flight
instructions to the ‘rs1’ and ‘rs2’ values of instructions entering
the queue. An instruction’s ‘rd’ value is cleared from the table in
the instruction queue stage after the instruction exits the writeback
stage, completing its execution.

5 CACHE SUBSYSTEM
Our platform includes a highly configurable multi-level cache sub-
system in order to provide a high degree of freedom to users. Differ-
ent cache configurations can be implemented by adjusting param-
eters. The cache subsystem can be easily modified to fit different
performance requirements or available resources. For instance, if
the system is to be implemented on a smaller FPGA, one or two
levels of smaller caches could be used. Alternatively, if a larger
FPGA is available, larger caches and more levels in the cache hier-
archy would provide better performance. The ability to test a large
number of different cache configurations, without investing time
to develop the different cache systems from scratch, streamlines
cache-focused design space exploration.

The cache subsystem supports multi-stage inclusive caches. The
caching policy is “write back with write allocate”. Currently, the
cache system supports “MESI” cache coherence. Other system pa-
rameters, such as the number of cache levels, cache size, and internal
parameters of each cache are configurable. Coherent cache configu-
rations with heterogeneous line widths and associativities are also
supported. The cache subsystem is comprised of two fully param-
eterized cache modules, a shared bus, and a coherence controller.

4

An interface module is included to act as the interface between the
last level cache and the main memory or on-chip network.

The “main_memory_interface” module bridges the gap between
main memory word size and last level cache line size. This decou-
pling allows the user to use off-chip memory as the main memory.
In the case of a distributed memory system, this module also acts as
the interface between the last level cache and the on-chip network.
Figure 6 depicts the platform’s cache hierarchy.

5.1 L1cache
The “L1cache”module is designed to be used as the level 1 cache that
interfaces with a processor. It provides user configurable parame-
ters for cache size, cache line width, associativity, and replacement
policy. The “INDEX_BITS” parameter determines the number of
cache sets. “OFFSET_BITS” parameter determines the cache line
width while “NUMBER_OF_WAYS” parameter specifies the asso-
ciativity of the cache. RTL for the cache is written in a highly
parameterized fashion with additional parameters for data width,
address width, number of status bits, number of coherence bits,
number of bits to select replacement policy, and number of bits
used for communication with the other levels of the cache hierarchy.
These parameters make it simpler to build extensions to the cache
subsystem by minimizing the number of RTL changes required.

The “L1cache” receives six signals from the processor. The pro-
cessor specifies the memory address to access with the “address_in”
port and the data to write with the “data_in” port. Additional ports
exist for the read, write, flush, and invalidate signals. Flush and
invalidate operations are carried out on a cache line granularity.
When the processor specifies a single memory address with the
flush/invalidate signal, the cache line containing the address is
flushed/invalidated throughout the entire cache hierarchy. If the
cache line was dirty, it is written back to lower levels in the cache
hierarchy and ultimately to main memory. Since the caches are
inclusive, a flushed cache line is also flushed/invalidated from L1
caches of other cores in the system.

The L1 cache sends four signals to the processor. The “data_out”
bus sends the data read from memory, while the “out_address” is

L1 I$ L1 D$

L2 cache

Memory

Processor 0

L1 I$ L1 D$

Processor N

NoC Router

Shared Bus

Main Memory Interface

C
oherence

C
ontroller ...

...

Figure 6: Multi-core memory hierarchy block diagram.

the memory address corresponding to the data on the data bus.
The “valid” signal indicates that the data on the data bus is valid.
The “ready” signal informs the processor that the cache is ready
for the next memory request. The processor should stall parts of
the pipeline based on “valid” and “ready” signals. Both signals are
required to convey the cache status to the processor because the
L1 cache operates in a pipelined fashion with up to two accesses in
flight at any time. The L1 cache has a one-cycle access time due to
FPGA BRAM access latency. Each way of the cache is mapped to a
separate BRAM on the FPGA.

Both “L1cache” and “Lxcache” modules use the same interface
for communicating with the lower levels (caches more distant from
the processor) in the cache hierarchy. A common interface is used
to enable an arbitrary number of cache levels in a design. This
interface consists of six signals: data_in, address_in, message_in,
data_out, address_out and message_out.

Data in/out contains a whole cache line. All caches use different
4-bit messages to communicate with other caches via the shared bus.
There are two types of messages. The first type is to communicate
basic requests such as read, write back, flush, etc.. The second type
of messages is related to cache coherence. When an L1 cache is
writing to a shared line or reading a cache line on a write miss, it
broadcasts its intent so that the other caches can perform necessary
coherence operations. L2 cache issues flush requests to L1 caches
when evicting a cache line that one or more L1 caches have a copy
of. Cache coherence is discussed in detail in Section 5.3.

Currently, the caches can be configured to perform true Least
Recently Used (LRU) or random replacement of cache lines. Because
of the modular design of the “replacement_controller” module, a
user can easily implement other replacement policies.

