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ABSTRACT
Most virtual channel routers have multiple virtual channels to mit-
igate the effects of head-of-line blocking. When there are more
flows than virtual channels at a link, packets or flows must com-
pete for channels, either in a dynamic way at each link or by static
assignment computed before transmission starts. In this paper, we
present methods that statically allocate channels to flows at each
link when oblivious routing is used, and ensure deadlock freedom
for arbitrary minimal routes when two or more virtual channels are
available. We then experimentally explore the performance trade-
offs of static and dynamic virtual channel allocation for various
oblivious routing methods, including DOR, ROMM, Valiant and
a novel bandwidth-sensitive oblivious routing scheme (BSORM).
Through judicious separation of flows, static allocation schemes
often exceed the performance of dynamic allocation schemes.

1. INTRODUCTION
Routers may mitigate head-of-line blocking by organizing the

buffer storage associated with each network channel into several
small queues rather than a single deep queue [7]. Such “virtual”
channels (VCs) increase hardware complexity but offer a mecha-
nism to achieve Quality-of-Service (QoS) guarantees and perfor-
mance isolation — important considerations for on-chip intercon-
nection networks (OCINs) [14]).

Most routers in OCINs have a small number of VCs, though net-
work routers can have large numbers of queues and channels (e.g.,
Avici TSR [4]). While overhead considerations tend to limit routers
used in multicore or multiprocessor systems to 16 or fewer VCs,
applications may have hundreds if not thousands of flows, which
must compete for channels, buffer space, and bandwidth at each
network link.

Conventional virtual channel (VC) routers dynamically allocate
VCs to packets or head/control flits based on channel availability
and/or packet/flit waiting time. Typically, any flit can compete for
any VC at a link [6], and the associated arbitration is often the
highest latency step [16].

Statically allocating VCs to flows can simplify the VC allocation
step. Judicious separation of flows during static allocation may re-
duce or eliminate head-of-line blocking and so enhance through-
put, but may result in worse utilization of available VCs because
dynamic behavior is not considered. There has been little or no
exploration of such performance tradeoffs outside of evaluating
QoS guarantees; therefore, in this paper, we answer the question
of whether static allocation outperforms dynamic allocation in the
context of oblivious routing through performance simulation.

Exploring this tradeoff requires methods that statically allocate
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flows to VCs at each link and a router architecture that supports
these methods. Section 2 describes modifications to a standard
router architecture for table-based application-aware routing and
static VC allocation; section 3 describes how algorithms such as
Dimension Order Routing (DOR), ROMM [13] and Valiant [19]
can assign VCs via a table-based routing architecture. The perfor-
mance of these routing algorithms varies under different static allo-
cations, and we show how this allocation can be judiciously deter-
mined. In Section 4, we describe a bandwidth-sensitive oblivious
routing scheme, BSORM, which produces a set of minimal routes
that attempt to minimize maximum channel load; VCs are statically
allocated to optimize performance. We show how an analysis of the
classical turn model [10] can be used to derive a static VC alloca-
tion scheme that assures deadlock freedom for an arbitrary set of
minimal routes with ≥ 2 available VCs. Related work is summa-
rized in Section 5. We compare static and dynamic VC allocation
for DOR, ROMM, Valiant, and BSORM in Section 6, and Section
7 concludes the paper.

2. ROUTER ARCHITECTURE

2.1 Typical Virtual Channel Router
We assume a typical virtual channel (VC) router on a 2-D mesh

network as a baseline [6, 12, 16], but our methods can be used
independent of network topology and flow control mechanisms.

Router operation takes four steps: routing (RC), virtual channel
allocation (VA), switch allocation (SA), and switch traversal (ST),
often done in one to four stages in modern routers. When a head
flit (the first flit of a packet) arrives at an input channel, the router
stores the flit in the channel’s buffer and determines the next hop
for the packet (RC). The router then allocates a VC in the next hop
(VA). Finally, if the next hop can accept the flit, it competes for a
switch (SA) and moves to the output port (ST).

2.2 Table-Based Routing
The only architectural change required for static VC allocation

and application-aware oblivious routing (see Section 4) is in the
routing module. While the baseline architecture implements sim-
ple oblivious routing algorithms such as DOR via fixed logic and
dynamically allocates VCs to packets, our routing module needs
table-based routing so that routes can be configured for each ap-
plication. This single change is sufficient as long as routing algo-
rithms preclude cyclic channel dependence through route selection
or VC allocation (cf. Section 4.3).

