
Storing and Discovering Critical Workflows from Log in Scientific Exploration

Qihong Shao
Arizona State University

qihong.shao@asu.edu

Michel Kinsy
Arizona State University

mkinsy@asu.edu

Yi Chen
Arizona State University

yi@asu.edu

1. Introduction

Workflows are widely used in various scientific fields,
such as chemical physics, astronomy, environmental sci-
ence and bioinformatics. A scientific workflow represents
a set of experiments performed in an order that is consistent
with certain constraints in order to achieve a scientific goal.
We differentiate the design and the execution of a workflow.
The design captures the conceptual model of the workflow,
including the format of its input and output, the functional-
ity of each experiment, as well as the logical constraints on
experiment execution order. The execution of a workflow
represents a sequence of the experiment runs, consisting of
the actual input and output of each experiment, and the or-
der of the execution that satisfies the specification in the
design.

In a lot of scenarios, scientific discoveries are made as
a result of a dynamic process, where scientists have a de-
sired goal in mind without a clear workflow design. To-
ward the goal, they make a hypothesis and then try exper-
iments for verification. Depending on whether the exper-
iments succeed or not, they may refine the hypothesis or
propose a new one, and then perform further experiments
for validation. Usually many iterations of hypotheses and
experiments may be needed and the whole process could
take weeks or months. Once they succeed, it is important
that the scientists and their colleagues can reproduce the
scientific discoveries.

There are two challenges in reproducing the final result
of a workflow execution in scientific exploration when the
workflow design is not available. First, how should we doc-
ument the log of all the experiments that have been per-
formed such that the storage and access to the log can be ef-
fective and efficient? Database technology shows promising
results for storing and querying workflow designs and exe-
cutions, as exploited in [2, 4, 5]. However, these approaches
require scientists to specify the designs of the workflows,
based on which relational schemas are designed and corre-
sponding SQL queries are generated, therefore do not fit for
scientific exploration applications.

Second, how should we identify the experiments that are

critical to reproduce the workflow results? In scientific ex-
ploration, not all the experiments in a workflow execution
have necessarily contributed to the final result, since scien-
tists may not have a good design before the execution and
may keep proposing new hypotheses and verifying them
during the execution till the success. Experiments that have
parameter errors , execution errors, and/or design errors are
not necessary to be repeated for reproducing the same re-
sult of the corresponding workflow execution. Identifying
those experiments can reproduce the workflow results more
efficiently.

Research efforts have been made to process workflow
execution log in the absence of workflow design [1, 3].
However, the focus is on mining frequently occurring pat-
terns in workflow execution log in order to infer the design.
There is a lack of integrated support for storing and query-
ing workflow executions. Furthermore, it is assumed that
every experiment run in the workflow execution log is nec-
essary in leading to the final success. Although this is often
the case for business workflows, it may not always hold in
scientific exploration where a scientist may keep proposing
new hypotheses and verifying them during the workflow ex-
ecution.

This paper aims at effectively reproducing the results of
previous scientific workflow executions. We first identify
the information that needs to be recorded in a workflow
execution log, based on which we then determine the data
flow among experiments. To effectively record a workflow
execution log in a relational database management system
(RDBMS) when the workflow design is absent, we propose
a generic relational storage schema. Then techniques have
been designed to automatically discover the minimal set of
experiments that must be performed in order to reproduce
a scientific result by posing appropriate SQL queries. Al-
though such SQL queries can be evaluated using an off-the-
shelf database system, we investigate the unique character-
istics of the workflow log data and optimization techniques
for evaluating such SQL queries efficiently.