5.2 Lxcache Module
The “Lxcache” module is configurable to be used at any level in the
cache hierarchy except for level 1 where the cache interfaces with
the processor. “Lxcache” supports all the configurable parameters
in “L1cache”. The “Lxcache” module adds the capability to serve an
arbitrary number of ports with round robin arbitration. Multiple
ports enable level 1 caches from several processors to be connected
to a shared level 2 cache.

5.3 Cache coherence
The platform’s cache subsystem implements “MESI” cache coher-
ence which makes it possible to build and test multi-core archi-
tectures. The “coherence controller” module is designed to be in-
stantiated alongside L1 and L2 caches. This module is capable of
serving an arbitrary number of L1 caches and the L2 cache. The
shared bus between L1 and L2 caches is controlled by the coherence
controller. It listens to messages issued by L1 and L2 caches and
controls which cache drives the shared bus.

The L1 caches are designed to listen and respond to messages on
the shared bus by either writing back or invalidating cache lines.
Different operations, of which a read request is the simplest, trigger
cache coherence operations. If one of the other caches has a dirty
copy (in “MODIFIED” state) of the requested cache line, it will write
back the dirty cache line to the shared bus. The coherence controller
will allow the write back to go on the bus so that the L1 cache that

5

issued the original read request and the L2 cache can update the
cache line in question. If any of the caches have “exclusive” copies
of the cache line, they will be changed to the “SHARED” state.

When an L1 cache is writing to a shared cache line, it sends a
message communicating its action. That message is broadcasted to
all other L1 caches over the shared bus. Upon receiving the message,
other caches invalidate the shared line and respond to the coherence
controller. Once all caches respond to the broadcast, the coherence
controller puts “NO_REQ” message on the bus. This indicates to
the first cache that it can write to the shared line and change its
coherence status to “MODIFIED”.

Another type of coherence operation is triggered when an L1
cache encounters a write miss. Since it intends to write to the
cache line read from the lower level, the L1 cache sends a message
requesting ownership of the cache line instead of a standard read
request. This indicates to the other L1 caches that unlike with a read
request, they should invalidate the cache line if they have copies of
it in “SHARED” or “EXCLUSIVE” states.

The last type of coherence operation occurs when the L2 cache
is about to evict a cache line that is also in one or more of the L1
caches. Since this is an inclusive cache hierarchy, the copies of the
cache line should be evicted form L1 caches as well. Therefore, the
L2 cache issues a flush request to the L1 caches.The L1 caches either
invalidate or write-back the cache line depending on its status.

L1 caches are designed with an independent snooper module to
perform coherence operations. Dual ported block RAMs are used
as memory to perform coherence operations without interrupting
normal memory accesses by the cache controller. When both the
cache controller and the snooper access the same cache line, the
coherence operation is given priority. Bus interface also gives the
snooper priority when both the controller and snooper attempt to
access the shared bus.

5.4 Limitations
Currently, cache coherence is handled at the first level of the cache
hierarchy (L1 caches). This forces the L2 to be shared between all
processors. Future improvements to the cache subsystem will allow
the user to choose whether cache coherence is handled at L1 or L2
level. Moving the coherence controller to the L2 level will allow a
user to build a cache hierarchy with private L1 and L2 caches, and
a shared L3 cache.

6 MAIN MEMORY AND NETWORK-ON-CHIP
The main memory interface decouples the cache subsystem and
the main memory. Users have the option to use any of the provided
main memory subsystems: (1) unified or separate asynchronous
instruction and data memory, (2) unified or separate synchronous
instruction and data memory, or (3) off-chip memory controller.

Connecting the main memory interface to an off-chip memory
controller enables large main memories. Using off-chip memory
is useful when a system needs more memory than is available on
a given FPGA. Currently the platform includes a simple off-chip
SRAMmemory controller; other device specific memory controllers
can easily be added. The interface also supports connections to an
on-chip network, which, coupled with the ability to configure the

size of main memory on a per node basis, enables uniform and
non-uniform distributed memory systems.

7 ON-CHIP NETWORK
The platform’s on-chip network works with the memory subsys-
tem to implement a variety of multi-core architectures. The NoC
provides a number of configuration options, enabling the user to
explore different network topologies and optimize the resource us-
age and performance of the system. The network can be configured
to explore different combinations of: 1) flow control, 2) routing
algorithms, and 3) network topologies. The NoC router is fully
parameterized 7.

Routers in the NoC can be configured as buffered or buffer-less
routers. The routers support oblivious routing algorithms using
fixed logic or configurable routing tables. Fixed logic is implemented
for Dimension Order Routing. Programmable routing tables enable
different routing algorithms with changes to the routing table en-
tries. A wide range of network topologies can be be implemented
by configuring the number of input ports, output ports and routing
table contents of the routers. Routers included in the platform are
conventional virtual channel routers. There are single cycle and
pipelined variants of the routers. Users can configure different pa-
rameters such as number of input/output ports, virtual channels
per port, virtual channel depth to tune the performance and re-
source usage of the on-chip network opening a rich design space
for exploration. The on-chip network is based on the NoC included
with the Heracles system [6] [7].