As illustrated in Figure 1, table-based routing can be realized in
two different ways: source routing and node-table routing. In the
source routing approach, each node has a routing table with a route
from itself to each destination node in the network. The routes
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Figure 1: The table-based routing architecture (a) Source rout-
ing (b) Node-table routing

are pre-computed by a routing algorithm and written into the ta-
bles before application execution. When sending a packet, the node
prepends this routing information to the packet, and routers along
the path determine output ports directly from the routing flits. Fig-
ure 1(a) illustrates source routing for a packet routed through nodes
A, B, and C. The route corresponds to East, North, and North,
which is reflected in the routing flits.

Source routing eliminates the routing step and can potentially
reduce the number of pipeline stages, but results in longer packets
(with extra routing flits) compared to the case where the route is
computed at each hop. To avoid this, the nodes along the path
can be programmed with next-hop routing information for rele-
vant flows. In this node-table routing approach, illustrated in Fig-
ure 1(b), the routing module contains a table with the output port
for each flow routed through the node. The head packet carries an
index into this table, which, once looked up, is replaced with the
index for the next hop stored in the table entry. To set up the route,
our routing algorithm computes a route for each flow and config-
ures the routing tables accordingly.

If we conservatively assume that each routing table has 256 en-
tries (256 flows), the table only takes a few KB: an entry needs 2
bits to represent the output port in a 2-D mesh and 8 bits for the
next table index. Therefore, the table can be accessed in one cycle
without impacting clock frequency.

Both routing methods are widely known and have been imple-
mented in multiple routers (e.g., [4, 8]).

2.3 Static Virtual Channel Allocation
Statically allocating a VC to each flow simplifies the VC alloca-

tion step of the baseline router. Rather than being dynamically allo-
cated using arbiters, VCs at each link are allocated per flow by the
routing algorithm. The router then assigns the next-hop VC in the
same way as it obtains the route: with source routing, each packet
carries its VC number for each hop along with its route, while in
node-table routing an entry in the routing table is augmented with
the VC number for the flow. Since the router can thus obtain both
the output port and the next VC number in the routing (RC) step,
the primary complexity in the VA step lies in the arbitration among
packets: two or more packets may be assigned the same VC si-
multaneously, and arbitration is needed to determine which packet
will be sent first. This requires a P ·V to 1 arbitration for each VC
where packets from P physical channels with V VCs each vie for
the same VC, and is simpler than the P ·V to V arbitration required
by dynamic routing. A previous study [16] indicates that P ·V to 1
arbitration is about 20% faster than P ·V to V arbitration (11.0 FO4
vs. 13.3 FO4 with 8 VCs).

Static VC allocation requires additional bits in the routing table

to specify the VC for each flow. For example, for 8 VCs, 3 extra
bits are required for each entry; if each routing table has 256 entries,
this results in an increase of 96 bytes, still keeping the routing table
accessible in a single cycle.

Since static allocation does not consider dynamic behavior, it can
potentially result in worse utilization of available VCs; for exam-
ple, statically allocating VC0 to flow A and VC1 to flow B may
be inefficient when flow A is idle, because flow B might be able
to use both VCs. On the other hand, static allocation can enhance
throughput by separating or isolating flows (cf. Figure 2).

3. STATIC VC ALLOCATION IN OBLIVI-
OUS ROUTING

We assume the router design described in Section 2 with support
for static VC allocation as described in Section 2.3. Since each link
has multiple VCs, the assignment of channels to flows is done on a
per link basis.

3.1 Dimension-Ordered Routing (DOR)
On a mesh, dimension-ordered routing corresponds to either XY

or YX routing. Figure 2 exhibits the advantages of static alloca-
tion: four uncorrelated flows with the same demands are shown,
using XY routing with four VCs. Flows B, C, and D share link 2,
which becomes congested when injection rates are high; this lim-
its the throughput of flow B to approximately one-third of the link
bandwidth. If dynamic allocation is used, flow A also suffers be-
cause of head-of-line blocking when flow A is held up by flow B.
If we statically allocate VCs, however, we can assign flows A and
B to separate channels and utilize the full bandwidth of link 1.