N T I O
C T1 1.1mmol dicarboxylic acid, 2.2mmol HCTU 99% Fc-1
S T2 methanol, 99% Fc-1 1mM methanol solution
P T3 gold wire 0.25µm probe
T T4 1mM methanol solution, 0.25µm probe Test Enviroment1
M T5 Test Enviroment1, 0.2V bias 0.0mA
S T6 HClO4 , 99% Fc-1 1mM HClO4 solution
T T7 1mM HClO4 solution, 0.25µm probe Test Enviroment2
M T8 Test Enviroment2, 0.2V bias 0.0mA
P T9 gold wire 0.15µm probe
T T10 1mM HClO4 solution, 0.15µm probe Test Enviroment3
M T11 Test Enviroment3, 0.2V bias 0.2mA
D T12 0.2mA 1000 transients
A T13 1000 transients analysis report

Table 1. A sample execution log of a molec-
ular electronics workflow

2. Recording Workflow Execution Log in
RDBMS

The log of a workflow execution consists of a sequence
of events, each of which records an experiment execution.

Definition 2.1: An event E of an experiment execution is
described by a tuple (N, T, I, O), where N is the name of
the experiment, T is the time when the experiment is per-
formed 1, I and O are inputs and outputs of the experiment,
respectively. We use E.c to denote the c component of an
event E, where c can be N , T , I or O.

Since an experiment can take multiple inputs and pro-
duce multiple outputs, both I and O denote sets. Each dis-
tinct input and output has a unique identifier (such as file
name or material ID).

Example 2.1: Let us examine a workflow example in the
area of molecular electronics (or Moletronics) [7] that in-
vestigates the electron transport properties of molecules. An
execution log is shown in Table 1, consisting of a list of
events in the order of their execution time. Each event is a
run of one of the following experiments: Compound Syn-
thesis (C), Solution Preparation (S), Probe Preparation (P),
Testbed Setting (T), Current Monitoring (M), Data Collec-
tion (D), and Data Analysis (A).

In this workflow execution, the scientist first synthe-
sized the ferrocene compounds, namely cysteamine-Fc-
cyctermine (Fc-1) in the first experiment execution [C, T1].
Then Fc-1 was dissolved in methanol to get a ≈ 1mM so-
lution [S, T2]. She also cut a gold wire to get a 0.25µm
probe and checked the sharpness of its tip using micro-
scope, cleaned the probe via a regular cleaning procedure
[P , T3]. Then a test bed with 0.2v bias supply was set up,
using electrometer to monitor the current [T , T4]. For a long
time, there was no current observed, the experiments were
considered as failed [M , T5]. Next, the scientist decided
to change to another solution HClO4 [S, T6], but used the

1We can record both the start time and finish time of an experiment run.
For presentation simplicity, we use T to represent.

same probe as the test bed [T , T7]. However, there was still
no current observed [M , T8]. The scientist hypothesized
that the probe was not sharp enough and had physically ad-
sorbed molecules. Therefore she made a new probe with
0.15mm [P , T9] and set up a new test bed [T , T10]. This
time, current was detected [M , T11]. The scientist collected
about 1000 transients [D, T12], analyzed them using the
Labview program, and finally achieved the goal [A, T13].

Before we present the proposed techniques, let us look at
the existing approach [5] that leverages RDBMS for record-
ing workflow execution log based on the workflow design.
A relation is created for each experiment that is involved in
the workflow design, which records the name, time stamp,
each input and output parameter of the experiment. A tuple
in the relation records an execution of the experiment. Then
the data flow among experiment executions can be specified
using SQL joins over the input and output attributes across
different relations according to the workflow design speci-
fication.

Example 2.2: In the molecular electronics workflow, sup-
pose that each of the experiments S and T takes two input
parameters and produces a single output parameter. The re-
lational schema for recording their experiment runs are as
follows:
T{Name, Time, I1, I2, O } ,
S{Name, Time, I1, I2, O } .

Furthermore, the workflow design states that the second
input parameter of an experiment T is obtained from the
output of an experiment S, then we can specify an inclusion
dependency: for any value of attribute I2 in relation T , there
exists a value of attribute O in relation S. Therefore we can
easily find out the data flow by joining the corresponding
attributes in relation S and T .