0

1

2

3

S1 S0

0

1

2

3

S1 S0

G R O P C

D
E
M
U
X

M
U
X

0

1

2

3S1

S0

0

1

2

3

S1

S0

G
R

O
P

C

D
E

M
U

X

M
U

X

0123

S
1

S
0

0123

S
1

S
0

G

R

O

P

C

DEMUX

MUX

0

1

2

3

S1 S0

0

1

2

3

S1 S0

G R O P C

M
U
X

D
E
M
U
X

0123

S
1

S
0

0123

S
1

S
0

G

R

O

P

C

MUX

DEMUX

Arbiter

X
B
A
R

Routing
Table

Fixed
Routing
Logic

Core Output
Port

Core Input
Port

Input Port 4 Output Port 4

Input
Port 3

Output
Port 3

Output
Port 1

Input
Port 1

Input Port 2 Output Port 2

Figure 7: NoC router architecture.

8 WORKFLOW DESCRIPTION
Being able to make changes to the hardware system easily and
understand the performance implications of those changes make
our platform a powerful micro-architecture design space explo-
ration tool. Quick design changes are supported with open-source
parameterized Verilog modules and a hardware system configura-
tion GUI. The configuration GUI provides a user friendly way to
choose parameters and visualize a hardware system. A compiler
toolchain streamlines software development. A RISC-V GCC cross-
compiler binary is included, so users do not have to configure and
build the RISC-V tools from source code. The following subsections

6

Figure 8: A screenshot of the hardware configuration
GUI. Note that logos have been cropped out to maintain
anonymity.

describe the workflow for the software toolchain and hardware
configuration GUI.

8.1 Hardware Configuration GUI
The hardware system configuration application is a graphical ap-
plication that allows users to configure a hardware system to meet
their specification. The application runs in a web browser, allowing
users to run it on Windows, Linux, or Mac.

With the hardware configuration system users can (1) select
their desired core type and features; (2) include a cache subsystem,
if desired, and select its parameters; (3) choose a main memory
subsystem, e.g. on-chip, off-chip, unified or separate instruction and
data memories; and (4) choose NoC configuration options including
number of routers, router topology, and router scheme.

Figure 8 shows a screenshot of the application. On the left are
menu and parameter entry text boxes. A block diagram of the con-
figured system is shown on the right of the application window.
Selecting different menu options opens different parameter selec-
tion tabs. The five core types currently included are 1) single cycle,
2) five-stage pipeline with stall on hazard, 3) five-stage pipeline
with data forwarding, 4) seven-stage pipeline with forwarding, and
5) pipelined Out-Of-Order. As the processor cores gain complexity,
so do their parameters. The cores are built off of one another, with
each core serving as the starting point for the next more complex
core. Each new implementation supports the previous processor’s
parameters, in addition to any new required parameters. If on-chip
main memory is selected, it can be initialized with the “PROGRAM”
parameter. This parameter points to a Verilog Memory Hex file
that is output by the provided compiler toolchain described in Sec-
tion 8.2.

After a user has configured the system, clicking “Generate and
download” will download the configured RTL and selected binary
from the application. Note that the application is run in a web
browser but the entire application can also be local to a user’s
machine. No internet connection is required to use the configura-
tion GUI. The use of “Download” here refers to the fact that the
browser is oblivious to the application’s origin. Running the hard-
ware configuration GUI in a browser enables researchers, students
and teachers to use it locally on a platform of their choice or host it
on a server for users to access remotely. Hosting the configuration
GUI on a server could simplify its use in a classroom environment.

8.2 Compilation
Software for the platform can be built using the standard GNU [2]
or LLVM [1] compiler toolchains. The GNU toolchain is the de-
fault and is distributed in the binary form with the project. The
binary distribution includes compiler, assembler, linker and the
standard library. For users who decide to use LLVM toolchain, we
distribute detailed instructions for building a bare-metal RISC-V
LLVM backend. RISC-V is supported as an experimental target from
LLVM version 8.0.0 and can easily be enabled during the build
process. Beside support for modern programming languages such
as Rust, LLVM infrastructure provides modular mechanisms for
adding custom instructions and compiler optimizations. The educa-
tional material that covers the writing of compiler backends and
custom optimizations in the form of “passes” is publicly available.
These features of the LLVM infrastructure are beneficial for design
space exploration.

A script is included to compile user code and convert it to a
format that can be synthesized as ROM or initialized RAM for im-
plementation on an FPGA. The provided compilation script outputs
(among other formats) an ASCII encoded Verilog Memory Hex
(.vmh) file. This .vmh file can be used to initialize memory contents
on an FPGA with the Verilog $readmemh() function.

