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Abstract— Sphinx, a hardware-software co-design architecture for
binary code and runtime obfuscation. The Sphinx architecture uses
binary code diversification and self-reconfigurable processing elements
to maintain application functionality while obfuscating the binary code
and architecture states to attackers. This approach dramatically reduces
an attacker’s ability to exploit information gained from one deployment
to attack another deployment. Our results show that the Sphinx is able
to decouple the program’s execution time, power and memory and I/O
activities from its functionality. It is also practical in the sense that the
system (both software and hardware) overheads are minimal.

I. INTRODUCTION

Over the last several decades, computers have become more and
more important to society and our daily lives. Almost all modern
activity, from banking to research to small talk, has been connected
to computers and the Internet. Considering how much computers have
permeated our lives, it is necessary that computer systems are secured
against malicious activity. This need for secure computing systems
has produced extensive research efforts in many areas of computer
science and engineering. Despite these efforts, the frequent reports of
security breaches and cyber-attacks demonstrate that the work is on-
going. One threat that has plagued security researchers and software
developers for years is the possibility of reverse engineering programs
and binary code to learn system vulnerabilities and modify the code
to circumvent other security measures.

Few hardware systems have been developed to protect software
from reverse engineering. Those methods that have been proposed are
often centered around encrypting the program and then decrypting
before execution. Depending on when the program is decrypted,
an attacker may be able to use probes to obtain the plaintext
program, such as from the bus between the CPU and the memory
[1]. One suggestion to avoid this attack is to decrypt the instructions
immediately prior to execution as is done in [2]. While this approach
is promising in terms of blocking reverse engineering, it does not take
into consideration side-channel attacks which could pose a threat.

Side Channel Attacks (SCAs) are a category of hardware attacks in
which the attacker uses unintentional outputs (called side channels)
to discover hidden information. Examples of side channel attacks
include analyzing power, timing, and electromagnetic radiation to
correlate the values with the secret information [3]. There are many
proven examples of these attacks in [4], [5], [6]. Side channel attacks
provide a major attack surface because they observe unintentional
output sources which are usually ignored by system and software
designers. In order to fully hide a program from attackers, all side
channels would have to be completely obscured.

Many counter measures have been suggested to help defend against
side channel attacks. Some works present changes to algorithms that
attempt to tax the processor similarly in all cases, obscuring the
power, electromagnetic (EM), and time channels. Other suggestions
include oblivious RAM (ORAM), which is a hardware structure that
randomizes memory access to prevent eavesdroppers from discov-
ering patterns in the memory access [7]. Secure processors, like
ASCEND [8] and AEGIS [9], attempt to implement impenetrable
security measures in hardware. ASCEND tries to block side-channel
attacks by activating every hardware module on each clock cycle and
accessing memory at regular intervals even if no access is pending.

Such security measures do not come cheap; all of these systems suffer
high cost and significant slowdown to execution.

Numerous security mechanisms have been proposed to prevent
reverse engineering and to secure hardware against side channel
attacks; however, each of the existing systems is found to be lacking
in some way. The Sphinx system has a secure processor that can
provide security against reverse engineering and side channel attacks
without incurring excessive time and power overheads.

The general idea behind the Sphinx architecture is the minimization
of attack-surface via software-hardware obfuscation. Every time a
program (e.g., written in C or C++) is compiled, a different binary is
generated. Every time a binary is executed, the power, execution time
and memory activity profiles are all different. In essence, for the same
application, the binary code and architecture states are obfuscated
and the compute system operates differently to attackers. Figure 1
illustrates this behavior changing nature of the architecture.
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Fig. 1. Illustration of the Sphinx Architecture: The observed execution
behavior depends on the context.

II. OBFUSCATION-BASED SECURE ARCHITECTURE DESIGN
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Fig. 2. Sphinx system functionality overview.
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Fig. 3. Sphinx obfuscation-based secure system
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Sphinx is a software-hardware co-design framework to efficiently
execute a program while providing moving target defense against
code reverse engineering and side-channel based attacks. Figure
2 depicts the system functionality. The Sphinx secure system has
two parts: a software obfuscator and a hardware/processing unit.
Figure 3 shows the Sphinx system with its software and hardware
components. The obfuscator inserts random machine instructions in
the program at compile-time and creates a binary mask that indicates
which instructions are real and which ones are falsified. The goal of
using obfuscation is twofold: first, to render assembly or binary code
analysis attacks harder - not impossible, since Barak et al., [10] have
already shown that the impossibility of indistinguishable obfuscation;
second, to give runtime adaptation range to the hardware. On the
software side, the code is compiled and analyzed. The result of the
analysis is used to generate a similar profile obfuscation assembly
code to be added to the original. Figure 4 shows the obfuscation pro-
cess. The obf.asm file goes through the normal compilation process.
The binary mask is encrypted and loaded into the processor’s memory
with the obfuscated program. To run the program the processor
transfers the encrypted mask to the execution unit and decrypts it
using a securely stored key. In this work, we assume the secrecy of
the key is provided by a Physical(ly) Unclonable Functions (PUF)
technique. Then, the execution unit runs the program throwing out
fake instructions as indicated by the mask.
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Fig. 4. The Sphinx software obfuscation process

The Sphinx core execution unit is a Self-Aware Reconfigurable
Architecture (SARA). The key idea for the SARA design approach
is to allow the hardware to have multiple ways of executing the
same instruction with different time, power and memory/IO profiles,
illustrated in Figure 5. The software level obfuscation gives recon-
figuration range to the hardware and aids the architecture in isolating
the program’s execution time, power and memory and I/O activities
from its functionality. Figure 5 shows the effects of user-defined
entropy levels on the distribution of real and falsified instructions. Ef-
fectively, the Sphinx architecture provides the following capabilities
(a) performance/timing-awareness for timing obfuscation, (b) power-
awareness for power obfuscation and (c) self-organized data storage
for memory and I/O obfuscation. 	
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Fig. 5. Instruction execution profile candidates
III. EVALUATIONS

To test the Sphinx system, we implement a Verilog version of the
hardware. We use a number of common benchmark suites (SPLASH-
2, PARSEC, SPEC CINT2006). The selected benchmark applications
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Fig. 6. Effects of user-defined entropy levels on the distribution of real and
falsified instructions

are compiled, obfuscated and executed on the emulated hardware.
The benchmarks are also run on an unsecured but otherwise similar
processor to perform a comparative study. Figure 7 highlights some
of the performance results of the Sphinx system.
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Fig. 7. Splash-2 benchmarks on the Sphinx system.
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