However, if the workflow design is not available, al-
though we can still create one relation for each possible ex-
periment according to its input and output parameters, the
relationship between the inputs and outputs of two experi-
ments is unclear before the experiment execution. Further-
more, the connection between two experiments can vary for
different workflows. Therefore, it is hard to automatically
generate SQL queries to determine the data flow among ex-
periment executions. In Example 2.2, without the knowl-
edge of the workflow design, it is not clear which attributes
in which relations should be joined together in SQL queries
in order to determine the data flow and construct a workflow
execution from individual experiment .

In order to effectively record workflow execution log and
reconstruct data flow in the absence of workflow design,
we propose a generic relational schema to record workflow
execution log:
Exp{expID, wfID, Name, Time},



ExpIn{expID, Input},
ExpOut{expID, Output}.

The key attributes of each relation are underlined. For
the Exp relation, an alternative key is (Name, Time, wfID).
As will be shown in Section 4 shortly, SQL queries on this
schema can be easily generated to build the workflow data
flow from individual experiment execution.

Example 2.3: Given the above relational schema, the work-
flow execution log represented in Table 1 is stored in the
relations in Figure 1.

3. Identifying Critical Workflows from Log

The execution of a workflow can be conceptually repre-
sented as a graph GI , named as initial graph.

Definition 3.1: An initial graph GI = (V,E, S) of a work-
flow execution log L is a directed acyclic graph constructed
as follows. Each node v in GI represents a distinct event in
L: f(v), where f is the function that maps a node in V to
the corresponding event in L. All these nodes and an initial
node v0 consist of the node set V . For any two nodes vi,
vj ∈ V , there is an edge from vi to vj in GI if and only if
∃d ∈ f(vi).O, d ∈ f(vj).I . There is also an edge from the
initial node v0 to each node vi, if ∃d ∈ f(vi).I , such that
there does not exist vj ∈ V , d ∈ f(vj).O. The edge set E
consists of all such edges. S ⊆ V denotes the successful
states of the workflow execution.

Note that GI is an acyclic graph since each execution
of an experiment is represented as a distinct node. The di-
rection of the edges in GI represent the data flow direction
between two consecutive experiments.

Example 3.1: Continuing our running example, the initial
graph of the workflow execution log in Example 2.1 is pre-
sented in Figure 2. For presentation conciseness, we use Ni

to represent the event with name N that occurred at time Ti.
For instance, S6 denotes the execution of the experiment of
name S at time T6 in the log. Also we introduce node I to
represent the initial node.

Consider the initial graph representation of the execu-
tion log, the nodes on the paths from the initial node to a
node in the successful states S are considered to be critical
since their outputs contribute to the final result of the work-
flow execution. Those nodes and the edges connecting them
consist of the critical workflow graph.

Definition 3.2: A critical graph GC = (V ′, E′, S) is a
subgraph of an initial graph GI = (V, E, S). V ′ ⊆ V , such
that every node v′ ∈ V ′ has a directed path from v′ to a
node s ∈ S. E′ ⊆ E, such that for every edge e′ ∈ E′, the
nodes that e′ connects to are in V ′.

Example 3.2: The critical graph GC for the initial graph

��

��

��

��

��

�	

�


��

�
�

��� ��� ��� ���

Figure 2. Initial graph GI ; Critical graph
GC consisting of only highlighted nodes and
edges

GI in Figure 2 consists of the nodes that are highlighted in
gray color as well as the edges connecting them.

4. Retrieving Critical Workflow Graphs Using
SQL Queries

Given the relational schema presented in Section 2 for
recording workflow execution log, the problem of identi-
fying critical workflow graphs can be solved using SQL
queries.