The provided compilation script can be found in the “software”
directory. Application source code should be placed in the “soft-
ware/applications/src” directory. In order to compile an application,
the user runs the “compile” script from the software directory. Fig-
ure 9 shows the command usage and output.

metal RISC-V LLVM backend. RISC-V is supported
as an experimental target from LLVM version 8.0.0
and can easily be enabled during the build process. Be-
side support for modern programming languages such
as Rust, LLVM infrastructure provides modular mech-
anisms for adding custom instructions and compiler op-
timizations. The educational material that covers the
writing of compiler backends and custom optimizations
in the form of “passes” is publicly available. These fea-
tures of the LLVM infrastructure are beneficial for de-
sign space exploration.
A script is included to compile user code and con-

vert it to a format that can be synthesized as ROM or
initialized RAM for implementation on an FPGA. The
provided compilation script outputs (among other for-
mats) an ASCII encoded Verilog Memory Hex (.vmh)
file. This .vmh file can be used to initialize memory
contents on an FPGA with the Verilog $readmemh()
function.
The provided compilation script can be found in the

“software” directory. Application source code should
be placed in the “software/applications/src” directory.
In order to compile an application, the user runs the
“compile” script from the software directory. Figure 8
shows the command usage and output.

$./compile short_mandelbrot
...@ Making sure all binaries are executable.
...@ Start compilation process.
...@ Application: short_mandelbrot.c.
...@ Cleanning binary folder from possible stale copies.
...@ GNU compiler selected.
hart0main: main
Stack Pointer: 2044
...@ Stack point set to 2044.
...@ GNU assembler selected.
/opt/riscv/bin/riscv32-unknown-elf-ld: warning: cannot

find entry symbol _start; defaulting to
0000000000000000

↪→
↪→
...@ Compilation done. Moving to binary generation.
...@ Instruction and memory binaries partitioning.
...@ Done compiling application short_mandelbrot.
COMPILATION SUCCESSFUL!

Figure 8: Example Shell command to compile
a program named short mandelbrot.c with an
initial stack pointer of 2044 (0x7fc).

The first argument to the compile script is the name
of the C file that user wants to compile. The remain-
ing arguments are optional. The second argument sets
the initial stack pointer. The third argument sets the
size of the stack given each hardware thread (HART)
and a fourth argument specifies the number of harts
in the system. By default the stack pointer is 2044
(0x7fc) and only one HART is used. The stack pointer
may need to be changed if the selected memory size is
very small. The compilation script places the resulting
.vmh file in the “software/applications/binaries/” direc-
tory alongside with the other outputs.
The project currently does not support any operat-

ing system and applications must be run in a bare-metal
environment. To eliminate any extra setup by the user

(a) (b)

Figure 9: Incorrectly (a) and correctly (b) ren-
dered Mandelbrot set.

to enable bare-metal execution of their code, the com-
piler script wraps the user application with assembly
code to initialize each of the registers and call the main
function. The assembly wrapper executes an infinite
loop after the main function returns. This wrapper can
be thought of as a simple kernel. Multiple HARTs can
be used by writing a function named hartN_main() for
each HART, where “N” is the HART number. The sim-
ple kernel will call each HART’s main function.
The user’s custom compiler choice as well as the com-

piler options should be provided as environment vari-
ables. The environment variable used to supply addi-
tional options to GCC compiler is “GCC OPTS”. The
variables to control the version of LLVM compiler and
the additional options are“LLVM”and“LLVM OPTS”,
respectively. The user should provide these options be-
fore they run the compilation script. That being so, we
maintain the flexibility of the compilation process and
support the standard tools for code optimizations.
After running the provided compile script, a user can

set the “PROGRAM” parameter to the path of their
.vmh file (manually or in the hardware configuration
GUI) and synthesize their design. The instruction mem-
ory of the processor will be initialized with the contents
of the binary if it is on-chip. The instruction memory
also has a port for writing new programs after the de-
sign has been configured on an FPGA.

9. PLATFORM EVALUATION

9.1 The Platform as a Teaching Tool
The different versions of the processing cores in this

platform lay the groundwork for a hands-on education
in micro-architecture design. The cores included in this
platform provide various levels of complexity for users
to build on.
In order to evaluate the ease of use of the platform,

students used it as a baseline in their design space explo-
ration and added peripheral devices such as a memory
mapped VGA frame buffer. This frame buffer was used
to render a Mandelbrot fractal. Testing the rendering
program revealed that the original test suite did not
provide full coverage of the instruction set and some in-
structions did not execute correctly. After troubleshoot-
ing, it was found that the hardware system’s ALU did
not correctly execute signed operations. Figure 9 com-
pares the incorrect rendering with the correct rendering.
Finding and fixing this bug is an example of how this
design space exploration platform enables users to make

Figure 9: Example Shell command to compile a program
named short_mandelbrot.c with an initial stack pointer of
2044 (0x7fc).

The first argument to the compile script is the name of the C file
that user wants to compile. The remaining arguments are optional.
The second argument sets the initial stack pointer. The third argu-
ment sets the size of the stack given each hardware thread (HART)
and a fourth argument specifies the number of harts in the system.
By default the stack pointer is 2044 (0x7fc) and only one HART
is used. The stack pointer may need to be changed if the selected
memory size is very small. The compilation script places the re-
sulting .vmh file in the “software/applications/binaries/” directory
alongside with the other outputs.