Dynamic Static
Flow A 0.3234 0.6681
Flow B 0.3146 0.3319
Flow C 0.3365 0.3332
Flow D 0.3488 0.3349

Throughput (flits/cycle)

Figure 2: Motivation for Static Allocation

A pair of flows is said to be entangled if the flows share at least
one VC across all the links used by both flows. Prior to channel
assignment, no pairs of flows are entangled, and, if the number of
flows for a given link is smaller then the number of VCs, we can
avoid entanglement by assigning one channel per flow. Otherwise,
in order to mitigate the effects of head-of-line blocking, we allocate
VCs so as to reduce the number of distinct entangled flow pairs.

Flows are assigned to VCs separately at each link. Given a link
and a flow F using it, the allocation algorithm proceeds as follows:

1. Check if there is a VC containing only flows that are already
entangled with F. Once two flows share a VC somewhere,
there is no advantage to assigning them to different VCs af-
terwards, and, if such a channel exists, it’s allocated to F.

2. Look for empty VCs on the link; if one exists, assign it to F.

3. If some VC contains a flow entangled with F, assign it to F.

4. If none of the criteria above apply, assign F to the VC with
the fewest flows.

5. Update flow entanglement relationships to reflect the new as-
signment.



The process above is repeated for each flow at the given link, and
the algorithm moves on to the next link.

3.2 ROMM and Valiant
The ROMM [13] and Valiant [19] routing algorithms attempt to

balance network load by choosing random intermediate nodes in
the network and using XY/YX routing to route first from the source
to the intermediate node and then from there to the destination.

The basic algorithm for static allocation is same as for DOR.
The only difference arises from the requirement that the source-
to-intermediate and intermediate-to-destination subroutes not share
the same VCs, in order to avoid deadlock. This reduces our allo-
cation choices, since flows must be assigned VCs only within the
particular set. While ROMM and Valiant thus require a minimum
of 2 VCs, having more than 2 is desirable as it affords some free-
dom in allocating VCs.

4. STATIC VC ALLOCATION IN
BANDWIDTH-SENSITIVE ROUTING

We now show how to select routes to minimize maximum chan-
nel load given rough estimates of flow bandwidths, and how dead-
lock freedom can be assured through static VC allocation subse-
quent to route selection. (We again assume the router design from
Section 2 with the static VC allocation support of Section 2.3).

4.1 Flow graph and Turn Model

DEFINITION 1. Let G(V,E) be a flow graph where each edge
(u,v) ∈ E has a capacity c(u,v) representing the available band-
width on the edge. Let K = {K1, K2, . . . , Kk} be a set of k data
transfers (or flows) where Ki = (si, ti,di) and si represents the
source for connection i, ti the sink (with si �= ti), and di the demand;
multiple flows with the same source and destination are permitted.
The flow i along an edge (u,v) is fi(u,v). A route for flow i is a
path pi from si to ti; edges along this path will have fi(u,v) > 0,
while other edges will have fi(u,v) = 0.

If fi(u,v) > 0, then route pi will use both bandwidth and buffer
space on edge (u,v); the magnitude of fi(u,v) indicates how much
of the edge’s bandwidth is used by flow i. Although we assume
flit-buffer flow control in this paper, our techniques also apply to
other flow control schemes.

With a single VC per link or dynamic VC allocation, packets
routes that conform to an acyclic channel dependence graph avoid
network deadlock [5]. This is also a necessary condition unless
false resource dependencies exist [17].

(a) (b)

Figure 3: Turns allowed (solid) and disallowed (dotted) un-
der (a) the West-First turn model and (b) the North-Last turn
model.

Turn models [10] are a systematic way of generating deadlock-
free routes, and have been used for adaptive routing. Figure 3
shows two turn models that can be used in a 2-D mesh: each model
disallows two out of the eight possible turns. If a set of routes con-
forms to one of the turn models, then deadlock freedom is assured

with any number of VCs. The third turn model, Negative-First,
does not serve our purposes and so is not shown.1

4.2 Bandwidth-Sensitive Oblivious Routing
with Minimal Routes (BSORM)

We now describe a routing method that targets improved network
throughput given rough estimates of flow bandwidths. We show
how any set of minimal routes produced using any routing method
can be made deadlock-free through appropriate static VC allocation
(cf. Section 4.3); our argument for deadlock freedom invokes the
turn models of Figure 3.

Given rough estimates of bandwidths of data transfers or flows,
bandwidth-sensitive oblivious routing selects routes to minimize
the maximum channel load, i.e., the maximum bandwidth demand
on any link in the network. The method works on a flow graph
G(V,E) corresponding to the network; for each flow, we select a
minimal route that heuristically minimizes the maximum channel
load using Dijkstra’s weighted shortest-path algorithm.