We first build a view ExpLogic{expID, wfID, Name,
Time, Input, Output}, which represents experiment execu-
tions with both input and output information using a natural
join on relations Exp, ExpIn and ExpOut. Since an exper-
iment can take several inputs and produce several outputs,
it may correspond to multiple tuples in ExpLogic. Accord-
ing to Definition 3.1 and 3.2, there is an edge in the initial
or critical workflow graph from the node representing event
E1 to the node representing event E2 if and only if the out-
put set of E1 has a non-empty intersection with the input
set of E2, that is: E1.I ∩ E2.O 6= ∅. The data flow can be
identified by checking whether there exists a tuple t1 in Ex-
pLogic corresponding to E1, and a tuple t2 corresponding
to E2, such that t1.Input = t2.Output.

The view of the critical workflow graph can be con-
structed using recursive SQL queries. Initially, the tuples
in ExpLogic whose Output attribute values match the de-
sired final workflow output are retrieved and composed of a
view ExpCritical. Then the query recursively retrieves tu-
ples whose Output values match the Input of a tuple in the
current ExpCritical view through joins. That is, nodes that
are connected to a node in the current critical graph become
part of the expanded critical graph. The result of ExpCrit-
ical is finalized when no more tuples can be added. The
initial workflow graph can be constructed similarly. Due to
space limitation, we refer readers to [6] for more details.

The SQL queries for constructing critical workflow
graph can be evaluated using an off-the-shelf relational
database. We observe a special feature in the workflow log



Figure 1. A generic solution for recording workflow execution log in RDBMS

data, tuples representing experiments are recorded into the
database in the order of experiment execution time. We are
investigating efficient implementation of joins among Ex-
pLogic, ExpCritical and ExpInitial relations by leveraging
this feature, as discussed in an extended version of the pa-
per [6].

5. Conclusions and Future Work

In this paper, we have examined the problem of effec-
tively reproducing the results of exploratory scientific work-
flows. We have proposed a generic relational schema for
leveraging RDBMS to record the workflow execution log
which does not require workflow design information and
therefore is suitable for scientific exploration applications.
Not all the experiments performed in a workflow execution
have necessarily contributed to the final desired results due
to possible wrong parameters, abnormal termination, and/or
design errors. We have designed SQL queries to identify the
critical experiments that contribute to the successful states
and the logical constraints on their execution order from the
log database, such that workflow execution can be repro-
duced efficiently. We are designing and implementing op-
timization techniques for efficiently evaluating such SQL
queries. In the future, we plan to exploit a repository of
workflow execution log, and present relevant existing work-
flows to assist scientific users for constructing new work-
flows by querying the database effectively.

6 Acknowledgments

This research is partially supported by NSF IIS-
0612273.

References

[1] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann.
Mining process models from workflow logs. In EDBT, pages
469–483, 1998.

[2] I-Min A. Chen and Victor M. Markowitz. Modeling scien-
tific experiments with an object data model. In International
Conference on Data Engineering, pages 391–400, 1995.

[3] Jonathan E. Cook and Alexander L. Wolf. Discovering mod-
els of software processes from event-based data. ACM Trans.
Softw. Eng. Methodol., 7(3):215–249, 1998.

[4] David T. Liu and Michael J. Franklin. The design of griddb:
A data-centric overlay for the scientific grid. In VLDB, pages
600–611, 2004.

[5] Srinath Shankar, Ameet Kini, David J. DeWitt, and Jeffrey F.
Naughton. Integrating databases and workflow systems. SIG-
MOD Record, 34(3):5–11, 2005.

[6] Qihong Shao, Michel Kinsy, and Yi Chen. Storing and effi-
ciently querying critical workflows from log in scientific ex-
ploration. Technical Report TR-07-005, Arizona State Uni-
versity, April 2007. http://wsdb.eas.asu.edu/publications/TR-
07-005.pdf.

[7] X.Y. Xiao, D. Brune, J. He, S.M Lindsay, and C. B Gor-
man; N.J. Tao. Redox-gated electron transport in electrically
wired ferrocene molecules. Chemical Physics Lett., 2006.