7

(a) (b)

Figure 10: Incorrectly (a) and correctly (b) rendered Mandel-
brot set.

The project currently does not support any operating system and
applications must be run in a bare-metal environment. To eliminate
any extra setup by the user to enable bare-metal execution of their
code, the compiler script wraps the user application with assembly
code to initialize each of the registers and call themain function. The
assembly wrapper executes an infinite loop after the main function
returns. This wrapper can be thought of as a simple kernel. Multiple
HARTs can be used by writing a function named hartN_main()
for each HART, where “N” is the HART number. The simple kernel
will call each HART’s main function.

The user’s custom compiler choice as well as the compiler op-
tions should be provided as environment variables. The environ-
ment variable used to supply additional options to GCC compiler
is “GCC_OPTS”. The variables to control the version of LLVM com-
piler and the additional options are “LLVM” and “LLVM_OPTS”,
respectively. The user should provide these options before they run
the compilation script. That being so, we maintain the flexibility
of the compilation process and support the standard tools for code
optimizations.

After running the provided compile script, a user can set the
“PROGRAM” parameter to the path of their .vmh file (manually or
in the hardware configuration GUI) and synthesize their design.
The instruction memory of the processor will be initialized with
the contents of the binary if it is on-chip. The instruction memory
also has a port for writing new programs after the design has been
configured on an FPGA.

9 PLATFORM EVALUATION
9.1 Stress Testing Example of the Platform
The different versions of the processing cores in this platform lay
the groundwork for a quick micro-architecture design exploration.
The cores included in this platform provide various levels of com-
plexity for users to build on. In order to evaluate the ease of use of
the platform, we instantiate a simple faulty core and add peripheral
devices such as a memory mapped VGA frame buffer. The frame
buffer is used to render a Mandelbrot fractal. Testing the rendering
program revealed that the fault was injected in the ALU module
and caused it to execute signed operations incorrectly. Figure 10
compares the incorrect rendering with the correct rendering. Find-
ing and fixing this bug is an example of how this design space
exploration platform enables users to make additions easily and
expand core designs.

9.2 Design Space Exploration
To evaluate the performance of the platform and showcase the
extent of design space exploration possible, we benchmark several

Figure 11: (a) Runtime of each single-core system for each
benchmark, normalized to the single cycle core runtime. (b)
Runtime of single, dual, quad and octa-core processors for
the prime number counting benchmark, normalized to the
single core runtime.

processing system configurations. First, we compare single cycle,
five-stage pipeline (with and without data forwarding) and seven-
stage pipeline (with data forwarding) cores with asynchronous
memory in the single cycle system and synchronous memory in
the pipelined systems. Each system uses a dedicated instruction
and data memory module in a single core configuration. These
configurations do not use caches to avoid paying the penalty of
cache misses without the benefit of larger off-chip main memory.
Second, we compare multi-core systems connected via a bus be-
tween the level 1 and level 2 caches. In each multi-core system, the
seven-stage pipelined core is used.

To compare the single-core, cacheless processor configurations,
three different benchmark programs are run on each core. One
benchmark computes the factorial of an integer. The second bench-
mark counts the number of prime numbers between two numbers.
A third benchmark computes the Mandelbrot set at a given resolu-
tion and checksums the result.

Each benchmark is executed in an RTL simulation of the config-
ured processing system. The number of cycles needed to complete
the program execution is recorded. The estimated Fmax (obtained
from synthesis tools) of each core and the number of clock cy-
cles in each program execution is used to compute the runtime
of the benchmark. Table 2 reports the number of cycles for each
benchmark. Figure 11 compares the runtime of each benchmark on
each of the configured systems. The runtimes are normalized to
the single cycle core’s runtime.

The single cycle system executes each benchmark in the fewest
cycles but the low clock frequency hurts the program runtime. The
single cycle core’s clock frequency is roughly half that of the other
cores because the asynchronous main memory is implemented in
logic elements instead of the faster BRAMs.

The five-stage pipelined processor has a much higher clock fre-
quency than the single cycle core, but must stall the pipeline for
each hazard encountered. Pipeline stalls lead to a much higher num-
ber of cycles needed to execute the program. The five-stage pipeline
without data forwarding has the highest program runtime of the

8

tested cores. Adding data forwarding to the five-stage pipeline cuts
the program runtime in half, yielding runtimes better than the
single cycle core.

The seven-stage pipeline adds two stages to the five-stage pipeline
to support synchronous memories without inserting NOPs. These
extra stages increase the clock frequency but also increase the num-
ber of cycles needed to compute the target address of branch and
jump instructions. The five-stage pipeline must wait two cycles
before a jump or branch address is ready while the seven-stage
pipeline must wait three cycles. Neither pipeline has a branch
predictor. The extra cycles spent stalling are canceled out by the
higher clock frequency of the seven-stage pipeline. The seven-stage
pipeline has the best runtime for each benchmark.