We start with a weighted version of G, deriving the weights from
the residual capacities of each link. Consider a link e in G with a
capacity c(e). We create a variable for c̃(e) representing the current
residual capacity of e; initially, c̃(e) equals the capacity c(e), and
is set to be a constant C. If the residual capacity c̃(e) exceeds the
demand di of a flow i, then flow i can be routed via link e and di is
subtracted from c̃(e). Since flows are not routed through links with
insufficient c̃(e), no residual capacity is ever negative.

For the weighting function, we use the reciprocal of the link
residual capacity, which is similar to the CSPF metric described by
Walkowiak [20]: w(e) = 1

c̃(e)−di
, except if c̃(e)≤ di then w(e) = ∞

and the algorithm never chooses the link. The constant C is set to
the smallest number that provides routes for all flows without using
∞-weight links. The maximum channel load (MCL) from XY or
YX routing gives us an upper bound for C, but in most cases, there
are solutions for lower values of C; in effect, a smaller C places
more weight on avoiding congested links.

We run Dijkstra’s algorithm on the weighted G to find a
minimum-weight path si � ti for a chosen flow i. The algorithm we
use also keeps track of the number of hops, and finds the minimum-
weight path with minimum hop count. (While our weight function
allows the smallest weight path to be non-minimal, the algorithm
will not generate such a path). After the path is found, we check
to see whether it can be replaced by one of the XY/YX routes of
Figure 4(b) while keeping the same minimum weight; if so, this
replacement is made, which minimizes the number of turns in the
selected routes and allows greater freedom for the static VC alloca-
tion step (cf. Theorem 1). Finally, the weights are updated, and the
algorithm continues on to the next flow, until all flows are routed.

4.3 Deadlock-Free Static VC Allocation
Since the routes selected by the Dijkstra-based algorithm may

not conform to a particular acyclic CDG or turn model, they may
not be deadlock-free. If the number of available VCs exceeds 2,
however, we can ensure deadlock freedom via static VC assignment
by partitioning the flows across available VCs.

THEOREM 1. Given a router with ≥ 2 VCs, and an arbitrary
set of minimal routes over an n×n mesh, it is possible to statically
allocate VCs to each flow to ensure deadlock freedom.

1We have ignored the Negative-First turn model because it does not
induce a flow partition (and yield a channel allocation strategy) in
combination with either of the other two turn models (cf. Theorem
1). This is true even when rotations are used.
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Figure 4: (a) The eight different two-turn minimal routes on a
2-D mesh. (b) The four (out of a possible eight) different one-
turn routes on a 2-D mesh that conform to both the West-First
and North-Last turn model.

Proof: Consider, without loss of generality, the case of 2 VCs. Fig-
ure 4(a) shows the eight possible minimal routes with two different
turns each. (Minimal routes that have a single turn or no turns can
be ignored as special cases of two-turn routes for the subsequent
analysis). Looking at Figure 4(a), it is easy to see that minimal
routes 3, 4, 5, and 8 conform to the West-First turn model (but vio-
late the North-Last model as shown by the boxes over the violating
turns), while minimal routes 1, 2, 6, and 7 conform to the North-
Last turn model (but violate the West-First turn model as indicated
by the circles over the illegal turns). Therefore, we can partition
an arbitrary set of routes into two sets: the first conforming to the
West-First turn model, and the second to the North-Last model.
Note that the four one-turn minimal routes shown in Figure 4(b),
and routes with no turns, can be placed in either set; the four other
one-turn routes (not shown) will be forced to one of the sets. If we
assign VC 1 to the first set and VC 0 to the second, no deadlock
can occur. �

The proof of Theorem 1 suggests a static VC allocation strategy.
After deriving minimal routes using the BSOR algorithm of Section
4.2, we create three sets of flows:

1. flows with two-turn and single-turn routes that conform to
the West-First turn model,

2. flows with two-turn and single-turn routes that conform to
the North-Last turn model, and

3. flows with single-turn or zero-turn routes that conform to
both.

Before moving on to static VC allocation, we assign the flows in
the third set to either of the first two sets, appropriately balancing
the bandwidths and number of flows. Each flow in the third set is
assigned to the set that has fewer flows that share links with the
flow, or, if the number of shared flows is the same for both sets, to
the set with fewer flows.

