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Abstract—1In this work, we introduce a Self-Aware Polymorphic
Architecture (SAPA) design approach to support emerging context-
aware applications and mitigate the programming challenges caused by
the ever-increasing complexity and heterogeneity of high performance
computing systems. Through the SAPA design, we examined the salient
software-hardware features of adaptive computing systems that allow
for (1) the dynamic allocation of computing resources depending on
program needs (e.g., the amount of parallelism in the program) and
(2) automatic approximation to meet program and system goals (e.g.,
execution time budget, power constraints and computation resiliency)
without the programming complexity of current multicore and many-
core systems. The proposed adaptive computer architecture framework
applies machine learning algorithms and control theory techniques to the
application execution based on information collected about the system
runtime performance trade-offs. It has heterogeneous reconfigurable
cores with fast hardware-level migration capability, self-organizing mem-
ory structures and hierarchies, an adaptive application-aware network-
on-chip, and a built-in hardware layer for dynamic, autonomous resource
management. Our prototyped architecture performs extremely well on a
large pool of applications.

I. INTRODUCTION

The current design approach in multicore or many-core com-
puter systems presents application programmers with a great deal
of challenges due to their ever-increasing complexity [1]. Unlike
frequency-scaling where performance is increased equally across the
board, core-scaling pushes the burden of harnessing this additional
processing power on the application or software programmer [2]. To
make optimal use of the system components, programmers must first
learn about system parameters and how to best leverage them for
a given application. This approach requires time, effort, and often
leads to suboptimal application performance in terms of execution
time or power. Furthermore, it has become evident that better data
processing capabilities are needed to extract meaningful insights
from large-scale data [1]. Exhaustive or deterministic executions of
these extreme-scale applications are increasingly too expensive under
current systems in terms of power and execution time. Figure |I| de-
picts the desired trade-oft choices to adequately target new emerging
applications.
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Fig. 1. Salient desired adaptation range in new computing systems.

II. RELATED WORK

Acknowledging the difficulty of managing the complexity of future
computing systems, Kephart et al. [1] suggested that one of the viable
approaches to solving the problem lies in the design and development
of self-adaptive computing systems. Among others, Albonesi et al. [3]
showed how adaptive processing can improve microprocessor energy
efficiency by dynamically tuning major microprocessor resources,
e.g., caches, hardware queues, during execution to better match

varying application needs. They further highlighted that adaptive
systems require few additional transistors. Recently, Hoffmann et
al. [4] presented the Self-aware Computing (SEEC) model where
application goals could be implemented to help guide the runtime
system execution. The proposed architecture framework builds on
these research efforts and insights.

III. SELF-AWARE POLYMORPHIC ARCHITECTURE (SAPA)
DESIGN

For a computing system to automatically and dynamically adapt
to program execution constraints, goals and phases, it needs to
sense hardware states (a way to gather runtime system information),
monitor program execution phases, and make complex decisions
based on built-in execution rules. SAPA extends the conventional
multicore/many-core architecture three-layer design approach, con-
sisting of processing elements, memory subsystems and the on-chip
data communication logic with a fourth layer, i.e., the intelligence
fabric (IF) or nervous system (NS) layer. This new distributed
introspection and reconfiguration architectural layer is the central
conceptual innovation of the SAPA design methodology and enables
continuously autonomous adaptation for performance, reliability, and
energy efficiency. Figure [2] illustrates the SAPA computing archi-
tecture stack. It has a fast hardware-level migration capability at the
cores, self-organizing memory structures and hierarchies, an adaptive
and quality-of-service aware network-on-chip, and the built-in NS
layer for dynamic, autonomous resource management.
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Fig. 2. Tllustrative architectural stack of self-Aware Polymorphic Architec-
tures (SAPA).

The new set of architectural layers for the SAPA stack are:

« Self-Aware Polymorphic Execution Cores (SAPEC): process-
ing elements (PEs) that dynamically adapt and optimize their
execution behavior according to a set of high-level program
goals.

« Approximation-Aware Memory Organization Models
(AMOM): smart, self-adjusting distributed memory structures
that use hardware counters for online execution pattern learning
and correctness estimation.

o Resilient Adaptive Intelligent Network-on-Chip (RAIN):
routers that address runtime network traffic load imbalances and
reliability problems in network-on-chip design in the presence
of faults.

« Dynamic Approximation Execution Manager (DAEM): dis-
tributed execution control software-hardware modules, which



collect runtime system and application information and apply
machine learning algorithms to achieve desired performance and
resource utilization through adaptation and approximation.
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Fig. 3. Self-Aware Polymorphic Architecture (SAPA) system.

Figure E| shows a concrete implementation overview of the archi-
tecture: 1) processing elements, 2) a distributed memory subsystem,
3) an interconnection network, and 4) sensing, monitoring, and
reconfiguration hardware components (the intelligent sensing and
monitoring components are indicated in red). The novel intelligence
layer, the nervous system (NS), is composed of the distributed
intelligent execution unit (I) and reconfiguration manager (RM).

Given a program, its decomposition, and its performance targets
(e.g., power, latency), the system dynamically allocates computational
resources (PEs) depending on the amount of parallelism in the pro-
gram, memory footprint, and data communication routing overhead.
The dynamic mapping of the program can take different shapes
depending on the number of processing elements (or maximum
allowed simultaneously active processing elements due to power
budget) on the architecture, current local network congestion, and
data dependencies between tasks over time. The on-chip network of
active processing elements expands and contracts dynamically during
runtime depending on the program execution needs and performance-
power targets. Other novel features of the architecture include (1) the
use of neighbor cores for rehearsal of decisions, (2) having non-global
cache coherence for scalability and adaptability, and (3) creating a
framework for parent-child model of data replication.

The following steps demonstrate program execution on the de-
signed SAPA system. Sample execution scenario:

1) The program and user constraint specifications, in the form of

pragmas, are compiled;

2) The compiler partitions the program and maps it to hardware
resources;

3) Program codes are generated alongside monitoring codes with
customized reconfiguration rules;

4) New system libraries are added to the linkage, loading and
image stages;

5) Images are loaded to main memories and execution starts;

6) Monitoring counters begin capturing processing element, mem-
ory and network events;

7) Violation of one or more constraints triggers an adaptation
interrupt;

8) The distributed reconfiguration manager applies analysis and
reconfiguration rules including resource re-allocations, task
rehearsal and task migrations;

9) Execution resumes.

Figure [4] is a static depiction of a dynamic SAPA execution. The
Interpreters synthesize hardware instructions from program goals
specifications. The Analyzers collect sensing information and perform
system state analyses. The Reconfiguration Manager (RM) applies
techniques from artificial intelligence to make decisions concerning
reconfigurations. These decisions are communicated to the distributed
intelligent execution unit (I) within the nodes to reconfigure the PE,
router and local memory. Self-awareness, in the context of this work,
refers to the computer system’s ability to monitor, collect and analyze
data about its own state of execution.
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Fig. 4. Conceptual view of the autonomous adaptive execution model.
IV. EVALUATIONS

To evaluate the proposed SAPA design, we hand-annotated Betke
et al. [S] Fast Object Recognition in Noisy Images Using Simulated
Annealing algorithm and ran it using the Heracles [6] design tool
with some architectural changes. Figure [5] shows how these types of
iterative algorithms lend themselves well to user-defined or context-
aware execution time to accuracy or power to accuracy trade-offs.
For this application, moving from 85% to 98% matching confidence
level triples the power consumption and the compute time. While
in some cases a 98% matching confidence level may be required,
the extra compute cost may not be justifiable under other operating
circumstances.
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Fig. 5. Fast object recognition application execution.
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