Comparing the five-stage pipeline with and without data for-
warding demonstrates the effectiveness of forwarding in resolving
pipeline hazards. Comparing the five- and seven-stage pipelines
with data forwarding illustrates how the number of bubbles inserted
in the pipeline during jumps, branches, and the remaining load-use
hazards impacts program runtime. Figure 12 plots the Mandelbrot
fractal benchmark runtime versus the core area to visualize the area
and performance trade-off. Only the area of the core is considered;
area used by memory is ignored here. The area usage of each core
is discussed in Section 9.3.

To compare multi-core architectures using caches, the same
prime counting benchmark used in the single core tests is paral-
lelized and run on multi-core systems with different core counts.
The L1 instruction and data caches in the configured multi-core
systems have four 32-bit words per cache line and are 4-way set
associative. There are 256 lines in each L1 cache. The shared L2
cache in each processor also has four 32-bit words per cache line
and is 4-way set associative. The L2 cache has 512 cache lines. As

Core Clock Prime Factorial Mandelbrot
Type Freq. Cycles Cycles Cycles
Single
Cycle

29.0
MHz

3,464k 59k 488k

5 Stage
Stalled

62.6
MHz

11,789k 190k 1,654k

5 Stage
Bypassed

61.5
MHz

5,891k 107k 833k

7 Stage
Bypassed

81.1
MHz

6,833k 113k 948k

Table 2: Clock frequency and number of clock cycles to run
each benchmark for each configured single core system.

Core Clock Number of
Count Frequency Cycles
1 61.7 MHz 7,995,845
2 59.5 MHz 4,373,431
4 60.0 MHz 2,671,258
8 59.5 MHz 1,426,346

Table 3: Clock frequency and number of clock cycles to
run the prime counting benchmark for different number of
cores.

Figure 12: Comparisons of the performance and area trade-
offs made by each configured single-core system. Only core
area is considered. Area used by memory is ignored.

expected, increasing the number of cores decreases the program
runtime. Table 3 shows the clock frequency of each multi-core pro-
cessor and the number of cycles needed to execute the benchmark
program. Figure 11 compares the runtime of each processor. Note
that each time the number of cores is doubled, the runtime is nearly
halved.

By providing different core options with a range of pipeline
depths and clock frequencies, the platform simplifies analysis of
performance and area tradeoffs. The analysis presented here was
limited to core micro-architecture, cache design and number of
cores but many more options are available for fine tuning.

9.3 Synthesis Results
The runtime lengths presented in Tables 2 and 3 are based on simu-
lations, but each core is fully synthesizable. All synthesis results
presented here target an Altera Cyclone IV FPGA with 150k logic
elements.

Table 4 shows the “ADDRESS_BITS” parameter value, logic ele-
ment usage, BRAM usage and worst case Fmax for each cacheless
core type. In Table 4, the “ADDRESS_BITS” parameter was set to
12 for each pipelined core. Twelve address bits yields 4k 32-bit
word addresses for each instruction and data memory (8k words
total). The single cycle core uses the asynchronous memory and
must implement its memory in logic elements. To ensure the single
cycle design fits on the device, it was synthesized with just 1k word
memories.

The cores in Table 4 do not use caches. Separate instruction
and data RAMs are connected directly to the processors memory
interfaces to act as main memory. Using simple memory minimizes
the memory system’s impact on resource usage. These results focus
on the cores themselves. Tables 6, 7 and 8 show cache resource usage
in isolation. Table 5 shows synthesis results for several multi-core
processor configurations.

Table 6 shows synthesis results for varying L1 cache sizes tar-
geting the same Cyclone IV FPGA mentioned above. The number
of logic elements and BRAM used as well as the maximum clock
frequency are reported. Each cache is 4-way set associative and
has 4 word (16 Byte) cache lines. The synthesis results show that

9

varying the cache size while maintaining the same line size and
associativity only marginally changes the logic element usage and
Fmax. Only the BRAM usage is significantly impacted by cache size.

Table 7 shows synthesis results for 4kB L1 caches with 4 word
(16 Byte), cache lines and various associativities. Intuitively, the
number of logic elements grows with the associativity while Fmax
shrinks. The BRAM usage grows slowly with the associativity. The
16-way associative cache uses 2k more BRAM bits than the 1-way
(direct mapped) cache. The increase in BRAM usage with higher
associativities can be explained by the higher BRAM usage in the
‘replacement_controller’ module, which implements the true least
recently used (LRU) replacement policy.

Table 8 shows synthesis results for 4kB L1 cacheswith linewidths
ranging from 1 word (4 Bytes) to 16 words (64 Bytes). Varying the
line width trades off BRAM and logic elements. Smaller line widths
use more BRAM bits for tag storage, while larger line widths use
more logic elements to implement registers and buses to handle
wider cache lines.