After only two sets remain, we have local flexibility in determin-
ing the ratio of VCs across the two sets. The number of flows for the
first set and that for the second set can be different for each link, so
we must assign VCs to the two sets on a per-link basis. We follow
a simple principle: at each link, split available VCs evenly into two
groups associated with the two flow sets and, if unused VCs remain
in exactly one group, shift the unused VCs to the other group. For
example, if the number of flows in the first set is 2 and that for the
second set is 6, the VCs are divided into two groups of size (1,1),
(2,2), and (2,6) for #VC=2, #VC=4, and #VC=8, respectively. (No-
tice that for the #VC=8 case, we do not allocate four channels to
the first set since it only has two flows). This localized division
reduces wasted VCs, and the route is now deadlock-free since the
two sets of flows are assigned to disjoint groups of channels.

Finally, at each link, we assign a given flow to either set, with
the VC allocation within the set the same as in DOR.

5. RELATED WORK

5.1 Routing Techniques
A basic deterministic routing method is dimension ordered rout-

ing (DOR) [5] which becomes XY routing in a 2-D mesh. Neces-
sary and sufficient conditions for deadlock-free deterministic rout-
ing were given in [5] assuming no false resource dependences.

ROMM [13] and Valiant [19] are classic oblivious routing algo-
rithms, which are randomized in order to achieve better load distri-
bution. In o1turn [18], Seo et al show that simply balancing traffic
between XY and YX routing can guarantee provable worst-case
throughput. A weighted ordered toggle (WOT) algorithm that as-
sumes 2 or more virtual channels (VCs) assigns XY and YX routes
to source-destination pairs in a way that reduces the maximum net-
work load for a given traffic pattern [9].

Classic adaptive routing schemes include the turn routing meth-
ods [10] and odd even routing [1].

5.2 Bandwidth-Aware Routing
Palesi et al [15] provide a framework and algorithms for

application-specific bandwidth-aware deadlock-free adaptive rout-
ing. Given a set of source-destination pairs, cycles are broken in
the CDG to minimize the impact on the average degree of adap-
tiveness. Bandwidth requirements are taken into account to spread
traffic uniformly through the network. Our focus here is on oblivi-
ous routing.

Bandwidth-aware routing for diastolic arrays is described in [2];
deadlock is avoided by assuming that each flow has its own private
channel. An application-aware oblivious routing (BSOR) frame-
work for conventional routers with dynamic VC allocation and one
or more VCs is presented in [11]; this framework selects possi-
bly non-minimal routes that conform to an acyclic CDG typically
derived from a turn model. In this paper, our focus is static VC
allocation schemes for traditional oblivious routing methods (e.g.,
DOR, ROMM, Valiant) as well as for bandwidth-sensitive oblivi-
ous routing.

6. RESULTS AND COMPARISONS
This section compares the performance of static and dynamic

VC allocation using synthetic traffic through simulation. We also
compare our routing scheme (BSORM) with other oblivious rout-
ing algorithms like DOR, ROMM [13], and Valiant [19].

6.1 Benchmarks
We use a set of standard synthetic traffic patterns: transpose,

bit-complement, and shuffle, as well as an application benchmark
H.264. The synthetic patterns are widely used to evaluate rout-
ing algorithms and provide basic comparisons between our rout-
ing scheme and other oblivious algorithms; in the synthetic bench-
marks, all flows have the same average bandwidth demands. H.264
is a set of flows reflecting the traffic pattern of an H.264 decoder,
with flow bandwidths derived through profiling.

6.2 Simulator Details
A cycle-accurate network simulator was used to estimate the

throughput of each flow in the application for various oblivious
routing. We use an 8×8 2-D mesh network with 1, 2, 4 or 8 VCs
per port, and we simulate a fixed packet length of 8 flits. The sim-
ulator is configured to have a per-hop latency of 1 cycle and the flit
buffer size per VC of 16 flits. For each simulation, the network was
warmed up for 20,000 cycles and then simulated for 100,000 cycles
to collect statistics, which was enough for convergence.
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Figure 5: Throughput for dimension-ordered routing under static and dynamic allocation with 2 VCs.

0 2 4 6 8 10 12
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Offered Injection Rate (packets/cycle)

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(p
a

c
k
e

ts
/c

y
c
le

)

Transpose ROMM and Valiant VC = 4

ROMM dynamic

ROMM static

Valiant dynamic

Valiant static

(a)

1 1.5 2 2.5 3 3.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Offered Injection Rate (packets/cycle)

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(p
a

c
k
e

ts
/c

y
c
le

)

Bitcomp ROMM and Valiant VC = 4

ROMM dynamic

ROMM static

Valiant dynamic

Valiant static

(b)

0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

3.5

Offered Injection Rate (packets/cycle)

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(p
a

c
k
e

ts
/c

y
c
le

)

Shuffle ROMM and Valiant VC = 4

ROMM dynamic

ROMM static

Valiant dynamic

Valiant static

(c)

0 10 20 30 40 50

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Offered Injection Rate (packets/cycle)

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(p
a

c
k
e

ts
/c

y
c
le

)

H264 ROMM and Valiant VC = 4

ROMM dynamic

ROMM static

Valiant dynamic

Valiant static

(d)

0 2 4 6 8 10 12
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Offered Injection Rate (packets/cycle)

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(p
a

c
k
e

ts
/c

y
c
le

)

Transpose ROMM and Valiant VC = 8

ROMM dynamic

ROMM static

Valiant dynamic

Valiant static

(e)

1 1.5 2 2.5 3 3.5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Offered Injection Rate (packets/cycle)

T
o
ta

l 
T

h
ro

u
g
h
p
u
t 
(p

a
c
k
e
ts

/c
y
c
le

)

Bitcomp ROMM and Valiant VC = 8

ROMM dynamic

ROMM static

Valiant dynamic

Valiant static

(f)

0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

3.5

4

Offered Injection Rate (packets/cycle)

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(p
a

c
k
e

ts
/c

y
c
le

)

Shuffle ROMM and Valiant VC = 8

ROMM dynamic

ROMM static

Valiant dynamic

Valiant static

(g)

0 10 20 30 40 50
0.5

1

1.5

2

2.5

3

Offered Injection Rate (packets/cycle)

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(p
a

c
k
e

ts
/c

y
c
le

)

H264 ROMM and Valiant VC = 8

ROMM dynamic

ROMM static

Valiant dynamic

Valiant static

(h)

Figure 6: Throughput for ROMM and Valiant under static and dynamic allocation with 4 and 8 VCs.

6.3 DOR, ROMM and Valiant
Figure 5 shows the performance of XY and YX routing with 2

VCs for static and dynamic VC allocation for various benchmarks.
Figure 6 shows the performance of ROMM and Valiant under static
and dynamic allocation for 4 and 8 VCs. ROMM and Valiant routes
require 2 VCs to avoid deadlock; these routes are broken into two
segments, with a VC allocated to each segment. Hence static and
dynamic allocation schemes differ when there are multiple VCs
that can be allocated to each route segment.

For all these algorithms, static allocation performs as good or
better than dynamic allocation for high injection rates by more ef-
fectively reducing head-of-line blocking effects as exemplified in
Figure 2.

6.4 BSORM
Figure 7 shows the performance of the BSORM algorithm for

four VCs and compares it to XY (static and dynamic) for various
benchmarks. We use BSORM to obtain the routes and break these
routes into two sets to avoid deadlock, as described in Section 4.3.
We perform static allocation or assume dynamic allocation within
each set. Figure 8 compares BSORM under static and dynamic
allocation for 8 VCs. As each benchmark uses a single routing
derived using BSORM, the performance differences are due only
to static versus dynamic VC allocation.

BSORM performs better than DOR on the benchmarks because
the bandwidth-aware routing reduces MCL; BSORM with static

allocation outperforms dynamic allocation for the same reasons as
in DOR.

7. CONCLUSIONS

Our results indicate that static VC allocation often outperforms
dynamic VC allocation for existing oblivious routing schemes.
This is because static allocation can better reduce the effects of
head-of-line blocking.

When given rough estimates of bandwidths, the BSORM algo-
rithm provides better performance than existing oblivious routing
schemes, and here too, static allocation produces as good or better
results. If head-of-line blocking effects are small, maximum chan-
nel load serves as a dominant factor in determining the performance
of a given route. This justifies the BSORM algorithm’s minimiza-
tion of the maximum channel load. Two other advantages of static
allocation are that routers with static allocation can be slightly sim-
pler than those with dynamic allocation, and static allocation as-
sures in-order packet delivery, since two VCs in a link will never
be assigned to flits/packets from the same flow.

Bandwidth-adaptive networks contain adaptive bidirectional
links and can improve the performance of conventional oblivious
routing methods [3]. Ongoing work includes evaluating BSORM
on a bandwidth-adaptive network.
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Figure 7: Throughput for BSORM and XY under static and dynamic allocation with 4 VCs.
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Figure 8: Throughput for BSORM and XY under static and dynamic allocation with 8 VCs.
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