Table 5 shows the resource usage for processors with 1, 2, 4 and
8 cores. The cores used in the multi-core processor are versions
of the 7-stage pipelined core. The L1 caches, shared L2 cache, and
coherence controller modules add a significant area overhead but
enable the use of complex memory hierarchies. The significantly
larger BRAM usage in the multi-core processors stems from the
large cache and on-chip main memory. The memory in the single
core processors was made to be smaller because larger memories
were not needed for the benchmarks. Note that the BRAM usage for
the 8-core processor is slightly greater than what is available on the
device. We have included the results here because moving the main
memory to off-chip SRAM available on our development board
would allow the caches to fit within the device BRAM without
significantly impacting the performance.

The memory hierarchy for each of the processors in Table 5 uses
the same parameters. 16kB L1 caches, 32kB L2 caches and a main
memory of 256kB.

The different cores and cache configurations supported by the
platform enable users to examine the difference between design
choices quickly. Additional configuration options, including NoC
routing, NoC topology, and on/off-chip main memory configura-
tions have not been included here due to space restrictions.

Each core builds off of the same set of base modules, making
it easy to integrate experimental features into several of them by
modifying only the base module. This extensibility opens up even
more possibilities for design space exploration. We have used this
technique to add data forwarding, originally added to the five-stage
pipeline, to the out-of-order and seven-stage pipeline cores.

10 FUTUREWORK
The goal of this work is to explore techniques to develop a fast,
flexible, multi-core design space exploration platform, enabling
users to understand the impact of their design decisions and quickly
test different configurations. To expand the number of configuration
options available to users further, the authors plan to add several
new features to the available cores, including branch predictors,

Core Addr Logic BRAM Fmax
Type Bits Elements Bits
Single
Cycle

10 53,448 0 29.0
MHz

5 Stage
Stalled

12 3,160 262,144 62.6
MHz

5 Stage
Bypassed

12 3,406 262,144 61.5
MHz

7 Stage
Bypassed

12 3,366 262,144 81.1
MHz

Table 4: Synthesis results for each configured single-core
processing system.

Core Logic Total Memory Fmax
Count Elements Bits (BRAM) Fmax
1 12,206 2,736,128 61.7 MHz
2 21,123 3,055,616 59.5 MHz
4 38,921 3,694,592 60.0 MHz
8 83,020 4,972,544 59.5 MHz

Table 5: Synthesis results for each configuredmulti-core pro-
cessing system.

Cache Addr Logic Total Memory Fmax
Size Bits Elements Bits (BRAM)
1kB 4 3,208 10,240 79.1 MHz
2kB 5 3,196 20,352 81.0 MHz
4kB 6 3,198 40,448 82.6 MHz
8kB 7 3,189 80,384 81.1 MHz
16kB 8 3,189 159,744 82.8 MHz

Table 6: Synthesis results for various sizes of 4-way set as-
sociative L1 caches. Each cacheline is 16 Bytes (four 32-bit
words)

Cache Addr Logic Total Memory Fmax
Ways Bits Elements Bits (BRAM)
1 8 2,387 39,424 104 MHz
2 7 2,736 39,936 97 MHz
4 6 3,198 40,448 82 MHz
8 5 4,534 40,960 66 MHz
16 4 6,546 41,472 49 MHz

Table 7: Synthesis results for various associativities in 4kB
L1 caches. Each cacheline is 16 Bytes (four 32-bit words)

hardware multi-threading, and other RISC-V ISA extensions, such
as the floating point (RV32F) or multiply (RV32M) extensions. Each
of these new features will be made available as an option for a user’s
desired core and incorporated into the hardware configuration GUI.

The platform has already supported, and will continue to sup-
port, research relating to secure architectures focused on enabling
efficient obfuscation with hardware-software co-design. The im-
provements described above will be necessary to support additional

10

Line Addr Logic Total Memory Fmax
width Bits Elements Bits (BRAM)
4 Bytes 8 1,663 63,488 82 MHz
8 Bytes 7 2,227 48,128 81 MHz
16 Bytes 6 3,198 40,448 82 MHz
32 Bytes 5 5,039 36,608 81 MHz
64 Bytes 4 8,888 34,688 76 MHz

Table 8: Synthesis results for various line widths in 4kB, 4-
way set associative L1 caches.

research focused on developing RISC-V architectures for HPCwork-
loads with efficient distributed memory.

As a design space exploration platform, the explorable design
space is only limited by the man-power available to develop config-
urable features. For this reason, we have released the source code
for the entire platform (the RTL, toolchain customizations and GUI
application code) in the hope that others in the community can
benefit from, and add to the design space exploration capabilities
of the tool.

11 CONCLUSION
This platform works to address the challenge of fast multi-core
design space exploration. By offering highly parameterized cores,
cache, memory, and NoC subsystems, our platform allows users
to quickly explore a RISC-V architectural design space without
the need to develop complex multi-core systems from scratch. A
supporting hardware configuration application GUI enables rapid
selection of system parameters and RTL generation. Once Verilog
is generated by the configuration application, users can investigate
how each design decision will impact system properties such as
performance, area or timing. Users can add custom features or other
modifications to further expand the explorable design space.

Including the necessary compiler tool-chain makes running ex-
periments on customized hardware systems simpler. The whole
platform system is open source, including all of the RTL code,
toolchain customizations and supporting applications, enabling
users to customize components to fit their needs.

REFERENCES
[1] 2018. RISC-V LLVM Support. https://github.com/lowRISC/riscv-llvm. (2018).
[2] 2018. RISC-V Tools (GNU Toolchain, ISA Simulator, Tests). https://github.com/

riscv/riscv-tools. (2018).
[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[4] Henry Hoffmann, Jim Holt, George Kurian, Eric Lau, Martina Maggio, Jason E.
Miller, Sabrina M. Neuman, Mahmut Sinangil, Yildiz Sinangil, Anant Agarwal,
Anantha P. Chandrakasan, and Srinivas Devadas. 2012. Self-aware Computing
in the Angstrom Processor. In Proceedings of the 49th Annual Design Automation
Conference (DAC ’12). ACM, New York, NY, USA, 259–264. https://doi.org/10.
1145/2228360.2228409

[5] H. Hosseinzadeh, M. Isakov, M. Darabi, A. Patooghy, and M. A. Kinsy. 2017.
Janus: An uncertain cache architecture to cope with side channel attacks. In 2017
IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS).
827–830. https://doi.org/10.1109/MWSCAS.2017.8053051

[6] Michel A Kinsy, Michael Pellauer, and Srinivas Devadas. 2011. Heracles: Fully syn-
thesizable parameterized mips-based multicore system. In 2011 21st International
Conference on Field Programmable Logic and Applications. IEEE, 356–362.

[7] Michel A Kinsy, Michael Pellauer, and Srinivas Devadas. 2013. Heracles: A tool
for fast rtl-based design space exploration of multicore processors. In Proceedings
of the ACM/SIGDA international symposium on Field programmable gate arrays.
ACM, 125–134.

[8] Rakesh Kumar, Dean M Tullsen, Parthasarathy Ranganathan, Norman P Jouppi,
and Keith I Farkas. 2004. Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance. In Proceedings. 31st Annual International
Symposium on Computer Architecture, 2004. IEEE, 64–75.

[9] Martin Labrecque, Peter Yiannacouras, and J. Gregory Steffan. 2007. Custom
Code Generation for Soft Processors. SIGARCH Comput. Archit. News 35, 3 (June
2007), 9–19. https://doi.org/10.1145/1294313.1294319

[10] David A. Patterson and John L. Hennessy. 2013. Computer Organization and
Design, Fifth Edition: The Hardware/Software Interface (5th ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[11] RoaLogic. 2018. RV12. https://github.com/RoaLogic/RV12 (2018).
[12] E. Taheri, M. Isakov, A. Patooghy, and M. A. Kinsy. 2017. Advertiser elevator: A

fault tolerant routing algorithm for partially connected 3D Network-on-Chips.
In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems
(MWSCAS). 136–139. https://doi.org/10.1109/MWSCAS.2017.8052879

[13] Andrew Waterman and Krste ASANOVI C. 2017. The RISC-V Instruction Set
Manual, volume II: Privileged Architecture. CS Division, EECE Department,
University of California, Berkeley (May 2017) (2017).

[14] A Waterman and K Asanovic. 2017. The RISC-V Instruction Set Manual-Volume
I: User-Level ISA-Document Version 2.2. RISC-V Foundation (May 2017) (2017).

[15] C Wolf. 2018. Picorv32-a size-optimized risc-v cpu.
github.com/cliffordwolf/picorv32 (2018).

[16] Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. 2006. Application-
specific Customization of Soft Processor Microarchitecture. In Proceedings of
the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate
Arrays (FPGA ’06). ACM, New York, NY, USA, 201–210. https://doi.org/10.1145/
1117201.1117231

11

https://github.com/lowRISC/riscv-llvm
https://github.com/riscv/riscv-tools
https://github.com/riscv/riscv-tools
https://doi.org/10.1145/2228360.2228409
https://doi.org/10.1145/2228360.2228409
https://doi.org/10.1109/MWSCAS.2017.8053051
https://doi.org/10.1145/1294313.1294319
https://doi.org/10.1109/MWSCAS.2017.8052879
https://doi.org/10.1145/1117201.1117231
https://doi.org/10.1145/1117201.1117231

	Abstract
	1 Introduction
	2 Related Work
	3 Platform Overview
	4 Platform Core Descriptions
	4.1 Single Cycle Processor
	4.2 Five Stage Pipeline
	4.3 Seven Stage Pipeline
	4.4 Out of Order Processor

	5 Cache subsystem
	5.1 L1cache
	5.2 Lxcache Module
	5.3 Cache coherence
	5.4 Limitations

	6 Main memory and Network-on-chip
	7 On-Chip Network
	8 Workflow Description
	8.1 Hardware Configuration GUI
	8.2 Compilation

	9 Platform Evaluation
	9.1 Stress Testing Example of the Platform
	9.2 Design Space Exploration
	9.3 Synthesis Results

	10 Future Work
	11 Conclusion
	References

